skia2/tests/ReadPixelsTest.cpp

799 lines
34 KiB
C++
Raw Normal View History

/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <initializer_list>
#include "include/core/SkCanvas.h"
#include "include/core/SkSurface.h"
#include "include/gpu/GrContext.h"
#include "include/private/SkColorData.h"
#include "include/private/SkHalf.h"
#include "include/private/SkImageInfoPriv.h"
#include "src/core/SkAutoPixmapStorage.h"
#include "src/core/SkConvertPixels.h"
#include "src/core/SkMathPriv.h"
#include "src/gpu/GrContextPriv.h"
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/SkGr.h"
#include "tests/Test.h"
#include "tools/gpu/GrContextFactory.h"
#include "tools/gpu/ProxyUtils.h"
static const int DEV_W = 100, DEV_H = 100;
static const SkIRect DEV_RECT = SkIRect::MakeWH(DEV_W, DEV_H);
static const SkRect DEV_RECT_S = SkRect::MakeWH(DEV_W * SK_Scalar1,
DEV_H * SK_Scalar1);
static SkPMColor get_src_color(int x, int y) {
SkASSERT(x >= 0 && x < DEV_W);
SkASSERT(y >= 0 && y < DEV_H);
U8CPU r = x;
U8CPU g = y;
U8CPU b = 0xc;
U8CPU a = 0xff;
switch ((x+y) % 5) {
case 0:
a = 0xff;
break;
case 1:
a = 0x80;
break;
case 2:
a = 0xCC;
break;
case 4:
a = 0x01;
break;
case 3:
a = 0x00;
break;
}
return SkPremultiplyARGBInline(a, r, g, b);
}
static SkPMColor get_dst_bmp_init_color(int x, int y, int w) {
int n = y * w + x;
U8CPU b = n & 0xff;
U8CPU g = (n >> 8) & 0xff;
U8CPU r = (n >> 16) & 0xff;
return SkPackARGB32(0xff, r, g , b);
}
// TODO: Make this consider both ATs
static SkPMColor convert_to_pmcolor(SkColorType ct, SkAlphaType at, const uint32_t* addr,
bool* doUnpremul) {
*doUnpremul = (kUnpremul_SkAlphaType == at);
const uint8_t* c = reinterpret_cast<const uint8_t*>(addr);
U8CPU a,r,g,b;
switch (ct) {
case kBGRA_8888_SkColorType:
b = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
r = static_cast<U8CPU>(c[2]);
a = static_cast<U8CPU>(c[3]);
break;
case kRGB_888x_SkColorType: // fallthrough
case kRGBA_8888_SkColorType:
r = static_cast<U8CPU>(c[0]);
g = static_cast<U8CPU>(c[1]);
b = static_cast<U8CPU>(c[2]);
// We set this even when for kRGB_888x because our caller will validate that it is 0xff.
a = static_cast<U8CPU>(c[3]);
break;
default:
SkDEBUGFAIL("Unexpected colortype");
return 0;
}
if (*doUnpremul) {
r = SkMulDiv255Ceiling(r, a);
g = SkMulDiv255Ceiling(g, a);
b = SkMulDiv255Ceiling(b, a);
}
return SkPackARGB32(a, r, g, b);
}
static SkBitmap make_src_bitmap() {
static SkBitmap bmp;
if (bmp.isNull()) {
bmp.allocN32Pixels(DEV_W, DEV_H);
intptr_t pixels = reinterpret_cast<intptr_t>(bmp.getPixels());
for (int y = 0; y < DEV_H; ++y) {
for (int x = 0; x < DEV_W; ++x) {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bmp.rowBytes() + x * bmp.bytesPerPixel());
*pixel = get_src_color(x, y);
}
}
}
return bmp;
}
static void fill_src_canvas(SkCanvas* canvas) {
canvas->save();
canvas->setMatrix(SkMatrix::I());
canvas->clipRect(DEV_RECT_S, kReplace_SkClipOp);
SkPaint paint;
paint.setBlendMode(SkBlendMode::kSrc);
canvas->drawBitmap(make_src_bitmap(), 0, 0, &paint);
canvas->restore();
}
static void fill_dst_bmp_with_init_data(SkBitmap* bitmap) {
int w = bitmap->width();
