skia2/tools/colorspaceinfo.cpp

684 lines
27 KiB
C++
Raw Normal View History

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Resources.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkCodec.h"
#include "SkColorSpacePriv.h"
#include "SkColorSpace_A2B.h"
#include "SkColorSpace_XYZ.h"
#include "SkCommandLineFlags.h"
#include "SkICCPriv.h"
#include "SkImageEncoder.h"
#include "SkMatrix44.h"
#include "SkOSFile.h"
#include "SkRasterPipeline.h"
#include "../src/jumper/SkJumper.h"
#include "sk_tool_utils.h"
#include <sstream>
#include <string>
#include <vector>
DEFINE_string(input, "input.png", "A path to the input image (or icc profile with --icc).");
DEFINE_string(output, ".", "A path to the output image directory.");
DEFINE_bool(icc, false, "Indicates that the input is an icc profile.");
DEFINE_bool(sRGB_gamut, false, "Draws the sRGB gamut on the gamut visualization.");
DEFINE_bool(adobeRGB, false, "Draws the Adobe RGB gamut on the gamut visualization.");
DEFINE_bool(sRGB_gamma, false, "Draws the sRGB gamma on all gamma output images.");
DEFINE_string(uncorrected, "", "A path to reencode the uncorrected input image.");
//-------------------------------------------------------------------------------------------------
//------------------------------------ Gamma visualizations ---------------------------------------
static const char* kRGBChannelNames[3] = {
"Red ",
"Green",
"Blue "
};
static const SkColor kRGBChannelColors[3] = {
SkColorSetARGB(128, 255, 0, 0),
SkColorSetARGB(128, 0, 255, 0),
SkColorSetARGB(128, 0, 0, 255)
};
static const char* kGrayChannelNames[1] = { "Gray"};
static const SkColor kGrayChannelColors[1] = { SkColorSetRGB(128, 128, 128) };
static const char* kCMYKChannelNames[4] = {
"Cyan ",
"Magenta",
"Yellow ",
"Black "
};
static const SkColor kCMYKChannelColors[4] = {
SkColorSetARGB(128, 0, 255, 255),
SkColorSetARGB(128, 255, 0, 255),
SkColorSetARGB(128, 255, 255, 0),
SkColorSetARGB(128, 16, 16, 16)
};
static const char*const*const kChannelNames[4] = {
kGrayChannelNames,
kRGBChannelNames,
kRGBChannelNames,
kCMYKChannelNames
};
static const SkColor*const kChannelColors[4] = {
kGrayChannelColors,
kRGBChannelColors,
kRGBChannelColors,
kCMYKChannelColors
};
static void dump_transfer_fn(SkGammaNamed gammaNamed) {
switch (gammaNamed) {
case kSRGB_SkGammaNamed:
SkDebugf("Transfer Function: sRGB\n");
return;
case k2Dot2Curve_SkGammaNamed:
SkDebugf("Exponential Transfer Function: Exponent 2.2\n");
return;
case kLinear_SkGammaNamed:
SkDebugf("Transfer Function: Linear\n");
return;
default:
break;
}
}
static constexpr int kGammaImageWidth = 500;
static constexpr int kGammaImageHeight = 500;
static void dump_transfer_fn(const SkGammas& gammas) {
SkASSERT(gammas.channels() <= 4);
const char*const*const channels = kChannelNames[gammas.channels() - 1];
for (int i = 0; i < gammas.channels(); i++) {
if (gammas.isNamed(i)) {
switch (gammas.data(i).fNamed) {
case kSRGB_SkGammaNamed:
SkDebugf("%s Transfer Function: sRGB\n", channels[i]);
return;
case k2Dot2Curve_SkGammaNamed:
SkDebugf("%s Transfer Function: Exponent 2.2\n", channels[i]);
return;
case kLinear_SkGammaNamed:
