skia2/gm/beziereffects.cpp

540 lines
20 KiB
C++
Raw Normal View History

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
// This test only works with the GPU backend.
#include "gm.h"
#if SK_SUPPORT_GPU
#include "GrContext.h"
#include "GrPathUtils.h"
#include "GrTest.h"
#include "SkColorPriv.h"
#include "SkDevice.h"
#include "SkGeometry.h"
#include "effects/GrBezierEffect.h"
// Position & KLM line eq values. These are the vertex attributes for Bezier curves. The last value
// of the Vec4f is ignored.
namespace {
extern const GrVertexAttrib kAttribs[] = {
{kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
{kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding}
};
}
static inline SkScalar eval_line(const SkPoint& p, const SkScalar lineEq[3], SkScalar sign) {
return sign * (lineEq[0] * p.fX + lineEq[1] * p.fY + lineEq[2]);
}
namespace skiagm {
/**
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
*/
class BezierCubicEffects : public GM {
public:
BezierCubicEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
virtual SkString onShortName() SK_OVERRIDE {
return SkString("bezier_cubic_effects");
}
virtual SkISize onISize() SK_OVERRIDE {
return SkISize::Make(800, 800);
}
virtual uint32_t onGetFlags() const SK_OVERRIDE {
// This is a GPU-specific GM.
return kGPUOnly_Flag;
}
virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
if (NULL == rt) {
return;
}
GrContext* context = rt->getContext();
if (NULL == context) {
return;
}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
static const int kNumCubics = 15;
SkRandom rand;
// Mult by 3 for each edge effect type
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumCubics*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumCubics*3) / numCols);
SkScalar w = SkIntToScalar(rt->width()) / numCols;
SkScalar h = SkIntToScalar(rt->height()) / numRows;
int row = 0;
int col = 0;
for (int i = 0; i < kNumCubics; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
for(int edgeType = 0; edgeType < kGrEffectEdgeTypeCnt; ++edgeType) {
SkAutoTUnref<GrEffectRef> effect;
{ // scope to contain GrTestTarget
GrTestTarget tt;
context->getTestTarget(&tt);
if (NULL == tt.target()) {
continue;
}
GrEffectEdgeType et = (GrEffectEdgeType)edgeType;
effect.reset(GrCubicEffect::Create(et, *tt.target()->caps()));
if (!effect) {
continue;
}
}
SkScalar x = SkScalarMul(col, w);
SkScalar y = SkScalarMul(row, h);
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY},
{x + baseControlPts[3].fX, y + baseControlPts[3].fY}
};
SkPoint chopped[10];
SkScalar klmEqs[9];
SkScalar klmSigns[3];
int cnt = GrPathUtils::chopCubicAtLoopIntersection(controlPts,
chopped,
klmEqs,
klmSigns);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 4; ++i) {
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = chopped + 3 * c;
for (int i = 0; i < 4; ++i) {
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
}
SkRect bounds;
bounds.set(pts, 4);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
Vertex verts[4];
verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
bounds.fRight, bounds.fBottom,
sizeof(Vertex));
for (int v = 0; v < 4; ++v) {
verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, klmSigns[c]);
verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, klmSigns[c]);
verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f);
}
GrTestTarget tt;
context->getTestTarget(&tt);
SkASSERT(NULL != tt.target());
GrDrawState* drawState = tt.target()->drawState();
drawState->setVertexAttribs<kAttribs>(2);
drawState->addCoverageEffect(effect, 1);
drawState->setRenderTarget(rt);
drawState->setColor(0xff000000);
tt.target()->setVertexSourceToArray(verts, 4);
tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
tt.target()->drawIndexed(kTriangleFan_GrPrimitiveType, 0, 0, 4, 6);
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/**
* This GM directly exercises effects that draw Bezier curves in the GPU backend.
*/
class BezierConicEffects : public GM {
public:
BezierConicEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
virtual SkString onShortName() SK_OVERRIDE {
return SkString("bezier_conic_effects");
}
virtual SkISize onISize() SK_OVERRIDE {
return SkISize::Make(800, 800);
}
virtual uint32_t onGetFlags() const SK_OVERRIDE {
// This is a GPU-specific GM.
return kGPUOnly_Flag;
}
virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
if (NULL == rt) {
return;
}
GrContext* context = rt->getContext();
if (NULL == context) {
return;
}
struct Vertex {
SkPoint fPosition;
float fKLM[4]; // The last value is ignored. The effect expects a vec4f.
