skia2/experimental/Intersection/EdgeWalker.cpp

1241 lines
40 KiB
C++
Raw Normal View History

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CurveIntersection.h"
#include "LineIntersection.h"
#include "SkPath.h"
#include "SkRect.h"
#include "SkTArray.h"
#include "SkTDArray.h"
#include "TSearch.h"
static bool fShowDebugf = true; // FIXME: remove once debugging is complete
const int kOpenerVerbBitShift = 3; // leaves 3 bits for SkPath::Verb
static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
double aRange[2], double bRange[2]) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
_Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
return intersect(aLine, bLine, aRange, bRange);
}
static int LineIntersect(const SkPoint a[2], SkScalar y, double aRange[2]) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
return horizontalIntersect(aLine, y, aRange);
}
static SkScalar LineYAtT(const SkPoint a[2], double t) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
double y;
xy_at_t(aLine, t, *(double*) 0, y);
return SkDoubleToScalar(y);
}
static void LineSubDivide(const SkPoint a[2], double startT, double endT,
SkPoint sub[2]) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
_Line dst;
sub_divide(aLine, startT, endT, dst);
sub[0].fX = SkDoubleToScalar(dst[0].x);
sub[0].fY = SkDoubleToScalar(dst[0].y);
sub[1].fX = SkDoubleToScalar(dst[1].x);
sub[1].fY = SkDoubleToScalar(dst[1].y);
}
// functions
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray);
void simplify(const SkPath& path, bool asFill, SkPath& simple);
/*
list of edges
bounds for edge
sort
active T
if a contour's bounds is outside of the active area, no need to create edges
*/
/* given one or more paths,
find the bounds of each contour, select the active contours
for each active contour, compute a set of edges
each edge corresponds to one or more lines and curves
leave edges unbroken as long as possible
when breaking edges, compute the t at the break but leave the control points alone
*/
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
SkPath::Iter iter(path, false);
SkPoint pts[4];
SkPath::Verb verb;
SkRect bounds;
bounds.setEmpty();
int count = 0;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
if (!bounds.isEmpty()) {
*boundsArray.append() = bounds;
}
bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
count = 0;
break;
case SkPath::kLine_Verb:
count = 1;
break;
case SkPath::kQuad_Verb:
count = 2;
break;
case SkPath::kCubic_Verb:
count = 3;
break;
case SkPath::kClose_Verb:
count = 0;
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
for (int i = 1; i <= count; ++i) {
bounds.growToInclude(pts[i].fX, pts[i].fY);
}
}
}
static bool extendLine(const SkPoint line[2], const SkPoint& add) {
// FIXME: allow this to extend lines that have slopes that are nearly equal
SkScalar dx1 = line[1].fX - line[0].fX;
SkScalar dy1 = line[1].fY - line[0].fY;
SkScalar dx2 = add.fX - line[0].fX;
SkScalar dy2 = add.fY - line[0].fY;
return dx1 * dy2 == dx2 * dy1;
}
struct OutEdge {
bool operator<(const OutEdge& rh) const {
const SkPoint& first = fPts.begin()[0];
const SkPoint& rhFirst = rh.fPts.begin()[0];
return first.fY == rhFirst.fY
? first.fX < rhFirst.fX
: first.fY < rhFirst.fY;
}
SkTDArray<SkPoint> fPts;
// contains the SkPath verb, plus 1<<kOpenerVerbBitShift if edge opens span
SkTDArray<uint8_t> fVerbs; // FIXME: not read from everywhere
bool fOpener;
};
class OutEdgeBuilder {
public:
OutEdgeBuilder(bool fill)
: fFill(fill) {
}
void addLine(const SkPoint line[2], bool opener) {
size_t count = fEdges.count();
for (size_t index = 0; index < count; ++index) {
OutEdge& edge = fEdges[index];
if (opener != edge.fOpener) {
continue;
}
SkTDArray<SkPoint>& pts = edge.fPts;
SkPoint& last = pts.top();
if (last == line[0]) {
SkTDArray<uint8_t>& verbs = edge.fVerbs;
uint8_t lastVerb = verbs.top();
if (lastVerb == SkPath::kLine_Verb
&& extendLine(&last - 1, line[1])) {
last = line[1];
} else {
*pts.append() = line[1];