SkDebugf("%s Transfer Function: Linear\n", channels[i]);
return;
default:
SkASSERT(false);
continue;
}
} else if (gammas.isValue(i)) {
SkDebugf("%s Transfer Function: Exponent %.3f\n", channels[i], gammas.data(i).fValue);
} else if (gammas.isParametric(i)) {
const SkColorSpaceTransferFn& fn = gammas.data(i).params(&gammas);
SkDebugf("%s Transfer Function: Parametric A = %.3f, B = %.3f, C = %.3f, D = %.3f, "
"E = %.3f, F = %.3f, G = %.3f\n", channels[i], fn.fA, fn.fB, fn.fC, fn.fD,
fn.fE, fn.fF, fn.fG);
} else {
SkASSERT(gammas.isTable(i));
SkDebugf("%s Transfer Function: Table (%d entries)\n", channels[i],
gammas.data(i).fTable.fSize);
}
}
}
static inline float parametric(const SkColorSpaceTransferFn& fn, float x) {
return x >= fn.fD ? powf(fn.fA*x + fn.fB, fn.fG) + fn.fE
: fn.fC*x + fn.fF;
}
static void draw_transfer_fn(SkCanvas* canvas, SkGammaNamed gammaNamed, const SkGammas* gammas,
SkColor color) {
SkColorSpaceTransferFn fn[4];
struct TableInfo {
const float* fTable;
int fSize;
};
TableInfo table[4];
bool isTable[4] = {false, false, false, false};
const int channels = gammas ? gammas->channels() : 1;
SkASSERT(channels <= 4);
if (kNonStandard_SkGammaNamed != gammaNamed) {
dump_transfer_fn(gammaNamed);
for (int i = 0; i < channels; ++i) {
named_to_parametric(&fn[i], gammaNamed);
}
} else {
SkASSERT(gammas);
dump_transfer_fn(*gammas);
for (int i = 0; i < channels; ++i) {
if (gammas->isTable(i)) {
table[i].fTable = gammas->table(i);
table[i].fSize = gammas->data(i).fTable.fSize;
isTable[i] = true;
} else {
switch (gammas->type(i)) {
case SkGammas::Type::kNamed_Type:
named_to_parametric(&fn[i], gammas->data(i).fNamed);
break;
case SkGammas::Type::kValue_Type:
value_to_parametric(&fn[i], gammas->data(i).fValue);
break;
case SkGammas::Type::kParam_Type:
fn[i] = gammas->params(i);
break;
default:
SkASSERT(false);
}
}
}
}
SkPaint paint;
paint.setStyle(SkPaint::kStroke_Style);
paint.setColor(color);
paint.setStrokeWidth(2.0f);
// note: gamma has positive values going up in this image so this origin is
// the bottom left and we must subtract y instead of adding.
const float gap = 16.0f;
const float gammaWidth = kGammaImageWidth - 2 * gap;
const float gammaHeight = kGammaImageHeight - 2 * gap;
// gamma origin point
const float ox = gap;
const float oy = gap + gammaHeight;
for (int i = 0; i < channels; ++i) {
if (kNonStandard_SkGammaNamed == gammaNamed) {
paint.setColor(kChannelColors[channels - 1][i]);
} else {
paint.setColor(color);
}
if (isTable[i]) {
auto tx = [&table,i](int index) {
return index / (table[i].fSize - 1.0f);
};
for (int ti = 1; ti < table[i].fSize; ++ti) {
canvas->drawLine(ox + gammaWidth * tx(ti - 1),
oy - gammaHeight * table[i].fTable[ti - 1],
ox + gammaWidth * tx(ti),
oy - gammaHeight * table[i].fTable[ti],
paint);
}
} else {
const float step = 0.01f;
float yPrev = parametric(fn[i], 0.0f);
for (float x = step; x <= 1.0f; x += step) {
const float y = parametric(fn[i], x);
canvas->drawLine(ox + gammaWidth * (x - step), oy - gammaHeight * yPrev,
ox + gammaWidth * x, oy - gammaHeight * y,
paint);
yPrev = y;
}
}
}
paint.setColor(0xFF000000);
paint.setStrokeWidth(3.0f);