int h = bitmap->height();
intptr_t pixels = reinterpret_cast<intptr_t>(bitmap->getPixels());
for (int y = 0; y < h; ++y) {
for (int x = 0; x < w; ++x) {
SkPMColor initColor = get_dst_bmp_init_color(x, y, w);
if (kAlpha_8_SkColorType == bitmap->colorType()) {
uint8_t* alpha = reinterpret_cast<uint8_t*>(pixels + y * bitmap->rowBytes() + x);
*alpha = SkGetPackedA32(initColor);
} else {
SkPMColor* pixel = reinterpret_cast<SkPMColor*>(pixels + y * bitmap->rowBytes() + x * bitmap->bytesPerPixel());
*pixel = initColor;
}
}
}
}
static bool check_read_pixel(SkPMColor a, SkPMColor b, bool didPremulConversion) {
if (!didPremulConversion) {
return a == b;
}
int32_t aA = static_cast<int32_t>(SkGetPackedA32(a));
int32_t aR = static_cast<int32_t>(SkGetPackedR32(a));
int32_t aG = static_cast<int32_t>(SkGetPackedG32(a));
int32_t aB = SkGetPackedB32(a);
int32_t bA = static_cast<int32_t>(SkGetPackedA32(b));
int32_t bR = static_cast<int32_t>(SkGetPackedR32(b));
int32_t bG = static_cast<int32_t>(SkGetPackedG32(b));
int32_t bB = static_cast<int32_t>(SkGetPackedB32(b));
return aA == bA &&
SkAbs32(aR - bR) <= 1 &&
SkAbs32(aG - bG) <= 1 &&
SkAbs32(aB - bB) <= 1;
}
// checks the bitmap contains correct pixels after the readPixels
// if the bitmap was prefilled with pixels it checks that these weren't
// overwritten in the area outside the readPixels.
static bool check_read(skiatest::Reporter* reporter, const SkBitmap& bitmap, int x, int y,
bool checkSurfacePixels, bool checkBitmapPixels,
SkImageInfo surfaceInfo) {
SkAlphaType bmpAT = bitmap.alphaType();
SkColorType bmpCT = bitmap.colorType();
SkASSERT(!bitmap.isNull());
SkASSERT(checkSurfacePixels || checkBitmapPixels);
int bw = bitmap.width();
int bh = bitmap.height();
SkIRect srcRect = SkIRect::MakeXYWH(x, y, bw, bh);
SkIRect clippedSrcRect = DEV_RECT;
if (!clippedSrcRect.intersect(srcRect)) {
clippedSrcRect.setEmpty();
}
if (kAlpha_8_SkColorType == bmpCT) {
for (int by = 0; by < bh; ++by) {
for (int bx = 0; bx < bw; ++bx) {
int devx = bx + srcRect.fLeft;
int devy = by + srcRect.fTop;
const uint8_t* alpha = bitmap.getAddr8(bx, by);
if (clippedSrcRect.contains(devx, devy)) {
if (checkSurfacePixels) {
uint8_t surfaceAlpha = (surfaceInfo.alphaType() == kOpaque_SkAlphaType)
? 0xFF
: SkGetPackedA32(get_src_color(devx, devy));
if (surfaceAlpha != *alpha) {
ERRORF(reporter,
"Expected readback alpha (%d, %d) value 0x%02x, got 0x%02x. ",
bx, by, surfaceAlpha, *alpha);
return false;
}
}
} else if (checkBitmapPixels) {
uint32_t origDstAlpha = SkGetPackedA32(get_dst_bmp_init_color(bx, by, bw));
if (origDstAlpha != *alpha) {
ERRORF(reporter, "Expected clipped out area of readback to be unchanged. "
"Expected 0x%02x, got 0x%02x", origDstAlpha, *alpha);
return false;
}
}
}
}
return true;
}
for (int by = 0; by < bh; ++by) {
for (int bx = 0; bx < bw; ++bx) {
int devx = bx + srcRect.fLeft;
int devy = by + srcRect.fTop;
const uint32_t* pixel = bitmap.getAddr32(bx, by);
if (clippedSrcRect.contains(devx, devy)) {
if (checkSurfacePixels) {
SkPMColor surfacePMColor = get_src_color(devx, devy);
if (SkColorTypeIsAlphaOnly(surfaceInfo.colorType())) {