*verbs.append() = SkPath::kLine_Verb;
}
return;
}
}
OutEdge& newEdge = fEdges.push_back();
*newEdge.fPts.append() = line[0];
*newEdge.fVerbs.append() = SkPath::kMove_Verb;
*newEdge.fPts.append() = line[1];
*newEdge.fVerbs.append() = SkPath::kLine_Verb;
newEdge.fOpener = opener;
}
void assemble(SkPath& simple) {
size_t listCount = fEdges.count();
if (listCount == 0) {
return;
}
do {
size_t listIndex = 0;
int advance = 1;
while (listIndex < listCount && fTops[listIndex] == 0) {
++listIndex;
}
if (listIndex >= listCount) {
break;
}
SkPoint firstPt;
bool doMove = true;
int edgeIndex;
do {
SkTDArray<SkPoint>& ptArray = fEdges[listIndex].fPts;
SkASSERT(ptArray.count() > 0);
SkPoint* pts, * end;
if (advance < 0) {
pts = ptArray.end() - 1;
end = ptArray.begin();
} else {
pts = ptArray.begin();
end = ptArray.end() - 1;
}
if (doMove) {
firstPt = pts[0];
simple.moveTo(pts[0].fX, pts[0].fY);
if (fShowDebugf) {
SkDebugf("%s moveTo (%g,%g)\n", __FUNCTION__, pts[0].fX, pts[0].fY);
}
doMove = false;
} else {
simple.lineTo(pts[0].fX, pts[0].fY);
if (fShowDebugf) {
SkDebugf("%s 1 lineTo (%g,%g)\n", __FUNCTION__, pts[0].fX, pts[0].fY);
}
if (firstPt == pts[0]) {
simple.close();
if (fShowDebugf) {
SkDebugf("%s close\n", __FUNCTION__);
}
break;
}
}
while (pts != end) {
pts += advance;
simple.lineTo(pts->fX, pts->fY);
if (fShowDebugf) {
SkDebugf("%s 2 lineTo (%g,%g)\n", __FUNCTION__, pts[0].fX, pts[0].fY);
}
}
if (advance < 0) {
edgeIndex = fTops[listIndex];
fTops[listIndex] = 0;
} else {
edgeIndex = fBottoms[listIndex];
fBottoms[listIndex] = 0;
}
listIndex = abs(edgeIndex) - 1;
if (edgeIndex < 0) {
fTops[listIndex] = 0;
} else {
fBottoms[listIndex] = 0;
}
// if this and next edge go different directions
if (advance > 0 ^ edgeIndex < 0) {
advance = -advance;
}
} while (edgeIndex);
} while (true);
}
static bool lessThan(SkTArray<OutEdge>& edges, const int* onePtr,
const int* twoPtr) {
int one = *onePtr;
const OutEdge& oneEdge = edges[(one < 0 ? -one : one) - 1];
const SkPoint* onePt = one < 0 ? oneEdge.fPts.begin()
: oneEdge.fPts.end() - 1;
int two = *twoPtr;
const OutEdge& twoEdge = edges[(two < 0 ? -two : two) - 1];
const SkPoint* twoPt = two < 0 ? twoEdge.fPts.begin()
: twoEdge.fPts.end() - 1;
return onePt->fY == twoPt->fY ? onePt->fX < twoPt->fX : onePt->fY < twoPt->fY;
}
// Sort the indices of paired points and then create more indices so
// assemble() can find the next edge and connect the top or bottom
void bridge() {
size_t index;
size_t count = fEdges.count();
if (!count) {
return;
}
SkASSERT(!fFill || (count & 1) == 0);
fTops.setCount(count);
sk_bzero(fTops.begin(), sizeof(fTops[0]) * count);
fBottoms.setCount(count);
sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count);
SkTDArray<int> order;
for (index = 1; index <= count; ++index) {
*order.append() = index;
*order.append() = -index;
}
QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), count * 2, lessThan);
int* lastPtr = order.end() - 1;
int* leftPtr = order.begin();
while (leftPtr < lastPtr) {
int leftIndex = *leftPtr;
int leftOutIndex = abs(leftIndex) - 1;
const OutEdge& left = fEdges[leftOutIndex];
int* rightPtr = leftPtr + 1;
int rightIndex = *rightPtr;
int rightOutIndex = abs(rightIndex) - 1;
const OutEdge& right = fEdges[rightOutIndex];
// OPTIMIZATION: if fFill is true, we don't need leftMatch, rightMatch
SkPoint& leftMatch = left.fPts[leftIndex < 0 ? 0
: left.fPts.count() - 1];
SkPoint& rightMatch = right.fPts[rightIndex < 0 ? 0
: right.fPts.count() - 1];
SkASSERT(!fFill || leftMatch.fY == rightMatch.fY);
if (fFill || leftMatch == rightMatch) {
if (leftIndex < 0) {
fTops[leftOutIndex] = rightIndex;
} else {
fBottoms[leftOutIndex] = rightIndex;
}
if (rightIndex < 0) {
fTops[rightOutIndex] = leftIndex;
} else {
fBottoms[rightOutIndex] = leftIndex;
}
++rightPtr;
}
leftPtr = rightPtr;
}
}
protected:
SkTArray<OutEdge> fEdges;
SkTDArray<int> fTops;
SkTDArray<int> fBottoms;
bool fFill;
};
// Bounds, unlike Rect, does not consider a vertical line to be empty.