};
static const int kNumConics = 10;
SkRandom rand;
// Mult by 3 for each edge effect type
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumConics*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumConics*3) / numCols);
SkScalar w = SkIntToScalar(rt->width()) / numCols;
SkScalar h = SkIntToScalar(rt->height()) / numRows;
int row = 0;
int col = 0;
for (int i = 0; i < kNumConics; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
SkScalar weight = rand.nextRangeF(0.f, 2.f);
for(int edgeType = 0; edgeType < kGrEffectEdgeTypeCnt; ++edgeType) {
SkAutoTUnref<GrEffectRef> effect;
{ // scope to contain GrTestTarget
GrTestTarget tt;
context->getTestTarget(&tt);
if (NULL == tt.target()) {
continue;
}
GrEffectEdgeType et = (GrEffectEdgeType)edgeType;
effect.reset(GrConicEffect::Create(et, *tt.target()->caps()));
if (!effect) {
continue;
}
}
SkScalar x = SkScalarMul(col, w);
SkScalar y = SkScalarMul(row, h);
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
};
SkConic dst[4];
SkScalar klmEqs[9];
int cnt = chop_conic(controlPts, dst, weight);
GrPathUtils::getConicKLM(controlPts, weight, klmEqs);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = dst[c].fPts;
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
}
SkRect bounds;
//SkPoint bPts[] = {{0.f, 0.f}, {800.f, 800.f}};
//bounds.set(bPts, 2);
bounds.set(pts, 3);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
Vertex verts[4];
verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
bounds.fRight, bounds.fBottom,
sizeof(Vertex));
for (int v = 0; v < 4; ++v) {
verts[v].fKLM[0] = eval_line(verts[v].fPosition, klmEqs + 0, 1.f);
verts[v].fKLM[1] = eval_line(verts[v].fPosition, klmEqs + 3, 1.f);
verts[v].fKLM[2] = eval_line(verts[v].fPosition, klmEqs + 6, 1.f);
}
GrTestTarget tt;
context->getTestTarget(&tt);
SkASSERT(NULL != tt.target());
GrDrawState* drawState = tt.target()->drawState();
drawState->setVertexAttribs<kAttribs>(2);
drawState->addCoverageEffect(effect, 1);
drawState->setRenderTarget(rt);
drawState->setColor(0xff000000);
tt.target()->setVertexSourceToArray(verts, 4);
tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
tt.target()->drawIndexed(kTriangleFan_GrPrimitiveType, 0, 0, 4, 6);
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
// Uses the max curvature function for quads to estimate
// where to chop the conic. If the max curvature is not
// found along the curve segment it will return 1 and
// dst[0] is the original conic. If it returns 2 the dst[0]
// and dst[1] are the two new conics.
int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
SkScalar t = SkFindQuadMaxCurvature(src);
if (t == 0) {
if (dst) {
dst[0].set(src, weight);
}
return 1;
} else {
if (dst) {
SkConic conic;
conic.set(src, weight);
conic.chopAt(t, dst);
}
return 2;
}
}
// Calls split_conic on the entire conic and then once more on each subsection.
// Most cases will result in either 1 conic (chop point is not within t range)
// or 3 points (split once and then one subsection is split again).
int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
SkConic dstTemp[2];
int conicCnt = split_conic(src, dstTemp, weight);
if (2 == conicCnt) {
int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
} else {
dst[0] = dstTemp[0];
}
return conicCnt;
}
typedef GM INHERITED;
};
//////////////////////////////////////////////////////////////////////////////
/**
* This GM directly exercises effects that draw Bezier quad curves in the GPU backend.
*/
class BezierQuadEffects : public GM {
public:
BezierQuadEffects() {
this->setBGColor(0xFFFFFFFF);
}
protected:
virtual SkString onShortName() SK_OVERRIDE {
return SkString("bezier_quad_effects");
}
virtual SkISize onISize() SK_OVERRIDE {
return SkISize::Make(800, 800);
}
virtual uint32_t onGetFlags() const SK_OVERRIDE {
// This is a GPU-specific GM.
return kGPUOnly_Flag;
}
virtual void onDraw(SkCanvas* canvas) SK_OVERRIDE {
GrRenderTarget* rt = canvas->internal_private_accessTopLayerRenderTarget();
if (NULL == rt) {
return;
}
GrContext* context = rt->getContext();
if (NULL == context) {
return;
}
struct Vertex {
SkPoint fPosition;
float fUV[4]; // The last two values are ignored. The effect expects a vec4f.