canvas->drawRect({ ox, oy - gammaHeight, ox + gammaWidth, oy }, paint);
}
//-------------------------------------------------------------------------------------------------
//------------------------------------ CLUT visualizations ----------------------------------------
static void dump_clut(const SkColorLookUpTable& clut) {
SkDebugf("CLUT: ");
for (int i = 0; i < clut.inputChannels(); ++i) {
SkDebugf("[%d]", clut.gridPoints(i));
}
SkDebugf(" -> [%d]\n", clut.outputChannels());
}
constexpr int kClutGap = 8;
constexpr float kClutCanvasSize = 2000;
static inline int usedGridPoints(const SkColorLookUpTable& clut, int dimension) {
const int gp = clut.gridPoints(dimension);
return gp <= 16 ? gp : 16;
}
// how many rows of cross-section cuts to display
static inline int cut_rows(const SkColorLookUpTable& clut, int dimOrder[4]) {
// and vertical ones for the 4th dimension (if applicable)
return clut.inputChannels() >= 4 ? usedGridPoints(clut, dimOrder[3]) : 1;
}
// how many columns of cross-section cuts to display
static inline int cut_cols(const SkColorLookUpTable& clut, int dimOrder[4]) {
// do horizontal cuts for the 3rd dimension (if applicable)
return clut.inputChannels() >= 3 ? usedGridPoints(clut, dimOrder[2]) : 1;
}
// gets the width/height to use for cross-sections of a CLUT
static int cut_size(const SkColorLookUpTable& clut, int dimOrder[4]) {
const int rows = cut_rows(clut, dimOrder);
const int cols = cut_cols(clut, dimOrder);
// make sure the cross-section CLUT cuts are square still by using the
// smallest of the width/height, then adjust the gaps between accordingly
const int cutWidth = (kClutCanvasSize - kClutGap * (1 + cols)) / cols;
const int cutHeight = (kClutCanvasSize - kClutGap * (1 + rows)) / rows;
return cutWidth < cutHeight ? cutWidth : cutHeight;
}
static void clut_interp(const SkColorLookUpTable& clut, float out[3], const float in[4]) {
// This is kind of a toy implementation.
// You generally wouldn't want to do this 1 pixel at a time.
SkJumper_ColorLookupTableCtx ctx;
ctx.table = clut.table();
for (int i = 0; i < clut.inputChannels(); i++) {
ctx.limits[i] = clut.gridPoints(i);
}
SkSTArenaAlloc<256> alloc;
SkRasterPipeline p(&alloc);
p.append_constant_color(&alloc, in);
p.append(clut.inputChannels() == 3 ? SkRasterPipeline::clut_3D
: SkRasterPipeline::clut_4D, &ctx);
p.append(SkRasterPipeline::clamp_0);
p.append(SkRasterPipeline::clamp_1);
p.append(SkRasterPipeline::store_f32, &out);
p.run(0,0, 1,1);
}
static void draw_clut(SkCanvas* canvas, const SkColorLookUpTable& clut, int dimOrder[4]) {
dump_clut(clut);
const int cutSize = cut_size(clut, dimOrder);
const int rows = cut_rows(clut, dimOrder);
const int cols = cut_cols(clut, dimOrder);
const int cutHorizGap = (kClutCanvasSize - cutSize * cols) / (1 + cols);
const int cutVertGap = (kClutCanvasSize - cutSize * rows) / (1 + rows);
SkPaint paint;
for (int row = 0; row < rows; ++row) {
for (int col = 0; col < cols; ++col) {
// make sure to move at least one pixel, but otherwise move per-gridpoint
const float xStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[0])) - 1);
const float yStep = 1.0f / (SkTMin(cutSize, clut.gridPoints(dimOrder[1])) - 1);