struct Bounds : public SkRect {
static bool Intersects(const Bounds& a, const Bounds& b) {
return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
a.fTop <= b.fBottom && b.fTop <= a.fBottom;
}
bool isEmpty() {
return fLeft > fRight || fTop > fBottom
|| fLeft == fRight && fTop == fBottom
|| isnan(fLeft) || isnan(fRight)
|| isnan(fTop) || isnan(fBottom);
}
};
struct Intercepts {
SkTDArray<double> fTs;
};
struct InEdge {
bool operator<(const InEdge& rh) const {
return fBounds.fTop == rh.fBounds.fTop
? fBounds.fLeft < rh.fBounds.fLeft
: fBounds.fTop < rh.fBounds.fTop;
}
bool add(double* ts, size_t count, ptrdiff_t verbIndex) {
// FIXME: in the pathological case where there is a ton of intercepts, binary search?
bool foundIntercept = false;
Intercepts& intercepts = fIntercepts[verbIndex];
for (size_t index = 0; index < count; ++index) {
double t = ts[index];
if (t <= 0 || t >= 1) {
continue;
}
foundIntercept = true;
size_t tCount = intercepts.fTs.count();
for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
if (t <= intercepts.fTs[idx2]) {
if (t < intercepts.fTs[idx2]) {
*intercepts.fTs.insert(idx2) = t;
break;
}
}
}
if (tCount == 0 || t > intercepts.fTs[tCount - 1]) {
*intercepts.fTs.append() = t;
}
}
return foundIntercept;
}
bool cached(const InEdge* edge) {
// FIXME: in the pathological case where there is a ton of edges, binary search?
size_t count = fCached.count();
for (size_t index = 0; index < count; ++index) {
if (edge == fCached[index]) {
return true;
}
if (edge < fCached[index]) {
*fCached.insert(index) = edge;
return false;
}
}
*fCached.append() = edge;
return false;
}
void complete(signed char winding) {
SkPoint* ptPtr = fPts.begin();
SkPoint* ptLast = fPts.end();
if (ptPtr == ptLast) {
SkDebugf("empty edge\n");
SkASSERT(0);
// FIXME: delete empty edge?
return;
}
fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY);
++ptPtr;
while (ptPtr != ptLast) {
fBounds.growToInclude(ptPtr->fX, ptPtr->fY);
++ptPtr;
}
fIntercepts.push_back_n(fVerbs.count());
if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top
size_t index;
size_t last = fPts.count() - 1;
for (index = 0; index < last; ++index, --last) {
SkTSwap<SkPoint>(fPts[index], fPts[last]);
}
last = fVerbs.count() - 1;
for (index = 0; index < last; ++index, --last) {
SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]);
}
}
fContainsIntercepts = false;
}
// temporary data : move this to a separate struct?
