skia2/experimental/Intersection/EdgeWalkerRectangles_Test.cpp

471 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "EdgeWalker_Test.h"
#include "Intersection_Tests.h"
#include "SkBitmap.h"
static SkBitmap bitmap;
static void testSimplifyCoincidentInner() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 60, 60, SkPath::kCCW_Direction);
path.addRect(20, 20, 50, 50, SkPath::kCW_Direction);
path.addRect(20, 30, 40, 40, SkPath::kCW_Direction);
testSimplify(path, true, out, bitmap);
}
static void testSimplifyCoincidentVertical() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 30, 30);
path.addRect(10, 30, 30, 40);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 30, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyCoincidentHorizontal() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 30, 30);
path.addRect(30, 10, 40, 30);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 30)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyMulti() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect(10, 10, 30, 30);
path.addRect(20, 20, 40, 40);
simplify(path, true, out);
SkPath expected;
expected.setFillType(SkPath::kEvenOdd_FillType);
expected.moveTo(10,10); // two cutout corners
expected.lineTo(10,30);
expected.lineTo(20,30);
expected.lineTo(20,40);
expected.lineTo(40,40);
expected.lineTo(40,20);
expected.lineTo(30,20);
expected.lineTo(30,10);
expected.lineTo(10,10);
expected.close();
if (out != expected) {
SkDebugf("%s expected equal\n", __FUNCTION__);
}
path = out;
path.addRect(30, 10, 40, 20);
path.addRect(10, 30, 20, 40);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
path = out;
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
simplify(path, true, out);
if (!out.isEmpty()) {
SkDebugf("%s expected empty\n", __FUNCTION__);
}
}
static void testSimplifyAddL() {
SkPath path, out;
path.moveTo(10,10); // 'L' shape
path.lineTo(10,40);
path.lineTo(40,40);
path.lineTo(40,20);
path.lineTo(30,20);
path.lineTo(30,10);
path.lineTo(10,10);
path.close();
path.addRect(30, 10, 40, 20); // missing notch of 'L'
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyCoincidentCCW() {
SkPath path, out;
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void testSimplifyCoincidentCW() {
SkPath path, out;
path.addRect(10, 10, 40, 40, SkPath::kCCW_Direction);
path.addRect(10, 10, 40, 40, SkPath::kCW_Direction);
simplify(path, true, out);
if (!out.isEmpty()) {
SkDebugf("%s expected empty\n", __FUNCTION__);
}
}
static void testSimplifyCorner() {
SkPath path, out;
path.addRect(10, 10, 20, 20, SkPath::kCCW_Direction);
path.addRect(20, 20, 40, 40, SkPath::kCW_Direction);
simplify(path, true, out);
SkTDArray<SkRect> boundsArray;
contourBounds(out, boundsArray);
if (boundsArray.count() != 2) {
SkDebugf("%s expected 2 contours\n", __FUNCTION__);
return;
}
SkRect one = SkRect::MakeLTRB(10, 10, 20, 20);
SkRect two = SkRect::MakeLTRB(20, 20, 40, 40);
if ((boundsArray[0] != one && boundsArray[0] != two)
|| (boundsArray[1] != one && boundsArray[1] != two)) {
SkDebugf("%s expected match\n", __FUNCTION__);
}
}
static void testSimplifyDiagonal() {
SkRect rect2 = SkRect::MakeXYWH(10, 10, 10, 10);
for (size_t outDir = SkPath::kCW_Direction; outDir <= SkPath::kCCW_Direction; ++outDir) {
for (size_t inDir = SkPath::kCW_Direction; inDir <= SkPath::kCCW_Direction; ++inDir) {
for (int x = 0; x <= 20; x += 20) {
for (int y = 0; y <= 20; y += 20) {
SkPath path, out;
SkRect rect1 = SkRect::MakeXYWH(x, y, 10, 10);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
SkPath::Iter iter(out, false);
SkPoint pts[4], lastLine[2];
SkPath::Verb verb;
SkRect bounds[2];
bounds[0].setEmpty();
bounds[1].setEmpty();
SkRect* boundsPtr = bounds;
int count = 0, segments = 0;
bool lastLineSet = false;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
if (!boundsPtr->isEmpty()) {
SkASSERT(boundsPtr == bounds);
++boundsPtr;
}
boundsPtr->set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