const float ox = clut.inputChannels() >= 3 ? (1 + col) * cutHorizGap + col * cutSize
: kClutGap;
const float oy = clut.inputChannels() >= 4 ? (1 + row) * cutVertGap + row * cutSize
: kClutGap;
// for each cross-section cut, draw a bunch of squares whose colour is the top-left's
// colour in the CLUT (usually this will just draw the gridpoints)
for (float x = 0.0f; x < 1.0f; x += xStep) {
for (float y = 0.0f; y < 1.0f; y += yStep) {
const float z = col / (cols - 1.0f);
const float w = row / (rows - 1.0f);
const float input[4] = {x, y, z, w};
float output[3];
clut_interp(clut, output, input);
paint.setColor(SkColorSetRGB(255*output[0], 255*output[1], 255*output[2]));
canvas->drawRect(SkRect::MakeLTRB(ox + cutSize * x, oy + cutSize * y,
ox + cutSize * (x + xStep),
oy + cutSize * (y + yStep)), paint);
}
}
}
}
}
//-------------------------------------------------------------------------------------------------
//------------------------------------ Gamut visualizations ---------------------------------------
static void dump_matrix(const SkMatrix44& m) {
for (int r = 0; r < 4; ++r) {
SkDebugf("|");
for (int c = 0; c < 4; ++c) {
SkDebugf(" %f ", m.get(r, c));
}
SkDebugf("|\n");
}
}
/**
* Loads the triangular gamut as a set of three points.
*/
static void load_gamut(SkPoint rgb[], const SkMatrix44& xyz) {
// rx = rX / (rX + rY + rZ)
// ry = rX / (rX + rY + rZ)
// gx, gy, bx, and gy are calulcated similarly.
float rSum = xyz.get(0, 0) + xyz.get(1, 0) + xyz.get(2, 0);
float gSum = xyz.get(0, 1) + xyz.get(1, 1) + xyz.get(2, 1);
float bSum = xyz.get(0, 2) + xyz.get(1, 2) + xyz.get(2, 2);
rgb[0].fX = xyz.get(0, 0) / rSum;
rgb[0].fY = xyz.get(1, 0) / rSum;
rgb[1].fX = xyz.get(0, 1) / gSum;
rgb[1].fY = xyz.get(1, 1) / gSum;
rgb[2].fX = xyz.get(0, 2) / bSum;
rgb[2].fY = xyz.get(1, 2) / bSum;
}
/**
* Calculates the area of the triangular gamut.
*/
static float calculate_area(SkPoint abc[]) {
SkPoint a = abc[0];
SkPoint b = abc[1];
SkPoint c = abc[2];
return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY);
}
static void draw_gamut(SkCanvas* canvas, const SkMatrix44& xyz, const char* name, SkColor color,
bool label) {
// Report the XYZ values.
SkDebugf("%s\n", name);
SkDebugf(" R G B\n");
SkDebugf("X %.3f %.3f %.3f\n", xyz.get(0, 0), xyz.get(0, 1), xyz.get(0, 2));
SkDebugf("Y %.3f %.3f %.3f\n", xyz.get(1, 0), xyz.get(1, 1), xyz.get(1, 2));
SkDebugf("Z %.3f %.3f %.3f\n", xyz.get(2, 0), xyz.get(2, 1), xyz.get(2, 2));
// Calculate the points in the gamut from the XYZ values.
SkPoint rgb[4];
load_gamut(rgb, xyz);
// Report the area of the gamut.
SkDebugf("Area of Gamut: %.3f\n\n", calculate_area(rgb));
// Magic constants that help us place the gamut triangles in the appropriate position
// on the canvas.
const float xScale = 2071.25f; // Num pixels from 0 to 1 in x
const float xOffset = 241.0f; // Num pixels until start of x-axis
const float yScale = 2067.78f; // Num pixels from 0 to 1 in y
const float yOffset = -144.78f; // Num pixels until start of y-axis
// (negative because y extends beyond image bounds)
// Now transform the points so they can be drawn on our canvas.