SkTDArray<const InEdge*> fCached; // list of edges already intercepted
SkTArray<Intercepts> fIntercepts; // one per verb
// persistent data
SkTDArray<SkPoint> fPts;
SkTDArray<uint8_t> fVerbs;
Bounds fBounds;
signed char fWinding;
bool fContainsIntercepts;
};
class InEdgeBuilder {
public:
InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges)
: fPath(path)
, fCurrentEdge(NULL)
, fEdges(edges)
, fIgnoreHorizontal(ignoreHorizontal)
{
walk();
}
protected:
void addEdge() {
SkASSERT(fCurrentEdge);
fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
fPtOffset = 1;
*fCurrentEdge->fVerbs.append() = fVerb;
}
bool complete() {
if (fCurrentEdge && fCurrentEdge->fVerbs.count()) {
fCurrentEdge->complete(fWinding);
fCurrentEdge = NULL;
return true;
}
return false;
}
int direction(int count) {
fPtCount = count;
fIgnorableHorizontal = fIgnoreHorizontal && isHorizontal();
if (fIgnorableHorizontal) {
return 0;
}
int last = count - 1;
return fPts[0].fY == fPts[last].fY
? fPts[0].fX == fPts[last].fX ? 0 : fPts[0].fX < fPts[last].fX
? 1 : -1 : fPts[0].fY < fPts[last].fY ? 1 : -1;
}
bool isHorizontal() {
SkScalar y = fPts[0].fY;
for (int i = 1; i < fPtCount; ++i) {
if (fPts[i].fY != y) {
return false;
}
}
return true;
}
void startEdge() {
if (!fCurrentEdge) {
fCurrentEdge = fEdges.push_back_n(1);
}
fWinding = 0;
fPtOffset = 0;
}
void walk() {
SkPath::Iter iter(fPath, true);
int winding;
while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) {
switch (fVerb) {
case SkPath::kMove_Verb:
startEdge();
continue;
case SkPath::kLine_Verb:
winding = direction(2);
break;
case SkPath::kQuad_Verb:
winding = direction(3);
break;
case SkPath::kCubic_Verb:
winding = direction(4);
break;
case SkPath::kClose_Verb:
SkASSERT(fCurrentEdge);
complete();
continue;
default:
SkDEBUGFAIL("bad verb");
return;
}
if (fIgnorableHorizontal) {
if (complete()) {
startEdge();
}
continue;
}
if (fWinding + winding == 0) {
// FIXME: if prior verb or this verb is a horizontal line, reverse
// it instead of starting a new edge
SkASSERT(fCurrentEdge);
fCurrentEdge->complete(fWinding);
startEdge();
}
fWinding = winding;
addEdge();
}
if (!complete()) {
if (fCurrentEdge) {
fEdges.pop_back();
}
}
}
private:
const SkPath& fPath;
InEdge* fCurrentEdge;
SkTArray<InEdge>& fEdges;
SkPoint fPts[4];
SkPath::Verb fVerb;
int fPtCount;
int fPtOffset;
int8_t fWinding;
bool fIgnorableHorizontal;
bool fIgnoreHorizontal;
};
struct WorkEdge {
SkScalar bottom() const {
return fPts[verb()].fY;
}
void init(const InEdge* edge) {
fEdge = edge;
fPts = edge->fPts.begin();
fVerb = edge->fVerbs.begin();
}
bool next() {
SkASSERT(fVerb < fEdge->fVerbs.end());
fPts += *fVerb++;
return fVerb != fEdge->fVerbs.end();
}
SkPath::Verb verb() const {
return (SkPath::Verb) *fVerb;
}
ptrdiff_t verbIndex() const {
return fVerb - fEdge->fVerbs.begin();
}
int winding() const {
return fEdge->fWinding;
}
const InEdge* fEdge;
const SkPoint* fPts;
const uint8_t* fVerb;
};
// always constructed with SkTDArray because new edges are inserted
// this may be a inappropriate optimization, suggesting that a separate array of
// ActiveEdge* may be faster to insert and search
struct ActiveEdge {
bool operator<(const ActiveEdge& rh) const {
return fX < rh.fX;
}
void calcLeft() {
fX = fWorkEdge.fPts[fWorkEdge.verb()].fX;
}
void init(const InEdge* edge) {
fWorkEdge.init(edge);
initT();
}
void initT() {
const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front();
SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count());
const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex();
fTs = &interceptPtr->fTs;
// the above is conceptually the same as
// fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs;
// but templated arrays don't allow returning a pointer to the end() element
fTIndex = 0;
}
bool nextT() {
SkASSERT(fTIndex <= fTs->count());
return ++fTIndex == fTs->count() + 1;
