skia2/tests/VerticesTest.cpp

244 lines
8.7 KiB
C++
Raw Normal View History

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/core/SkCanvas.h"
#include "include/core/SkSurface.h"
#include "include/core/SkVertices.h"
#include "src/core/SkAutoMalloc.h"
#include "src/core/SkReadBuffer.h"
#include "src/core/SkVerticesPriv.h"
#include "src/core/SkWriteBuffer.h"
#include "tests/Test.h"
#include "tools/ToolUtils.h"
static bool equal(const SkVertices* vert0, const SkVertices* vert1) {
SkVerticesPriv v0(vert0->priv()), v1(vert1->priv());
if (v0.mode() != v1.mode()) {
return false;
}
if (v0.vertexCount() != v1.vertexCount()) {
return false;
}
if (v0.indexCount() != v1.indexCount()) {
return false;
}
if (v0.attributeCount() != v1.attributeCount()) {
return false;
}
for (int i = 0; i < v0.attributeCount(); ++i) {
if (v0.attributes()[i] != v1.attributes()[i]) {
return false;
}
}
if (!!v0.customData() != !!v1.customData()) {
return false;
}
if (!!v0.texCoords() != !!v1.texCoords()) {
return false;
}
if (!!v0.colors() != !!v1.colors()) {
return false;
}
for (int i = 0; i < v0.vertexCount(); ++i) {
if (v0.positions()[i] != v1.positions()[i]) {
return false;
}
if (v0.texCoords()) {
if (v0.texCoords()[i] != v1.texCoords()[i]) {
return false;
}
}
if (v0.colors()) {
if (v0.colors()[i] != v1.colors()[i]) {
return false;
}
}
}
size_t totalCustomDataSize = v0.vertexCount() * v0.customDataSize();
if (totalCustomDataSize) {
if (memcmp(v0.customData(), v1.customData(), totalCustomDataSize) != 0) {
return false;
}
}
for (int i = 0; i < v0.indexCount(); ++i) {
if (v0.indices()[i] != v1.indices()[i]) {
return false;
}
}
return true;
}
static void self_test(sk_sp<SkVertices> v0, skiatest::Reporter* reporter) {
SkBinaryWriteBuffer writer;
v0->priv().encode(writer);
SkAutoMalloc buf(writer.bytesWritten());
writer.writeToMemory(buf.get());
SkReadBuffer reader(buf.get(), writer.bytesWritten());
sk_sp<SkVertices> v1 = SkVerticesPriv::Decode(reader);
REPORTER_ASSERT(reporter, v1 != nullptr);
REPORTER_ASSERT(reporter, v0->uniqueID() != 0);
REPORTER_ASSERT(reporter, v1->uniqueID() != 0);
REPORTER_ASSERT(reporter, v0->uniqueID() != v1->uniqueID());
REPORTER_ASSERT(reporter, equal(v0.get(), v1.get()));
}
DEF_TEST(Vertices, reporter) {
int vCount = 5;
int iCount = 9; // odd value exercises padding logic in encode()
// color-tex tests
const uint32_t texFlags[] = { 0, SkVertices::kHasTexCoords_BuilderFlag };
const uint32_t colFlags[] = { 0, SkVertices::kHasColors_BuilderFlag };
for (auto texF : texFlags) {
for (auto colF : colFlags) {
uint32_t flags = texF | colF;
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vCount, iCount, flags);
for (int i = 0; i < vCount; ++i) {
float x = (float)i;
builder.positions()[i].set(x, 1);
if (builder.texCoords()) {
builder.texCoords()[i].set(x, 2);
}
if (builder.colors()) {
builder.colors()[i] = SkColorSetARGB(0xFF, i, 0x80, 0);
}
}
for (int i = 0; i < iCount; ++i) {
builder.indices()[i] = i % vCount;
}
self_test(builder.detach(), reporter);
}
}
// custom data tests
using AttrType = SkVertices::Attribute::Type;
struct {
int count;
size_t expected_size;
SkVertices::Attribute attrs[4];
} attrTests[] = {
{ 1, 4, { AttrType::kFloat } },
{ 1, 8, { AttrType::kFloat2 } },
{ 1, 12, { AttrType::kFloat3 } },
{ 1, 16, { AttrType::kFloat4 } },
{ 1, 4, { AttrType::kByte4_unorm } },
{ 4, 16, { AttrType::kFloat, AttrType::kFloat, AttrType::kFloat, AttrType::kFloat } },
{ 2, 12, { AttrType::kFloat2, AttrType::kByte4_unorm } },
{ 2, 12, { AttrType::kByte4_unorm, AttrType::kFloat2 } },
};
for (const auto& test : attrTests) {
SkVertices::Builder builder(SkVertices::kTriangles_VertexMode, vCount, iCount,
test.attrs, test.count);
float* customData = (float*)builder.customData();
int customDataCount = test.expected_size / sizeof(float);
for (int i = 0; i < vCount; ++i) {
builder.positions()[i].set((float)i, 1);
for (int j = 0; j < customDataCount; ++j) {
customData[i * customDataCount + j] = (float)j;
}
}
for (int i = 0; i < iCount; ++i) {
builder.indices()[i] = i % vCount;
}
self_test(builder.detach(), reporter);
}
{
// This has the maximum number of vertices to be rewritten as indexed triangles without
// overflowing a 16bit index.