surfacePMColor &= 0xFF000000;
}
if (kOpaque_SkAlphaType == surfaceInfo.alphaType() || kOpaque_SkAlphaType == bmpAT) {
surfacePMColor |= 0xFF000000;
}
bool didPremul;
SkPMColor pmPixel = convert_to_pmcolor(bmpCT, bmpAT, pixel, &didPremul);
if (!check_read_pixel(pmPixel, surfacePMColor, didPremul)) {
ERRORF(reporter,
"Expected readback pixel (%d, %d) value 0x%08x, got 0x%08x. "
"Readback was unpremul: %d",
bx, by, surfacePMColor, pmPixel, didPremul);
return false;
}
}
} else if (checkBitmapPixels) {
uint32_t origDstPixel = get_dst_bmp_init_color(bx, by, bw);
if (origDstPixel != *pixel) {
ERRORF(reporter, "Expected clipped out area of readback to be unchanged. "
"Expected 0x%08x, got 0x%08x", origDstPixel, *pixel);
return false;
}
}
}
}
return true;
}
enum BitmapInit {
kFirstBitmapInit = 0,
kTight_BitmapInit = kFirstBitmapInit,
kRowBytes_BitmapInit,
kRowBytesOdd_BitmapInit,
kLastAligned_BitmapInit = kRowBytes_BitmapInit,
#if 0 // THIS CAUSES ERRORS ON WINDOWS AND SOME ANDROID DEVICES
kLast_BitmapInit = kRowBytesOdd_BitmapInit
#else
kLast_BitmapInit = kLastAligned_BitmapInit
#endif
};
static BitmapInit nextBMI(BitmapInit bmi) {
int x = bmi;
return static_cast<BitmapInit>(++x);
}
static void init_bitmap(SkBitmap* bitmap, const SkIRect& rect, BitmapInit init, SkColorType ct,
SkAlphaType at) {
SkImageInfo info = SkImageInfo::Make(rect.width(), rect.height(), ct, at);
size_t rowBytes = 0;
switch (init) {
case kTight_BitmapInit:
break;
case kRowBytes_BitmapInit:
rowBytes = SkAlign4((info.width() + 16) * info.bytesPerPixel());
break;
case kRowBytesOdd_BitmapInit:
rowBytes = SkAlign4(info.width() * info.bytesPerPixel()) + 3;
break;
default:
SkASSERT(0);
break;
}
bitmap->allocPixels(info, rowBytes);
}
static const struct {
SkColorType fColorType;
SkAlphaType fAlphaType;
} gReadPixelsConfigs[] = {
{kRGBA_8888_SkColorType, kPremul_SkAlphaType},
{kRGBA_8888_SkColorType, kUnpremul_SkAlphaType},
{kRGB_888x_SkColorType, kOpaque_SkAlphaType},
{kBGRA_8888_SkColorType, kPremul_SkAlphaType},
{kBGRA_8888_SkColorType, kUnpremul_SkAlphaType},
{kAlpha_8_SkColorType, kPremul_SkAlphaType},
};
const SkIRect gReadPixelsTestRects[] = {
// entire thing
DEV_RECT,
// larger on all sides
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H + 10),
// fully contained
SkIRect::MakeLTRB(DEV_W / 4, DEV_H / 4, 3 * DEV_W / 4, 3 * DEV_H / 4),
// outside top left
SkIRect::MakeLTRB(-10, -10, -1, -1),
// touching top left corner
SkIRect::MakeLTRB(-10, -10, 0, 0),
// overlapping top left corner
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H / 4),
// overlapping top left and top right corners
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, DEV_H / 4),
// touching entire top edge
SkIRect::MakeLTRB(-10, -10, DEV_W + 10, 0),
// overlapping top right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H / 4),
// contained in x, overlapping top edge
SkIRect::MakeLTRB(DEV_W / 4, -10, 3 * DEV_W / 4, DEV_H / 4),
// outside top right corner
SkIRect::MakeLTRB(DEV_W + 1, -10, DEV_W + 10, -1),
// touching top right corner
SkIRect::MakeLTRB(DEV_W, -10, DEV_W + 10, 0),
// overlapping top left and bottom left corners