};
static const int kNumQuads = 5;
SkRandom rand;
int numCols = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(kNumQuads*3)));
int numRows = SkScalarCeilToInt(SkIntToScalar(kNumQuads*3) / numCols);
SkScalar w = SkIntToScalar(rt->width()) / numCols;
SkScalar h = SkIntToScalar(rt->height()) / numRows;
int row = 0;
int col = 0;
for (int i = 0; i < kNumQuads; ++i) {
SkPoint baseControlPts[] = {
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)},
{rand.nextRangeF(0.f, w), rand.nextRangeF(0.f, h)}
};
for(int edgeType = 0; edgeType < kGrEffectEdgeTypeCnt; ++edgeType) {
SkAutoTUnref<GrEffectRef> effect;
{ // scope to contain GrTestTarget
GrTestTarget tt;
context->getTestTarget(&tt);
if (NULL == tt.target()) {
continue;
}
GrEffectEdgeType et = (GrEffectEdgeType)edgeType;
effect.reset(GrQuadEffect::Create(et, *tt.target()->caps()));
if (!effect) {
continue;
}
}
SkScalar x = SkScalarMul(col, w);
SkScalar y = SkScalarMul(row, h);
SkPoint controlPts[] = {
{x + baseControlPts[0].fX, y + baseControlPts[0].fY},
{x + baseControlPts[1].fX, y + baseControlPts[1].fY},
{x + baseControlPts[2].fX, y + baseControlPts[2].fY}
};
SkPoint chopped[5];
int cnt = SkChopQuadAtMaxCurvature(controlPts, chopped);
SkPaint ctrlPtPaint;
ctrlPtPaint.setColor(rand.nextU() | 0xFF000000);
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(controlPts[i].fX, controlPts[i].fY, 6.f, ctrlPtPaint);
}
SkPaint polyPaint;
polyPaint.setColor(0xffA0A0A0);
polyPaint.setStrokeWidth(0);
polyPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 3, controlPts, polyPaint);
SkPaint choppedPtPaint;
choppedPtPaint.setColor(~ctrlPtPaint.getColor() | 0xFF000000);
for (int c = 0; c < cnt; ++c) {
SkPoint* pts = chopped + 2 * c;
for (int i = 0; i < 3; ++i) {
canvas->drawCircle(pts[i].fX, pts[i].fY, 3.f, choppedPtPaint);
}
SkRect bounds;
bounds.set(pts, 3);
SkPaint boundsPaint;
boundsPaint.setColor(0xff808080);
boundsPaint.setStrokeWidth(0);
boundsPaint.setStyle(SkPaint::kStroke_Style);
canvas->drawRect(bounds, boundsPaint);
Vertex verts[4];
verts[0].fPosition.setRectFan(bounds.fLeft, bounds.fTop,
bounds.fRight, bounds.fBottom,
sizeof(Vertex));
GrPathUtils::QuadUVMatrix DevToUV(pts);
DevToUV.apply<4, sizeof(Vertex), sizeof(SkPoint)>(verts);
GrTestTarget tt;
context->getTestTarget(&tt);
SkASSERT(NULL != tt.target());
GrDrawState* drawState = tt.target()->drawState();
drawState->setVertexAttribs<kAttribs>(2);
drawState->addCoverageEffect(effect, 1);
drawState->setRenderTarget(rt);
drawState->setColor(0xff000000);
tt.target()->setVertexSourceToArray(verts, 4);
tt.target()->setIndexSourceToBuffer(context->getQuadIndexBuffer());
tt.target()->drawIndexed(kTriangles_GrPrimitiveType, 0, 0, 4, 6);
}
++col;
if (numCols == col) {
col = 0;
++row;
}
}
}
}
private:
typedef GM INHERITED;
};
DEF_GM( return SkNEW(BezierCubicEffects); )
DEF_GM( return SkNEW(BezierConicEffects); )
DEF_GM( return SkNEW(BezierQuadEffects); )
}
#endif