2012-08-27 14:11:33 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2012 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
2012-02-03 22:07:47 +00:00
|
|
|
#include "CurveIntersection.h"
|
2012-07-02 20:27:02 +00:00
|
|
|
#include "CurveUtilities.h"
|
2012-01-10 21:46:10 +00:00
|
|
|
#include "IntersectionUtilities.h"
|
|
|
|
|
|
|
|
/* Given a cubic, find the convex hull described by the end and control points.
|
|
|
|
The hull may have 3 or 4 points. Cubics that degenerate into a point or line
|
|
|
|
are not considered.
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
The hull is computed by assuming that three points, if unique and non-linear,
|
|
|
|
form a triangle. The fourth point may replace one of the first three, may be
|
|
|
|
discarded if in the triangle or on an edge, or may be inserted between any of
|
|
|
|
the three to form a convex quadralateral.
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
The indices returned in order describe the convex hull.
|
|
|
|
*/
|
|
|
|
int convex_hull(const Cubic& cubic, char order[4]) {
|
|
|
|
size_t index;
|
|
|
|
// find top point
|
|
|
|
size_t yMin = 0;
|
|
|
|
for (index = 1; index < 4; ++index) {
|
|
|
|
if (cubic[yMin].y > cubic[index].y || (cubic[yMin].y == cubic[index].y
|
|
|
|
&& cubic[yMin].x > cubic[index].x)) {
|
|
|
|
yMin = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
order[0] = yMin;
|
|
|
|
int midX = -1;
|
|
|
|
int backupYMin = -1;
|
|
|
|
for (int pass = 0; pass < 2; ++pass) {
|
|
|
|
for (index = 0; index < 4; ++index) {
|
|
|
|
if (index == yMin) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
// rotate line from (yMin, index) to axis
|
|
|
|
// see if remaining two points are both above or below
|
|
|
|
// use this to find mid
|
|
|
|
int mask = other_two(yMin, index);
|
|
|
|
int side1 = yMin ^ mask;
|
|
|
|
int side2 = index ^ mask;
|
|
|
|
Cubic rotPath;
|
|
|
|
if (!rotate(cubic, yMin, index, rotPath)) { // ! if cbc[yMin]==cbc[idx]
|
|
|
|
order[1] = side1;
|
|
|
|
order[2] = side2;
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
int sides = side(rotPath[side1].y - rotPath[yMin].y);
|
|
|
|
sides ^= side(rotPath[side2].y - rotPath[yMin].y);
|
|
|
|
if (sides == 2) { // '2' means one remaining point <0, one >0
|
|
|
|
if (midX >= 0) {
|
|
|
|
printf("%s unexpected mid\n", __FUNCTION__); // there can be only one mid
|
|
|
|
}
|
|
|
|
midX = index;
|
|
|
|
} else if (sides == 0) { // '0' means both to one side or the other
|
|
|
|
backupYMin = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (midX >= 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
if (backupYMin < 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
yMin = backupYMin;
|
|
|
|
backupYMin = -1;
|
|
|
|
}
|
|
|
|
if (midX < 0) {
|
|
|
|
midX = yMin ^ 3; // choose any other point
|
|
|
|
}
|
|
|
|
int mask = other_two(yMin, midX);
|
|
|
|
int least = yMin ^ mask;
|
|
|
|
int most = midX ^ mask;
|
|
|
|
order[0] = yMin;
|
|
|
|
order[1] = least;
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
// see if mid value is on same side of line (least, most) as yMin
|
|
|
|
Cubic midPath;
|
|
|
|
if (!rotate(cubic, least, most, midPath)) { // ! if cbc[least]==cbc[most]
|
|
|
|
order[2] = midX;
|
|
|
|
return 3;
|
|
|
|
}
|
|
|
|
int midSides = side(midPath[yMin].y - midPath[least].y);
|
|
|
|
midSides ^= side(midPath[midX].y - midPath[least].y);
|
2012-08-23 18:14:13 +00:00
|
|
|
if (midSides != 2) { // if mid point is not between
|
2012-01-10 21:46:10 +00:00
|
|
|
order[2] = most;
|
|
|
|
return 3; // result is a triangle
|
|
|
|
}
|
|
|
|
order[2] = midX;
|
|
|
|
order[3] = most;
|
|
|
|
return 4; // result is a quadralateral
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find the convex hull for cubics with the x-axis interval regularly spaced.
|
|
|
|
Cubics computed as distance functions are formed this way.
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
connectTo0[0], connectTo0[1] are the point indices that cubic[0] connects to.
|
|
|
|
connectTo3[0], connectTo3[1] are the point indices that cubic[3] connects to.
|
2012-08-23 18:14:13 +00:00
|
|
|
|
2012-01-10 21:46:10 +00:00
|
|
|
Returns true if cubic[1] to cubic[2] also forms part of the hull.
|
|
|
|
*/
|
|
|
|
bool convex_x_hull(const Cubic& cubic, char connectTo0[2], char connectTo3[2]) {
|
|
|
|
double projectedY[4];
|
|
|
|
projectedY[0] = 0;
|
|
|
|
int index;
|
|
|
|
for (index = 1; index < 4; ++index) {
|
|
|
|
projectedY[index] = (cubic[index].y - cubic[0].y) * (3.0 / index);
|
|
|
|
}
|
|
|
|
int lower0Index = 1;
|
|
|
|
int upper0Index = 1;
|
|
|
|
for (index = 2; index < 4; ++index) {
|
2013-02-20 12:51:37 +00:00
|
|
|
if (approximately_greater_or_equal(projectedY[lower0Index], projectedY[index])) {
|
2012-01-10 21:46:10 +00:00
|
|
|
lower0Index = index;
|
|
|
|
}
|
2013-02-20 12:51:37 +00:00
|
|
|
if (approximately_lesser_or_equal(projectedY[upper0Index], projectedY[index])) {
|
2012-01-10 21:46:10 +00:00
|
|
|
upper0Index = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
connectTo0[0] = lower0Index;
|
|
|
|
connectTo0[1] = upper0Index;
|
|
|
|
for (index = 0; index < 3; ++index) {
|
|
|
|
projectedY[index] = (cubic[3].y - cubic[index].y) * (3.0 / (3 - index));
|
|
|
|
}
|
|
|
|
projectedY[3] = 0;
|
|
|
|
int lower3Index = 2;
|
|
|
|
int upper3Index = 2;
|
|
|
|
for (index = 1; index > -1; --index) {
|
2013-02-20 12:51:37 +00:00
|
|
|
if (approximately_greater_or_equal(projectedY[lower3Index], projectedY[index])) {
|
2012-01-10 21:46:10 +00:00
|
|
|
lower3Index = index;
|
|
|
|
}
|
2013-02-20 12:51:37 +00:00
|
|
|
if (approximately_lesser_or_equal(projectedY[upper3Index], projectedY[index])) {
|
2012-01-10 21:46:10 +00:00
|
|
|
upper3Index = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
connectTo3[0] = lower3Index;
|
|
|
|
connectTo3[1] = upper3Index;
|
|
|
|
return (1 << lower0Index | 1 << upper0Index
|
|
|
|
| 1 << lower3Index | 1 << upper3Index) == 0x0F;
|
|
|
|
}
|