SkIRect::MakeLTRB(-10, -10, DEV_W / 4, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(-10, -10, 0, DEV_H + 10),
// overlapping bottom left corner
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W / 4, DEV_H + 10),
// contained in y, overlapping left edge
SkIRect::MakeLTRB(-10, DEV_H / 4, DEV_W / 4, 3 * DEV_H / 4),
// outside bottom left corner
SkIRect::MakeLTRB(-10, DEV_H + 1, -1, DEV_H + 10),
// touching bottom left corner
SkIRect::MakeLTRB(-10, DEV_H, 0, DEV_H + 10),
// overlapping bottom left and bottom right corners
SkIRect::MakeLTRB(-10, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// touching entire left edge
SkIRect::MakeLTRB(0, DEV_H, DEV_W, DEV_H + 10),
// overlapping bottom right corner
SkIRect::MakeLTRB(3 * DEV_W / 4, 3 * DEV_H / 4, DEV_W + 10, DEV_H + 10),
// overlapping top right and bottom right corners
SkIRect::MakeLTRB(3 * DEV_W / 4, -10, DEV_W + 10, DEV_H + 10),
};
bool read_should_succeed(const SkIRect& srcRect, const SkImageInfo& dstInfo,
const SkImageInfo& srcInfo) {
return SkIRect::Intersects(srcRect, DEV_RECT) && SkImageInfoValidConversion(dstInfo, srcInfo);
}
static void test_readpixels(skiatest::Reporter* reporter, const sk_sp<SkSurface>& surface,
const SkImageInfo& surfaceInfo, BitmapInit lastBitmapInit) {
SkCanvas* canvas = surface->getCanvas();
fill_src_canvas(canvas);
for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) {
const SkIRect& srcRect = gReadPixelsTestRects[rect];
for (BitmapInit bmi = kFirstBitmapInit; bmi <= lastBitmapInit; bmi = nextBMI(bmi)) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) {
SkBitmap bmp;
init_bitmap(&bmp, srcRect, bmi,
gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType);
// if the bitmap has pixels allocated before the readPixels,
// note that and fill them with pattern
bool startsWithPixels = !bmp.isNull();
if (startsWithPixels) {
fill_dst_bmp_with_init_data(&bmp);
}
uint32_t idBefore = surface->generationID();
bool success = surface->readPixels(bmp, srcRect.fLeft, srcRect.fTop);
uint32_t idAfter = surface->generationID();
// we expect to succeed when the read isn't fully clipped out and the infos are
// compatible.
bool expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo);
// determine whether we expected the read to succeed.
REPORTER_ASSERT(reporter, expectSuccess == success,
"Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d",
success, surfaceInfo.colorType(), surfaceInfo.alphaType(),
bmp.info().colorType(), bmp.info().alphaType());
// read pixels should never change the gen id
REPORTER_ASSERT(reporter, idBefore == idAfter);
if (success || startsWithPixels) {
check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success,
startsWithPixels, surfaceInfo);
} else {
// if we had no pixels beforehand and the readPixels
// failed then our bitmap should still not have pixels
REPORTER_ASSERT(reporter, bmp.isNull());
}
}
}
}
}
DEF_TEST(ReadPixels, reporter) {
const SkImageInfo info = SkImageInfo::MakeN32Premul(DEV_W, DEV_H);
auto surface(SkSurface::MakeRaster(info));
// SW readback fails a premul check when reading back to an unaligned rowbytes.