}
bool next() {
bool result = fWorkEdge.next();
initT();
return result;
}
double t() {
if (fTIndex == 0) {
return 0;
}
if (fTIndex > fTs->count()) {
return 1;
}
return (*fTs)[fTIndex - 1];
}
WorkEdge fWorkEdge;
const SkTDArray<double>* fTs;
SkScalar fX;
int fTIndex;
bool fSkip;
};
static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) {
size_t count = activeEdges.count();
for (size_t index = 0; index < count; ++index) {
if (edge == activeEdges[index].fWorkEdge.fEdge) {
return;
}
}
ActiveEdge* active = activeEdges.append();
active->init(edge);
}
// find any intersections in the range of active edges
static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, SkScalar bottom) {
InEdge** testPtr = currentPtr;
InEdge* test = *testPtr;
while (testPtr != lastPtr) {
if (test->fBounds.fBottom > bottom) {
WorkEdge wt;
wt.init(test);
do {
// FIXME: add all curve types
// OPTIMIZATION: if bottom intersection does not change
// the winding on either side of the split, don't intersect
if (wt.verb() == SkPath::kLine_Verb) {
double wtTs[2];
int pts = LineIntersect(wt.fPts, bottom, wtTs);
if (pts) {
test->fContainsIntercepts |= test->add(wtTs, pts,
wt.verbIndex());
}
}
} while (wt.next());
}
test = *++testPtr;
}
}
static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
InEdge** testPtr = currentPtr;
InEdge* test = *testPtr;
while (testPtr != lastPtr - 1) {
InEdge* next = *++testPtr;
if (!test->cached(next)
&& Bounds::Intersects(test->fBounds, next->fBounds)) {
WorkEdge wt, wn;
wt.init(test);
wn.init(next);
do {
// FIXME: add all combinations of curve types
if (wt.verb() == SkPath::kLine_Verb
&& wn.verb() == SkPath::kLine_Verb) {
double wtTs[2], wnTs[2];
int pts = LineIntersect(wt.fPts, wn.fPts, wtTs, wnTs);
if (pts) {
test->fContainsIntercepts |= test->add(wtTs, pts,
wt.verbIndex());
next->fContainsIntercepts |= next->add(wnTs, pts,
wn.verbIndex());
}
}
} while (wt.bottom() <= wn.bottom() ? wt.next() : wn.next());
}
test = next;
}
}
static InEdge** advanceEdges(SkTDArray<ActiveEdge>& activeEdges,
InEdge** currentPtr, InEdge** lastPtr, SkScalar y) {
InEdge** testPtr = currentPtr - 1;
while (++testPtr != lastPtr) {
if ((*testPtr)->fBounds.fBottom > y) {
continue;
}
InEdge* test = *testPtr;
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
if (activePtr->fWorkEdge.fEdge == test) {
activeEdges.remove(activePtr - activeEdges.begin());
break;
}
}
if (testPtr == currentPtr) {
++currentPtr;
}
}
return currentPtr;
}
// compute bottom taking into account any intersected edges
static void computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
SkScalar y, SkScalar& bottom) {
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
const InEdge* test = activePtr->fWorkEdge.fEdge;
if (!test->fContainsIntercepts) {
continue;
}
WorkEdge wt;
wt.init(test);
do {
// FIXME: add all curve types
const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
const SkTDArray<double>& fTs = intercepts.fTs;
size_t count = fTs.count();
for (size_t index = 0; index < count; ++index) {
if (wt.verb() == SkPath::kLine_Verb) {
SkScalar yIntercept = LineYAtT(wt.fPts, fTs[index]);
if (yIntercept > y && bottom > yIntercept) {
bottom = yIntercept;
}
}
}
} while (wt.next());
}
}
static SkScalar findBottom(InEdge** currentPtr,
InEdge** edgeListEnd, SkTDArray<ActiveEdge>& activeEdges, SkScalar y,
bool asFill, InEdge**& testPtr) {
InEdge* current = *currentPtr;
SkScalar bottom = current->fBounds.fBottom;
// find the list of edges that cross y
InEdge* test = *testPtr;
while (testPtr != edgeListEnd) {
SkScalar testTop = test->fBounds.fTop;
if (bottom <= testTop) {
break;
}
SkScalar testBottom = test->fBounds.fBottom;
// OPTIMIZATION: Shortening the bottom is only interesting when filling
// and when the edge is to the left of a longer edge. If it's a framing
// edge, or part of the right, it won't effect the longer edges.