count = 0;
lastLineSet = false;
break;
case SkPath::kLine_Verb:
if (lastLineSet) {
SkASSERT((lastLine[1].fX - lastLine[0].fX) *
(pts[1].fY - lastLine[0].fY) !=
(lastLine[1].fY - lastLine[0].fY) *
(pts[1].fX - lastLine[0].fX));
}
lastLineSet = true;
lastLine[0] = pts[0];
lastLine[1] = pts[1];
count = 1;
++segments;
break;
case SkPath::kClose_Verb:
count = 0;
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
for (int i = 1; i <= count; ++i) {
boundsPtr->growToInclude(pts[i].fX, pts[i].fY);
}
}
if (boundsPtr != bounds) {
SkASSERT((bounds[0] == rect1 || bounds[1] == rect1)
&& (bounds[0] == rect2 || bounds[1] == rect2));
} else {
SkASSERT(segments == 8);
}
}
}
}
}
}
static void assertOneContour(const SkPath& out, bool edge, bool extend) {
SkPath::Iter iter(out, false);
SkPoint pts[4];
SkPath::Verb verb;
SkRect bounds;
bounds.setEmpty();
int count = 0;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
SkASSERT(count == 0);
break;
case SkPath::kLine_Verb:
SkASSERT(pts[0].fX == pts[1].fX || pts[0].fY == pts[1].fY);
++count;
break;
case SkPath::kClose_Verb:
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
}
SkASSERT(count == (extend ? 4 : edge ? 6 : 8));
}
static void testSimplifyCoincident() {
// outside to inside, outside to right, outside to outside
// left to inside, left to right, left to outside
// inside to right, inside to outside
// repeat above for left, right, bottom
SkScalar start[] = { 0, 10, 20 };
size_t startCount = sizeof(start) / sizeof(start[0]);
SkScalar stop[] = { 30, 40, 50 };
size_t stopCount = sizeof(stop) / sizeof(stop[0]);
SkRect rect2 = SkRect::MakeXYWH(10, 10, 30, 30);
for (size_t outDir = SkPath::kCW_Direction; outDir <= SkPath::kCCW_Direction; ++outDir) {
for (size_t inDir = SkPath::kCW_Direction; inDir <= SkPath::kCCW_Direction; ++inDir) {
for (size_t startIndex = 0; startIndex < startCount; ++startIndex) {
for (size_t stopIndex = 0; stopIndex < stopCount; ++stopIndex) {
bool extend = start[startIndex] == rect2.fLeft && stop[stopIndex] == rect2.fRight;
bool edge = start[startIndex] == rect2.fLeft || stop[stopIndex] == rect2.fRight;
SkRect rect1 = SkRect::MakeLTRB(start[startIndex], 0, stop[stopIndex], 10);
SkPath path, out;
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
assertOneContour(out, edge, extend);
path.reset();
rect1 = SkRect::MakeLTRB(start[startIndex], 40, stop[stopIndex], 50);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
assertOneContour(out, edge, extend);
path.reset();
rect1 = SkRect::MakeLTRB(0, start[startIndex], 10, stop[stopIndex]);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
assertOneContour(out, edge, extend);
path.reset();
rect1 = SkRect::MakeLTRB(40, start[startIndex], 50, stop[stopIndex]);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
assertOneContour(out, edge, extend);
}
}
}
}
}
static void testSimplifyOverlap() {
SkScalar start[] = { 0, 10, 20 };
size_t startCount = sizeof(start) / sizeof(start[0]);
SkScalar stop[] = { 30, 40, 50 };
size_t stopCount = sizeof(stop) / sizeof(stop[0]);
SkRect rect2 = SkRect::MakeXYWH(10, 10, 30, 30);
for (size_t dir = SkPath::kCW_Direction; dir <= SkPath::kCCW_Direction; ++dir) {
for (size_t lefty = 0; lefty < startCount; ++lefty) {
for (size_t righty = 0; righty < stopCount; ++righty) {
for (size_t toppy = 0; toppy < startCount; ++toppy) {
for (size_t botty = 0; botty < stopCount; ++botty) {
SkRect rect1 = SkRect::MakeLTRB(start[lefty], start[toppy],
stop[righty], stop[botty]);
SkPath path, out;
path.addRect(rect1, static_cast<SkPath::Direction>(dir));
path.addRect(rect2, static_cast<SkPath::Direction>(dir));
testSimplify(path, true, out, bitmap);
}
}
}
}
}
}
static void testSimplifyOverlapTiny() {
SkScalar start[] = { 0, 1, 2 };
size_t startCount = sizeof(start) / sizeof(start[0]);
SkScalar stop[] = { 3, 4, 5 };
size_t stopCount = sizeof(stop) / sizeof(stop[0]);
SkRect rect2 = SkRect::MakeXYWH(1, 1, 3, 3);