test_readpixels(reporter, surface, info, kLastAligned_BitmapInit);
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Gpu, reporter, ctxInfo) {
static const SkImageInfo kImageInfos[] = {
SkImageInfo::Make(DEV_W, DEV_H, kRGBA_8888_SkColorType, kPremul_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kBGRA_8888_SkColorType, kPremul_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kRGB_888x_SkColorType, kOpaque_SkAlphaType),
SkImageInfo::Make(DEV_W, DEV_H, kAlpha_8_SkColorType, kPremul_SkAlphaType),
};
for (const auto& ii : kImageInfos) {
for (auto& origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) {
sk_sp<SkSurface> surface(SkSurface::MakeRenderTarget(
ctxInfo.grContext(), SkBudgeted::kNo, ii, 0, origin, nullptr));
if (!surface) {
continue;
}
test_readpixels(reporter, surface, ii, kLast_BitmapInit);
}
}
}
static void test_readpixels_texture(skiatest::Reporter* reporter,
sk_sp<GrSurfaceContext> sContext,
const SkImageInfo& surfaceInfo) {
for (size_t rect = 0; rect < SK_ARRAY_COUNT(gReadPixelsTestRects); ++rect) {
const SkIRect& srcRect = gReadPixelsTestRects[rect];
for (BitmapInit bmi = kFirstBitmapInit; bmi <= kLast_BitmapInit; bmi = nextBMI(bmi)) {
for (size_t c = 0; c < SK_ARRAY_COUNT(gReadPixelsConfigs); ++c) {
SkBitmap bmp;
init_bitmap(&bmp, srcRect, bmi,
gReadPixelsConfigs[c].fColorType, gReadPixelsConfigs[c].fAlphaType);
// if the bitmap has pixels allocated before the readPixels,
// note that and fill them with pattern
bool startsWithPixels = !bmp.isNull();
// Try doing the read directly from a non-renderable texture
if (startsWithPixels) {
fill_dst_bmp_with_init_data(&bmp);
bool success = sContext->readPixels(bmp.info(), bmp.getPixels(),
bmp.rowBytes(), {srcRect.fLeft, srcRect.fTop});
auto expectSuccess = read_should_succeed(srcRect, bmp.info(), surfaceInfo);
REPORTER_ASSERT(
reporter, expectSuccess == success,
"Read succeed=%d unexpectedly, src ct/at: %d/%d, dst ct/at: %d/%d",
success, surfaceInfo.colorType(), surfaceInfo.alphaType(),
bmp.info().colorType(), bmp.info().alphaType());
if (success) {
check_read(reporter, bmp, srcRect.fLeft, srcRect.fTop, success, true,
surfaceInfo);
}
}
}
}
}
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ReadPixels_Texture, reporter, ctxInfo) {
GrContext* context = ctxInfo.grContext();
SkBitmap bmp = make_src_bitmap();
// On the GPU we will also try reading back from a non-renderable texture.
for (auto origin : {kBottomLeft_GrSurfaceOrigin, kTopLeft_GrSurfaceOrigin}) {
for (auto renderable : {GrRenderable::kNo, GrRenderable::kYes}) {
sk_sp<GrTextureProxy> proxy = sk_gpu_test::MakeTextureProxyFromData(
context, renderable, DEV_W, DEV_H, bmp.colorType(), bmp.alphaType(), origin,
bmp.getPixels(), bmp.rowBytes());
sk_sp<GrSurfaceContext> sContext = context->priv().makeWrappedSurfaceContext(
std::move(proxy), SkColorTypeToGrColorType(bmp.colorType()),
kPremul_SkAlphaType);
auto info = SkImageInfo::Make(DEV_W, DEV_H, kN32_SkColorType, kPremul_SkAlphaType);
test_readpixels_texture(reporter, std::move(sContext), info);
}
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static const uint32_t kNumPixels = 5;
// The five reference pixels are: red, green, blue, white, black.
// Five is an interesting number to test because we'll exercise a full 4-wide SIMD vector
// plus a tail pixel.