// Note that y increases as we move down the canvas.
rgb[0].fX = xOffset + xScale * rgb[0].fX;
rgb[0].fY = yOffset + yScale * (1.0f - rgb[0].fY);
rgb[1].fX = xOffset + xScale * rgb[1].fX;
rgb[1].fY = yOffset + yScale * (1.0f - rgb[1].fY);
rgb[2].fX = xOffset + xScale * rgb[2].fX;
rgb[2].fY = yOffset + yScale * (1.0f - rgb[2].fY);
// Repeat the first point to connect the polygon.
rgb[3] = rgb[0];
SkPaint paint;
paint.setColor(color);
paint.setStrokeWidth(6.0f);
paint.setTextSize(75.0f);
canvas->drawPoints(SkCanvas::kPolygon_PointMode, 4, rgb, paint);
if (label) {
canvas->drawString("R", rgb[0].fX + 5.0f, rgb[0].fY + 75.0f, paint);
canvas->drawString("G", rgb[1].fX + 5.0f, rgb[1].fY - 5.0f, paint);
canvas->drawString("B", rgb[2].fX - 75.0f, rgb[2].fY - 5.0f, paint);
}
}
//-------------------------------------------------------------------------------------------------
//----------------------------------------- Main code ---------------------------------------------
static SkBitmap transparentBitmap(int width, int height) {
SkBitmap bitmap;
bitmap.allocN32Pixels(width, height);
bitmap.eraseColor(SkColorSetARGB(0, 0, 0, 0));
return bitmap;
}
class OutputCanvas {
public:
OutputCanvas(SkBitmap&& bitmap)
:fBitmap(bitmap)
,fCanvas(fBitmap)
{}
bool save(std::vector<std::string>* output, const std::string& filename) {
// Finally, encode the result to the output file.
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(fBitmap, SkEncodedImageFormat::kPNG,
100);
if (!out) {
SkDebugf("Failed to encode %s output.\n", filename.c_str());
return false;
}
SkFILEWStream stream(filename.c_str());
if (!stream.write(out->data(), out->size())) {
SkDebugf("Failed to write %s output.\n", filename.c_str());
return false;
}
// record name of canvas
output->push_back(filename);
return true;
}
SkCanvas* canvas() { return &fCanvas; }
private:
SkBitmap fBitmap;
SkCanvas fCanvas;
};
int main(int argc, char** argv) {
SkCommandLineFlags::SetUsage(
"Usage: colorspaceinfo --input <path to input image (or icc profile with --icc)> "
"--output <directory to output images> "
"--icc <indicates that the input is an icc profile>"
"--sRGB_gamut <draw canonical sRGB gamut> "
"--adobeRGB <draw canonical Adobe RGB gamut> "
"--sRGB_gamma <draw sRGB gamma> "
"--uncorrected <path to reencoded, uncorrected input image>\n"
"Description: Writes visualizations of the color space to the output image(s) ."
