skia2/include/private/SkSemaphore.h

84 lines
2.8 KiB
C
Raw Normal View History

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkSemaphore_DEFINED
#define SkSemaphore_DEFINED
#include "include/core/SkTypes.h"
#include "include/private/SkOnce.h"
#include "include/private/SkThreadAnnotations.h"
#include <algorithm>
#include <atomic>
class SkSemaphore {
public:
constexpr SkSemaphore(int count = 0) : fCount(count), fOSSemaphore(nullptr) {}
// Cleanup the underlying OS semaphore.
SK_SPI ~SkSemaphore();
// Increment the counter n times.
// Generally it's better to call signal(n) instead of signal() n times.
void signal(int n = 1);
// Decrement the counter by 1,
// then if the counter is < 0, sleep this thread until the counter is >= 0.
void wait();
// If the counter is positive, decrement it by 1 and return true, otherwise return false.
SK_SPI bool try_wait();
private:
// This implementation follows the general strategy of
// 'A Lightweight Semaphore with Partial Spinning'
// found here
// http://preshing.com/20150316/semaphores-are-surprisingly-versatile/
// That article (and entire blog) are very much worth reading.
//
// We wrap an OS-provided semaphore with a user-space atomic counter that
// lets us avoid interacting with the OS semaphore unless strictly required:
// moving the count from >=0 to <0 or vice-versa, i.e. sleeping or waking threads.
struct OSSemaphore;
SK_SPI void osSignal(int n);
SK_SPI void osWait();
std::atomic<int> fCount;
SkOnce fOSSemaphoreOnce;
OSSemaphore* fOSSemaphore;
};
inline void SkSemaphore::signal(int n) {
int prev = fCount.fetch_add(n, std::memory_order_release);
// We only want to call the OS semaphore when our logical count crosses
// from <0 to >=0 (when we need to wake sleeping threads).
//
// This is easiest to think about with specific examples of prev and n.
// If n == 5 and prev == -3, there are 3 threads sleeping and we signal
// std::min(-(-3), 5) == 3 times on the OS semaphore, leaving the count at 2.
//
// If prev >= 0, no threads are waiting, std::min(-prev, n) is always <= 0,
// so we don't call the OS semaphore, leaving the count at (prev + n).
int toSignal = std::min(-prev, n);
if (toSignal > 0) {
this->osSignal(toSignal);
}
}
inline void SkSemaphore::wait() {
// Since this fetches the value before the subtract, zero and below means that there are no
// resources left, so the thread needs to wait.
if (fCount.fetch_sub(1, std::memory_order_acquire) <= 0) {
SK_POTENTIALLY_BLOCKING_REGION_BEGIN;
this->osWait();
SK_POTENTIALLY_BLOCKING_REGION_END;
}
}
#endif//SkSemaphore_DEFINED