if (testTop > y) {
bottom = testTop;
break;
}
if (y < testBottom) {
if (bottom > testBottom) {
bottom = testBottom;
}
addToActive(activeEdges, test);
}
test = *++testPtr;
}
return bottom;
}
static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel,
SkTDArray<InEdge*>& edgeList) {
size_t edgeCount = edges.count();
if (edgeCount == 0) {
return;
}
for (size_t index = 0; index < edgeCount; ++index) {
*edgeList.append() = &edges[index];
}
edgeSentinel.fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
*edgeList.append() = &edgeSentinel;
++edgeCount;
QSort<InEdge>(edgeList.begin(), edgeCount);
}
static void skipCoincidence(int lastWinding, int winding, int windingMask,
ActiveEdge* activePtr, ActiveEdge* firstCoincident) {
if (((lastWinding & windingMask) == 0) ^ (winding & windingMask) != 0) {
return;
}
if (lastWinding) {
activePtr->fSkip = false;
} else {
firstCoincident->fSkip = false;
}
}
static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges,
SkTDArray<ActiveEdge*>& edgeList, int windingMask) {
size_t edgeCount = activeEdges.count();
if (edgeCount == 0) {
return;
}
size_t index;
for (index = 0; index < edgeCount; ++index) {
ActiveEdge& activeEdge = activeEdges[index];
activeEdge.calcLeft();
activeEdge.fSkip = false;
*edgeList.append() = &activeEdge;
}
QSort<ActiveEdge>(edgeList.begin(), edgeCount);
// remove coincident edges
// OPTIMIZE: remove edges? This is tricky because the current logic expects
// the winding count to be maintained while skipping coincident edges. In
// addition to removing the coincident edges, the remaining edges would need
// to have a different winding value, possibly different per intercept span.
int lastWinding = 0;
bool lastSkipped = false;
ActiveEdge* activePtr = edgeList[0];
ActiveEdge* firstCoincident = NULL;
int winding = 0;
for (index = 1; index < edgeCount; ++index) {
winding += activePtr->fWorkEdge.winding();
ActiveEdge* nextPtr = edgeList[index];
if (activePtr->fX == nextPtr->fX) {
if (!firstCoincident) {
firstCoincident = activePtr;
}
activePtr->fSkip = nextPtr->fSkip = lastSkipped = true;
} else if (lastSkipped) {
skipCoincidence(lastWinding, winding, windingMask, activePtr,
firstCoincident);
lastSkipped = false;
firstCoincident = NULL;
}
if (!lastSkipped) {
lastWinding = winding;
}
activePtr = nextPtr;
}
if (lastSkipped) {
winding += activePtr->fWorkEdge.winding();
skipCoincidence(lastWinding, winding, windingMask, activePtr,
firstCoincident);
}
}
// stitch edge and t range that satisfies operation
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
SkScalar bottom, int windingMask, OutEdgeBuilder& outBuilder) {
int winding = 0;
ActiveEdge** activeHandle = edgeList.begin() - 1;
ActiveEdge** lastActive = edgeList.end();
if (fShowDebugf) {
SkDebugf("%s y=%g bottom=%g\n", __FUNCTION__, y, bottom);
}
while (++activeHandle != lastActive) {
ActiveEdge* activePtr = *activeHandle;
const WorkEdge& wt = activePtr->fWorkEdge;
int lastWinding = winding;
winding += wt.winding();
int opener = (lastWinding & windingMask) == 0;
bool closer = (winding & windingMask) == 0;
SkASSERT(!opener | !closer);
bool inWinding = opener | closer;
opener <<= kOpenerVerbBitShift;
do {
double currentT = activePtr->t();
SkASSERT(currentT < 1);
const SkPoint* points = wt.fPts;
bool last;
do {
last = activePtr->nextT();
double nextT = activePtr->t();
// FIXME: add all combinations of curve types
if (wt.verb() == SkPath::kLine_Verb) {
SkPoint clippedPts[2];
const SkPoint* clipped;
if (currentT * nextT != 0 || currentT + nextT != 1) {
// OPTIMIZATION: if !inWinding, we only need
// clipped[1].fY
LineSubDivide(points, currentT, nextT, clippedPts);
clipped = clippedPts;
} else {
clipped = points;
}
if (inWinding && !activePtr->fSkip) {
if (fShowDebugf) {
SkDebugf("%s line %g,%g %g,%g\n", __FUNCTION__,
clipped[0].fX, clipped[0].fY,
clipped[1].fX, clipped[1].fY);
}
outBuilder.addLine(clipped, opener);
}
if (clipped[1].fY >= bottom) {