static const uint32_t rgba[kNumPixels] = {
0xFF0000FF, 0xFF00FF00, 0xFFFF0000, 0xFFFFFFFF, 0xFF000000
};
static const uint32_t bgra[kNumPixels] = {
0xFFFF0000, 0xFF00FF00, 0xFF0000FF, 0xFFFFFFFF, 0xFF000000
};
static const uint16_t rgb565[kNumPixels] = {
SK_R16_MASK_IN_PLACE, SK_G16_MASK_IN_PLACE, SK_B16_MASK_IN_PLACE, 0xFFFF, 0x0
};
static const uint16_t rgba4444[kNumPixels] = { 0xF00F, 0x0F0F, 0x00FF, 0xFFFF, 0x000F };
static const uint64_t kRed = (uint64_t) SK_Half1 << 0;
static const uint64_t kGreen = (uint64_t) SK_Half1 << 16;
static const uint64_t kBlue = (uint64_t) SK_Half1 << 32;
static const uint64_t kAlpha = (uint64_t) SK_Half1 << 48;
static const uint64_t f16[kNumPixels] = {
kAlpha | kRed, kAlpha | kGreen, kAlpha | kBlue, kAlpha | kBlue | kGreen | kRed, kAlpha
};
static const uint8_t alpha8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static const uint8_t gray8[kNumPixels] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
static const void* five_reference_pixels(SkColorType colorType) {
switch (colorType) {
case kUnknown_SkColorType:
return nullptr;
case kAlpha_8_SkColorType:
return alpha8;
case kRGB_565_SkColorType:
return rgb565;
case kARGB_4444_SkColorType:
return rgba4444;
case kRGBA_8888_SkColorType:
return rgba;
case kBGRA_8888_SkColorType:
return bgra;
case kGray_8_SkColorType:
return gray8;
case kRGBA_F16_SkColorType:
return f16;
default:
return nullptr;
}
SkASSERT(false);
return nullptr;
}
static void test_conversion(skiatest::Reporter* r, const SkImageInfo& dstInfo,
const SkImageInfo& srcInfo) {
if (!SkImageInfoIsValid(srcInfo)) {
return;
}
const void* srcPixels = five_reference_pixels(srcInfo.colorType());
SkPixmap srcPixmap(srcInfo, srcPixels, srcInfo.minRowBytes());
sk_sp<SkImage> src = SkImage::MakeFromRaster(srcPixmap, nullptr, nullptr);
REPORTER_ASSERT(r, src);
// Enough space for 5 pixels when color type is F16, more than enough space in other cases.
uint64_t dstPixels[kNumPixels];
SkPixmap dstPixmap(dstInfo, dstPixels, dstInfo.minRowBytes());
bool success = src->readPixels(dstPixmap, 0, 0);
REPORTER_ASSERT(r, success == SkImageInfoValidConversion(dstInfo, srcInfo));
if (success) {
if (kGray_8_SkColorType == srcInfo.colorType() &&
kGray_8_SkColorType != dstInfo.colorType()) {
// TODO: test (r,g,b) == (gray,gray,gray)?
return;
}
if (kGray_8_SkColorType == dstInfo.colorType() &&
kGray_8_SkColorType != srcInfo.colorType()) {
// TODO: test gray = luminance?
return;
}
if (kAlpha_8_SkColorType == srcInfo.colorType() &&
kAlpha_8_SkColorType != dstInfo.colorType()) {
// TODO: test output = black with this alpha?
return;
}
REPORTER_ASSERT(r, 0 == memcmp(dstPixels, five_reference_pixels(dstInfo.colorType()),
kNumPixels * SkColorTypeBytesPerPixel(dstInfo.colorType())));
}
}
DEF_TEST(ReadPixels_ValidConversion, reporter) {
const SkColorType kColorTypes[] = {
kUnknown_SkColorType,
kAlpha_8_SkColorType,
kRGB_565_SkColorType,
kARGB_4444_SkColorType,
kRGBA_8888_SkColorType,
kBGRA_8888_SkColorType,
kGray_8_SkColorType,
kRGBA_F16_SkColorType,
};
const SkAlphaType kAlphaTypes[] = {
kUnknown_SkAlphaType,
kOpaque_SkAlphaType,
kPremul_SkAlphaType,
kUnpremul_SkAlphaType,
};
const sk_sp<SkColorSpace> kColorSpaces[] = {
nullptr,
SkColorSpace::MakeSRGB(),
};
for (SkColorType dstCT : kColorTypes) {
for (SkAlphaType dstAT: kAlphaTypes) {