for (size_t dir = SkPath::kCW_Direction; dir <= SkPath::kCCW_Direction; ++dir) {
for (size_t lefty = 0; lefty < startCount; ++lefty) {
for (size_t righty = 0; righty < stopCount; ++righty) {
for (size_t toppy = 0; toppy < startCount; ++toppy) {
for (size_t botty = 0; botty < stopCount; ++botty) {
SkRect rect1 = SkRect::MakeLTRB(start[lefty], start[toppy],
stop[righty], stop[botty]);
SkPath path, out;
path.addRect(rect1, static_cast<SkPath::Direction>(dir));
path.addRect(rect2, static_cast<SkPath::Direction>(dir));
simplify(path, true, out);
comparePathsTiny(path, out);
}
}
}
}
}
}
static void testSimplifyDegenerate() {
SkScalar start[] = { 0, 10, 20 };
size_t startCount = sizeof(start) / sizeof(start[0]);
SkScalar stop[] = { 30, 40, 50 };
size_t stopCount = sizeof(stop) / sizeof(stop[0]);
SkRect rect2 = SkRect::MakeXYWH(10, 10, 30, 30);
for (size_t outDir = SkPath::kCW_Direction; outDir <= SkPath::kCCW_Direction; ++outDir) {
for (size_t inDir = SkPath::kCW_Direction; inDir <= SkPath::kCCW_Direction; ++inDir) {
for (size_t startIndex = 0; startIndex < startCount; ++startIndex) {
for (size_t stopIndex = 0; stopIndex < stopCount; ++stopIndex) {
SkRect rect1 = SkRect::MakeLTRB(start[startIndex], 0, stop[stopIndex], 0);
SkPath path, out;
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s 1 expected rect\n", __FUNCTION__);
}
if (rect != rect2) {
SkDebugf("%s 1 expected union\n", __FUNCTION__);
}
path.reset();
rect1 = SkRect::MakeLTRB(start[startIndex], 40, stop[stopIndex], 40);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
if (!out.isRect(&rect)) {
SkDebugf("%s 2 expected rect\n", __FUNCTION__);
}
if (rect != rect2) {
SkDebugf("%s 2 expected union\n", __FUNCTION__);
}
path.reset();
rect1 = SkRect::MakeLTRB(0, start[startIndex], 0, stop[stopIndex]);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
if (!out.isRect(&rect)) {
SkDebugf("%s 3 expected rect\n", __FUNCTION__);
}
if (rect != rect2) {
SkDebugf("%s 3 expected union\n", __FUNCTION__);
}
path.reset();
rect1 = SkRect::MakeLTRB(40, start[startIndex], 40, stop[stopIndex]);
path.addRect(rect1, static_cast<SkPath::Direction>(outDir));
path.addRect(rect2, static_cast<SkPath::Direction>(inDir));
simplify(path, true, out);
if (!out.isRect(&rect)) {
SkDebugf("%s 4 expected rect\n", __FUNCTION__);
}
if (rect != rect2) {
SkDebugf("%s 4 expected union\n", __FUNCTION__);
}
}
}
}
}
}
static void testSimplifyDegenerate1() {
SkPath path, out;
path.setFillType(SkPath::kWinding_FillType);
path.addRect( 0, 0, 0, 30);
path.addRect(10, 10, 40, 40);
simplify(path, true, out);
SkRect rect;
if (!out.isRect(&rect)) {
SkDebugf("%s expected rect\n", __FUNCTION__);
}
if (rect != SkRect::MakeLTRB(10, 10, 40, 40)) {
SkDebugf("%s expected union\n", __FUNCTION__);
}
}
static void (*simplifyTests[])() = {
testSimplifyCoincidentInner,
testSimplifyOverlapTiny,
testSimplifyDegenerate1,
testSimplifyCorner,
testSimplifyDegenerate,
testSimplifyOverlap,
testSimplifyDiagonal,
testSimplifyCoincident,
testSimplifyCoincidentCW,
testSimplifyCoincidentCCW,
testSimplifyCoincidentVertical,
testSimplifyCoincidentHorizontal,
testSimplifyAddL,
testSimplifyMulti,
};
static size_t simplifyTestsCount = sizeof(simplifyTests) / sizeof(simplifyTests[0]);
static void (*firstTest)() = 0;
void SimplifyRectangularPaths_Test() {
size_t index = 0;
if (firstTest) {
while (index < simplifyTestsCount && simplifyTests[index] != firstTest) {
++index;
}
}
for ( ; index < simplifyTestsCount; ++index) {
if (simplifyTests[index] == testSimplifyCorner) {
// testSimplifyCorner fails because it expects two contours, where
// only one is returned. Both results are reasonable, but if two
// contours are desirable, or if we provide an option to choose
// between longer contours and more contours, turn this back on. For
// the moment, testSimplifyDiagonal also checks the test case, and
// permits either two rects or one non-crossing poly as valid
// unreported results.
continue;
}
(*simplifyTests[index])();
}
}