2018-06-15 15:37:57 +00:00
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, UINT16_MAX + 1, 0,
SkVertices::kHasColors_BuilderFlag);
REPORTER_ASSERT(reporter, builder.isValid());
}
{
// This has too many to be rewritten.
2018-06-15 15:37:57 +00:00
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, UINT16_MAX + 2, 0,
SkVertices::kHasColors_BuilderFlag);
REPORTER_ASSERT(reporter, !builder.isValid());
}
{
// Only two vertices - can't be rewritten.
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 2, 0,
SkVertices::kHasColors_BuilderFlag);
REPORTER_ASSERT(reporter, !builder.isValid());
}
{
// Minimum number of indices to be rewritten.
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 10, 3,
SkVertices::kHasColors_BuilderFlag);
REPORTER_ASSERT(reporter, builder.isValid());
}
{
// Too few indices to be rewritten.
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 10, 2,
SkVertices::kHasColors_BuilderFlag);
REPORTER_ASSERT(reporter, !builder.isValid());
}
// validity tests for per-vertex-data
// Check that invalid counts fail to initialize the builder
for (int attrCount : {-1, 0, SkVertices::kMaxCustomAttributes + 1}) {
SkVertices::Attribute attrs[] = { AttrType::kFloat };
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 10, 0, attrs, attrCount);
REPORTER_ASSERT(reporter, !builder.isValid());
}
{ // nullptr is definitely bad
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 10, 0, nullptr, 4);
REPORTER_ASSERT(reporter, !builder.isValid());
}
{ // "normal" number of per-vertex-data (all floats)
SkVertices::Attribute attrs[] = {AttrType::kFloat2, AttrType::kFloat2};
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 10, 0, attrs, 2);
REPORTER_ASSERT(reporter, builder.isValid());
REPORTER_ASSERT(reporter, builder.customData() != nullptr);
}
{ // "normal" number of per-vertex-data (with packed bytes)
SkVertices::Attribute attrs[] = {AttrType::kFloat2, AttrType::kByte4_unorm};
SkVertices::Builder builder(SkVertices::kTriangleFan_VertexMode, 10, 0, attrs, 2);
REPORTER_ASSERT(reporter, builder.isValid());
REPORTER_ASSERT(reporter, builder.customData() != nullptr);
}
}
static void fill_triangle(SkCanvas* canvas, const SkPoint pts[], SkColor c) {
SkColor colors[] = { c, c, c };
auto verts = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, 3, pts, nullptr, colors);
canvas->drawVertices(verts, SkBlendMode::kSrc, SkPaint());
}
DEF_TEST(Vertices_clipping, reporter) {
// A very large triangle has to be geometrically clipped (since its "fast" clipping is
// normally done in after building SkFixed coordinates). Check that we handle this.
// (and don't assert).
auto surf = SkSurface::MakeRasterN32Premul(3, 3);
SkPoint pts[] = { { -10, 1 }, { -10, 2 }, { 1e9f, 1.5f } };
fill_triangle(surf->getCanvas(), pts, SK_ColorBLACK);
ToolUtils::PixelIter iter(surf.get());
SkIPoint loc;
while (void* addr = iter.next(&loc)) {
SkPMColor c = *(SkPMColor*)addr;
if (loc.fY == 1) {
REPORTER_ASSERT(reporter, c == 0xFF000000);
} else {
REPORTER_ASSERT(reporter, c == 0);
}
}
}