"Also, if a path is provided, writes uncorrected bytes to an unmarked "
"png, for comparison with the input image.\n");
SkCommandLineFlags::Parse(argc, argv);
const char* input = FLAGS_input[0];
const char* output = FLAGS_output[0];
if (!input || !output) {
SkCommandLineFlags::PrintUsage();
return -1;
}
sk_sp<SkData> data(SkData::MakeFromFileName(input));
if (!data) {
SkDebugf("Cannot find input image.\n");
return -1;
}
std::unique_ptr<SkCodec> codec = nullptr;
sk_sp<SkColorSpace> colorSpace = nullptr;
if (FLAGS_icc) {
colorSpace = SkColorSpace::MakeICC(data->bytes(), data->size());
} else {
codec = SkCodec::MakeFromData(data);
colorSpace = sk_ref_sp(codec->getInfo().colorSpace());
SkDebugf("SkCodec would naturally decode as colorType=%s\n",
sk_tool_utils::colortype_name(codec->getInfo().colorType()));
}
if (!colorSpace) {
SkDebugf("Cannot create codec or icc profile from input file.\n");
return -1;
}
{
SkColorSpaceTransferFn colorSpaceTransferFn;
SkMatrix44 toXYZD50(SkMatrix44::kIdentity_Constructor);
if (colorSpace->isNumericalTransferFn(&colorSpaceTransferFn) &&
colorSpace->toXYZD50(&toXYZD50)) {
SkString description = SkICCGetColorProfileTag(colorSpaceTransferFn, toXYZD50);
SkDebugf("Color Profile Description: \"%s\"\n", description.c_str());
}
}
// TODO: command line tweaking of this order
int dimOrder[4] = {0, 1, 2, 3};
std::vector<std::string> outputFilenames;
auto createOutputFilename = [output](const char* category, int index) -> std::string {
std::stringstream ss;
ss << output << '/' << category << '_' << index << ".png";
return ss.str();
};
if (SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type()) {
SkDebugf("XYZ/TRC color space\n");
// Load a graph of the CIE XYZ color gamut.
SkBitmap gamutCanvasBitmap;
if (!GetResourceAsBitmap("gamut.png", &gamutCanvasBitmap)) {
SkDebugf("Program failure (could not load gamut.png).\n");
return -1;
}
OutputCanvas gamutCanvas(std::move(gamutCanvasBitmap));
// Draw the sRGB gamut if requested.
if (FLAGS_sRGB_gamut) {
sk_sp<SkColorSpace> sRGBSpace = SkColorSpace::MakeSRGB();
const SkMatrix44* mat = as_CSB(sRGBSpace)->toXYZD50();
SkASSERT(mat);
draw_gamut(gamutCanvas.canvas(), *mat, "sRGB", 0xFFFF9394, false);
}
// Draw the Adobe RGB gamut if requested.
if (FLAGS_adobeRGB) {
sk_sp<SkColorSpace> adobeRGBSpace = SkColorSpace::MakeRGB(
SkColorSpace::kSRGB_RenderTargetGamma, SkColorSpace::kAdobeRGB_Gamut);
const SkMatrix44* mat = as_CSB(adobeRGBSpace)->toXYZD50();
SkASSERT(mat);
draw_gamut(gamutCanvas.canvas(), *mat, "Adobe RGB", 0xFF31a9e1, false);
}
const SkMatrix44* mat = as_CSB(colorSpace)->toXYZD50();
SkASSERT(mat);
auto xyz = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
draw_gamut(gamutCanvas.canvas(), *mat, input, 0xFF000000, true);
if (!gamutCanvas.save(&outputFilenames, createOutputFilename("gamut", 0))) {
return -1;
}
OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth, kGammaImageHeight));
if (FLAGS_sRGB_gamma) {
draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr, 0xFFFF9394);
}
draw_transfer_fn(gammaCanvas.canvas(), xyz->gammaNamed(), xyz->gammas(), 0xFF000000);
if (!gammaCanvas.save(&outputFilenames, createOutputFilename("gamma", 0))) {
return -1;
}
} else {
SkDebugf("A2B color space");
SkColorSpace_A2B* a2b = static_cast<SkColorSpace_A2B*>(colorSpace.get());