for (sk_sp<SkColorSpace> dstCS : kColorSpaces) {
for (SkColorType srcCT : kColorTypes) {
for (SkAlphaType srcAT: kAlphaTypes) {
for (sk_sp<SkColorSpace> srcCS : kColorSpaces) {
test_conversion(reporter,
SkImageInfo::Make(kNumPixels, 1, dstCT, dstAT, dstCS),
SkImageInfo::Make(kNumPixels, 1, srcCT, srcAT, srcCS));
}
}
}
}
}
}
}
namespace {
using ComparePixmapsErrorReporter = void(int x, int y, const float diffs[4]);
} // anonymous namespace
static void compare_pixmaps(const SkPixmap& a, const SkPixmap& b, const float tol[4],
std::function<ComparePixmapsErrorReporter>& error) {
if (a.width() != b.width() || a.height() != b.height()) {
static constexpr float kDummyDiffs[4] = {};
error(-1, -1, kDummyDiffs);
return;
}
SkAutoPixmapStorage afloat;
SkAutoPixmapStorage bfloat;
afloat.alloc(a.info().makeColorType(kRGBA_F32_SkColorType));
bfloat.alloc(b.info().makeColorType(kRGBA_F32_SkColorType));
SkConvertPixels(afloat.info(), afloat.writable_addr(), afloat.rowBytes(), a.info(), a.addr(),
a.rowBytes());
SkConvertPixels(bfloat.info(), bfloat.writable_addr(), bfloat.rowBytes(), b.info(), b.addr(),
b.rowBytes());
for (int y = 0; y < a.height(); ++y) {
for (int x = 0; x < a.width(); ++x) {
const float* rgbaA = static_cast<const float*>(afloat.addr(x, y));
const float* rgbaB = static_cast<const float*>(bfloat.addr(x, y));
float diffs[4];
bool bad = false;
for (int i = 0; i < 4; ++i) {
diffs[i] = rgbaB[i] - rgbaA[i];
if (std::abs(diffs[i]) > tol[i]) {
bad = true;
}
}
if (bad) {
error(x, y, diffs);
return;
}
}
}
}
static int min_rgb_channel_bits(SkColorType ct) {
switch (ct) {
case kUnknown_SkColorType: return 0;
case kAlpha_8_SkColorType: return 8;
case kRGB_565_SkColorType: return 5;
case kARGB_4444_SkColorType: return 4;
case kRGBA_8888_SkColorType: return 8;
case kRGB_888x_SkColorType: return 8;
case kBGRA_8888_SkColorType: return 8;
case kRGBA_1010102_SkColorType: return 10;
case kRGB_101010x_SkColorType: return 10;
case kGray_8_SkColorType: return 8; // counting gray as "rgb"
case kRGBA_F16Norm_SkColorType: return 10; // just counting the mantissa
case kRGBA_F16_SkColorType: return 10; // just counting the mantissa
case kRGBA_F32_SkColorType: return 23; // just counting the mantissa
}
SK_ABORT("Unexpected color type.");
return 0;
}
DEF_GPUTEST_FOR_RENDERING_CONTEXTS(AsyncReadPixels, reporter, ctxInfo) {
struct Context {
SkPixmap* fPixmap = nullptr;
bool fSuceeded = false;
bool fCalled = false;
};
auto callback = [](SkSurface::ReleaseContext context, const void* data, size_t rowBytes) {
auto* pm = static_cast<Context*>(context)->fPixmap;
static_cast<Context*>(context)->fCalled = true;
if ((static_cast<Context*>(context)->fSuceeded = SkToBool(data))) {
auto dst = static_cast<char*>(pm->writable_addr());
const auto* src = static_cast<const char*>(data);
for (int y = 0; y < pm->height(); ++y, src += rowBytes, dst += pm->rowBytes()) {
memcpy(dst, src, pm->width() * SkColorTypeBytesPerPixel(pm->colorType()));
}
}
};
for (auto origin : {kTopLeft_GrSurfaceOrigin, kBottomLeft_GrSurfaceOrigin}) {
static constexpr int kW = 16;
static constexpr int kH = 16;
for (int sct = 0; sct <= kLastEnum_SkColorType; ++sct) {
auto surfCT = static_cast<SkColorType>(sct);
auto info = SkImageInfo::Make(kW, kH, surfCT, kPremul_SkAlphaType, nullptr);
auto surf = SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo, info, 1,