if (last) {
activePtr->next();
}
goto nextEdge;
}
}
currentT = nextT;
} while (!last);
} while (activePtr->next());
nextEdge:
;
}
}
void simplify(const SkPath& path, bool asFill, SkPath& simple) {
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
int windingMask = (path.getFillType() & 1) ? 1 : -1;
simple.reset();
simple.setFillType(SkPath::kEvenOdd_FillType);
// turn path into list of edges increasing in y
// if an edge is a quad or a cubic with a y extrema, note it, but leave it unbroken
// once we have a list, sort it, then walk the list (walk edges twice that have y extrema's on top)
// and detect crossings -- look for raw bounds that cross over, then tight bounds that cross
SkTArray<InEdge> edges;
InEdgeBuilder builder(path, asFill, edges);
SkTDArray<InEdge*> edgeList;
InEdge edgeSentinel;
makeEdgeList(edges, edgeSentinel, edgeList);
InEdge** currentPtr = edgeList.begin();
// walk the sorted edges from top to bottom, computing accumulated winding
SkTDArray<ActiveEdge> activeEdges;
OutEdgeBuilder outBuilder(asFill);
SkScalar y = (*currentPtr)->fBounds.fTop;
do {
InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
SkScalar bottom = findBottom(currentPtr, edgeList.end(),
activeEdges, y, asFill, lastPtr);
if (lastPtr > currentPtr) {
addBottomT(currentPtr, lastPtr, bottom);
addIntersectingTs(currentPtr, lastPtr);
computeInterceptBottom(activeEdges, y, bottom);
SkTDArray<ActiveEdge*> activeEdgeList;
sortHorizontal(activeEdges, activeEdgeList, windingMask);
stitchEdge(activeEdgeList, y, bottom, windingMask, outBuilder);
}
y = bottom;
currentPtr = advanceEdges(activeEdges, currentPtr, lastPtr, y);
} while (*currentPtr != &edgeSentinel);
// assemble output path from string of pts, verbs
outBuilder.bridge();
outBuilder.assemble(simple);
}
static void testSimplifyCoincidentVertical() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 30, 30);
path.addRect(10, 30, 30, 40);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 30, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyCoincidentHorizontal() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 30, 30);
path.addRect(30, 10, 40, 30);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 30)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyMulti() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 30, 30);
path.addRect(20, 20, 40, 40);
simplify(path, true, out);
SkPath expected;
expected.setFillType(SkPath::kEvenOdd_FillType);
expected.moveTo(10,10); // two cutout corners
expected.lineTo(10,30);
expected.lineTo(20,30);
expected.lineTo(20,40);
expected.lineTo(40,40);
expected.lineTo(40,20);
expected.lineTo(30,20);
expected.lineTo(30,10);
expected.lineTo(10,10);
expected.close();
if (out != expected) {
SkDebugf("%s expected equal\n", __FUNCTION__);
}
path = out;
path.addRect(30, 10, 40, 20);
path.addRect(10, 30, 20, 40);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
path = out;
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
simplify(path, true, out);
if (!out.isEmpty()) {
SkDebugf("%s expected empty\n", __FUNCTION__);
}
}
static void testSimplifyAddL() {
SkPath path, out;
path.moveTo(10,10); // 'L' shape
path.lineTo(10,40);
path.lineTo(40,40);
path.lineTo(40,20);
path.lineTo(30,20);
path.lineTo(30,10);
path.lineTo(10,10);
path.close();
path.addRect(30, 10, 40, 20); // missing notch of 'L'
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyCoincidentCCW() {
SkPath path, out;
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyCoincidentCW() {
SkPath path, out;
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
path.addRect(10, 10, 40, 40, SkPath::kCW_Direction);
simplify(path, true, out);
if (!out.isEmpty()) {
SkDebugf("%s expected empty\n", __FUNCTION__);
}
}
static void testSimplifyCorner() {
SkPath path, out;
path.addRect(10, 10, 20, 20, SkPath::kCCW_Direction);
path.addRect(20, 20, 40, 40, SkPath::kCW_Direction);
simplify(path, true, out);