SkDebugf("Conversion type: ");
switch (a2b->iccType()) {
case SkColorSpace_Base::kRGB_ICCTypeFlag:
SkDebugf("RGB");
break;
case SkColorSpace_Base::kCMYK_ICCTypeFlag:
SkDebugf("CMYK");
break;
case SkColorSpace_Base::kGray_ICCTypeFlag:
SkDebugf("Gray");
break;
default:
SkASSERT(false);
break;
}
SkDebugf(" -> ");
switch (a2b->pcs()) {
case SkColorSpace_A2B::PCS::kXYZ:
SkDebugf("XYZ\n");
break;
case SkColorSpace_A2B::PCS::kLAB:
SkDebugf("LAB\n");
break;
}
int clutCount = 0;
int gammaCount = 0;
for (int i = 0; i < a2b->count(); ++i) {
const SkColorSpace_A2B::Element& e = a2b->element(i);
switch (e.type()) {
case SkColorSpace_A2B::Element::Type::kGammaNamed: {
OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth,
kGammaImageHeight));
if (FLAGS_sRGB_gamma) {
draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr,
0xFFFF9394);
}
draw_transfer_fn(gammaCanvas.canvas(), e.gammaNamed(), nullptr,
0xFF000000);
if (!gammaCanvas.save(&outputFilenames,
createOutputFilename("gamma", gammaCount++))) {
return -1;
}
}
break;
case SkColorSpace_A2B::Element::Type::kGammas: {
OutputCanvas gammaCanvas(transparentBitmap(kGammaImageWidth,
kGammaImageHeight));
if (FLAGS_sRGB_gamma) {
draw_transfer_fn(gammaCanvas.canvas(), kSRGB_SkGammaNamed, nullptr,
0xFFFF9394);
}
draw_transfer_fn(gammaCanvas.canvas(), kNonStandard_SkGammaNamed,
&e.gammas(), 0xFF000000);
if (!gammaCanvas.save(&outputFilenames,
createOutputFilename("gamma", gammaCount++))) {
return -1;
}
}
break;
case SkColorSpace_A2B::Element::Type::kCLUT: {
const SkColorLookUpTable& clut = e.colorLUT();
const int cutSize = cut_size(clut, dimOrder);
const int clutWidth = clut.inputChannels() >= 3 ? kClutCanvasSize
: 2 * kClutGap + cutSize;
const int clutHeight = clut.inputChannels() >= 4 ? kClutCanvasSize
: 2 * kClutGap + cutSize;
OutputCanvas clutCanvas(transparentBitmap(clutWidth, clutHeight));
draw_clut(clutCanvas.canvas(), e.colorLUT(), dimOrder);
if (!clutCanvas.save(&outputFilenames,
createOutputFilename("clut", clutCount++))) {
return -1;
}
}
break;
case SkColorSpace_A2B::Element::Type::kMatrix:
dump_matrix(e.matrix());
break;
}
}
}
// marker to tell the web-tool the names of all images output
SkDebugf("=========\n");
for (const std::string& filename : outputFilenames) {
SkDebugf("%s\n", filename.c_str());
}
if (!FLAGS_icc) {
SkDebugf("%s\n", input);
}
// Also, if requested, decode and reencode the uncorrected input image.
if (!FLAGS_uncorrected.isEmpty() && !FLAGS_icc) {
SkBitmap bitmap;
int width = codec->getInfo().width();
int height = codec->getInfo().height();
bitmap.allocN32Pixels(width, height, kOpaque_SkAlphaType == codec->getInfo().alphaType());
SkImageInfo decodeInfo = SkImageInfo::MakeN32(width, height, kUnpremul_SkAlphaType);
if (SkCodec::kSuccess != codec->getPixels(decodeInfo, bitmap.getPixels(),
bitmap.rowBytes())) {
SkDebugf("Could not decode input image.\n");
return -1;
}
sk_sp<SkData> out = sk_tool_utils::EncodeImageToData(bitmap, SkEncodedImageFormat::kPNG,
100);
if (!out) {
SkDebugf("Failed to encode uncorrected image.\n");
return -1;
}
SkFILEWStream bitmapStream(FLAGS_uncorrected[0]);
if (!bitmapStream.write(out->data(), out->size())) {
SkDebugf("Failed to write uncorrected image output.\n");
return -1;
}
SkDebugf("%s\n", FLAGS_uncorrected[0]);
}
return 0;
}