origin, nullptr);
if (!surf) {
continue;
}
float d = std::sqrt((float)surf->width() * surf->width() +
(float)surf->height() * surf->height());
for (int j = 0; j < surf->height(); ++j) {
for (int i = 0; i < surf->width(); ++i) {
float r = i / (float)surf->width();
float g = 1.f - i / (float)surf->height();
float b = std::sqrt((float)i * i + (float)j * j) / d;
SkPaint paint;
paint.setColor4f(SkColor4f{r, g, b, 1.f}, nullptr);
surf->getCanvas()->drawRect(SkRect::MakeXYWH(i, j, 1, 1), paint);
}
}
for (const auto& rect : {SkIRect::MakeWH(kW, kH), // full size
SkIRect::MakeLTRB(1, 2, kW - 3, kH - 4), // partial
SkIRect::MakeXYWH(1, 1, 0, 0), // empty: fail
SkIRect::MakeWH(kW + 1, kH / 2)}) { // too wide: fail
for (int rct = 0; rct <= kLastEnum_SkColorType; ++rct) {
auto readCT = static_cast<SkColorType>(rct);
for (const sk_sp<SkColorSpace>& readCS :
{sk_sp<SkColorSpace>(), SkColorSpace::MakeSRGBLinear()}) {
SkAutoPixmapStorage result;
Context context;
context.fPixmap = &result;
info = SkImageInfo::Make(rect.width(), rect.height(), readCT,
kPremul_SkAlphaType, readCS);
result.alloc(info);
memset(result.writable_addr(), 0xAB, result.computeByteSize());
// Rescale quality and linearity don't matter since we're doing a non-
// scaling readback.
surf->asyncRescaleAndReadPixels(info, rect, SkSurface::RescaleGamma::kSrc,
kNone_SkFilterQuality, callback, &context);
while (!context.fCalled) {
ctxInfo.grContext()->checkAsyncWorkCompletion();
}
if (rect.isEmpty() || !SkIRect::MakeWH(kW, kH).contains(rect)) {
REPORTER_ASSERT(reporter, !context.fSuceeded);
}
if (context.fSuceeded) {
REPORTER_ASSERT(reporter, readCT != kUnknown_SkColorType &&
!rect.isEmpty());
} else {
// TODO: Support reading to kGray.
auto surfBounds = SkIRect::MakeWH(surf->width(), surf->height());
if (readCT != kUnknown_SkColorType && readCT != kGray_8_SkColorType &&
!rect.isEmpty() && surfBounds.contains(rect)) {
ERRORF(reporter,
"Async read failed. Surf Color Type: %d, Read CT: %d,"
"Rect [%d, %d, %d, %d], origin: %d, CS conversion: %d\n",
surfCT, readCT, rect.fLeft, rect.fTop, rect.fRight,
rect.fBottom, origin, (bool)readCS);
}
continue;
}
// We use a synchronous read as the source of truth.
SkAutoPixmapStorage ref;
ref.alloc(info);
memset(ref.writable_addr(), 0xCD, ref.computeByteSize());
if (!surf->readPixels(ref, rect.fLeft, rect.fTop)) {
continue;
}
// When there is no conversion, don't allow a difference.
float tol = 0.f;
if (readCS || readCT != surfCT) {
// When there is a conversion allow a diff of two values when no
// color space conversion and three otherwise. Except for alpha where
// we allow no difference. Allow intermediate truncation to an 8 bit per
// channel format.
int rgbBits = std::min({min_rgb_channel_bits(readCT),
min_rgb_channel_bits(surfCT), 8});
tol = (readCS ? 3.f : 2.f) / (1 << rgbBits);
}
const float tols[4] = {tol, tol, tol, 0};
auto error = std::function<ComparePixmapsErrorReporter>(
[&](int x, int y, const float diffs[4]) {
ERRORF(reporter,
"Surf Color Type: %d, Read CT: %d, Rect [%d, %d, %d, %d]"
", origin: %d, CS conversion: %d\n"
"Error at %d, %d. Diff in floats: (%f, %f, %f %f)",
surfCT, readCT, rect.fLeft, rect.fTop, rect.fRight,
rect.fBottom, origin, (bool)readCS, x, y, diffs[0],
diffs[1], diffs[2], diffs[3]);
});
compare_pixmaps(ref, result, tols, error);
}
}
}
}
}
}