SkTDArray<SkRect> boundsArray;
contourBounds(out, boundsArray);
if (boundsArray.count() != 2) {
SkDebugf("%s expected 2 contours\n", __FUNCTION__);
return;
}
SkRect one = SkRect::MakeLTRB(10, 10, 20, 20);
SkRect two = SkRect::MakeLTRB(20, 20, 40, 40);
if (boundsArray[0] != one && boundsArray[0] != two
|| boundsArray[1] != one && boundsArray[1] != two) {
SkDebugf("%s expected match\n", __FUNCTION__);
}
}
// non-intersecting test points, two equal sized rectangles
static void lookForFailingTests(const SkPoint* pts, size_t ptsSize, int width,
int height, const SkRect& center) {
size_t index = 0;
for ( ; index < ptsSize; ++index) {
SkPath path, out;
path.addRect(center);
SkRect test = SkRect::MakeXYWH(pts[index].fX,
pts[index].fY, width, height);
path.addRect(test);
simplify(path, true, out);
SkPath::Iter iter(out, false);
SkPoint pts[2];
SkRect bounds[2];
bounds[0].setEmpty();
bounds[1].setEmpty();
SkRect* boundsPtr = bounds;
int count = 0;
SkPath::Verb verb;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
if (!boundsPtr->isEmpty()) {
SkASSERT(boundsPtr == bounds);
++boundsPtr;
}
boundsPtr->set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
count = 0;
break;
case SkPath::kLine_Verb:
count = 1;
break;
case SkPath::kClose_Verb:
count = 0;
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
for (int i = 1; i <= count; ++i) {
boundsPtr->growToInclude(pts[i].fX, pts[i].fY);
}
}
SkASSERT(bounds[0] == center && bounds[1] == test
|| bounds[1] == center && bounds[0] == test);
}
}
static void twoEqualRects() {
SkPoint pts[] = {
{ 0, 0}, {10, 0}, {20, 0}, {30, 0}, {40, 0}, {50, 0}, {60, 0}, // above
{ 0, 10}, { 0, 20}, { 0, 30}, { 0, 40}, { 0, 50}, { 0, 60}, // left
{10, 60}, {20, 60}, {30, 60}, {40, 60}, {50, 60}, // below
{60, 10}, {60, 20}, {60, 30}, {60, 40}, {60, 50}, {60, 60}, // right
};
size_t ptsCount = sizeof(pts) / sizeof(pts[0]);
SkRect center = SkRect::MakeLTRB(30, 30, 50, 50);
lookForFailingTests(pts, ptsCount, 20, 20, center);
}
static void largerOuter() {
SkRect center = SkRect::MakeLTRB(50, 50, 70, 70);
const size_t count = 9;
SkPoint pts[count];
size_t index;
for (index = 0; index < count; ++index) { // above
pts[index].fX = index * 10;
pts[index].fY = 0;
}
lookForFailingTests(pts, count, 40, 20, center);
for (index = 0; index < count; ++index) { // left
pts[index].fX = 0;
pts[index].fY = index * 10;
}
lookForFailingTests(pts, count, 20, 40, center);
for (index = 0; index < count; ++index) { // below
pts[index].fX = index * 10;
pts[index].fY = 80;
}
lookForFailingTests(pts, count, 40, 20, center);
for (index = 0; index < count; ++index) { // right
pts[index].fX = 80;
pts[index].fY = index * 10;
}
lookForFailingTests(pts, count, 20, 40, center);
}
static void smallerOuter() {
SkPoint pts[] = {
{ 0, 0}, {10, 0}, {20, 0}, {30, 0}, {40, 0}, {50, 0}, {60, 0}, // above
{ 0, 10}, { 0, 20}, { 0, 30}, { 0, 40}, { 0, 50}, { 0, 60}, // left
{10, 60}, {20, 60}, {30, 60}, {40, 60}, {50, 60}, // below
{60, 10}, {60, 20}, {60, 30}, {60, 40}, {60, 50}, {60, 60}, // right
};
size_t ptsCount = sizeof(pts) / sizeof(pts[0]);
SkRect center = SkRect::MakeLTRB(20, 20, 50, 50);
lookForFailingTests(pts, ptsCount, 10, 10, center);
}
void testSimplify();
void (*simplifyTests[])() = {
testSimplifyCorner,
testSimplifyCoincidentCW,
testSimplifyCoincidentCCW,
testSimplifyCoincidentVertical,
testSimplifyCoincidentHorizontal,
testSimplifyAddL,
testSimplifyMulti,
};
size_t simplifyTestsCount = sizeof(simplifyTests) / sizeof(simplifyTests[0]);
static void (*firstTest)() = 0;
static bool lookForFailing = false;
void testSimplify() {
/* look for failing test cases */
if (lookForFailing) {
// rects do not touch
twoEqualRects();
largerOuter();
smallerOuter();
}
size_t index = 0;
if (firstTest) {
while (index < simplifyTestsCount && simplifyTests[index] != firstTest) {
++index;
}
}
for ( ; index < simplifyTestsCount; ++index) {
(*simplifyTests[index])();
}
}