2019-06-27 14:13:27 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2019 Google LLC
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "tests/Test.h"
|
|
|
|
|
|
|
|
#include "src/gpu/geometry/GrQuadBuffer.h"
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#define ASSERT(cond) REPORTER_ASSERT(r, cond)
|
|
|
|
#define ASSERTF(cond, ...) REPORTER_ASSERT(r, cond, __VA_ARGS__)
|
|
|
|
#define TEST(name) DEF_TEST(GrQuadBuffer##name, r)
|
|
|
|
|
|
|
|
struct TestData {
|
|
|
|
int fItem1;
|
|
|
|
float fItem2;
|
|
|
|
};
|
|
|
|
|
|
|
|
static void assert_quad_eq(skiatest::Reporter* r, const GrQuad& expected, const GrQuad& actual) {
|
|
|
|
ASSERTF(expected.quadType() == actual.quadType(), "Expected type %d, got %d",
|
|
|
|
(int) expected.quadType(), (int) actual.quadType());
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
ASSERTF(expected.x(i) == actual.x(i), "Expected x(%d) = %f, got %d",
|
|
|
|
i, expected.x(i), actual.x(i));
|
|
|
|
ASSERTF(expected.y(i) == actual.y(i), "Expected y(%d) = %f, got %d",
|
|
|
|
i, expected.y(i), actual.y(i));
|
|
|
|
ASSERTF(expected.w(i) == actual.w(i), "Expected w(%d) = %f, got %d",
|
|
|
|
i, expected.w(i), actual.w(i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void assert_metadata_eq(skiatest::Reporter* r, const TestData& expected,
|
|
|
|
const TestData& actual) {
|
|
|
|
ASSERTF(expected.fItem1 == actual.fItem1 && expected.fItem2 == actual.fItem2,
|
|
|
|
"Expected { %d, %f } for metadata, got: { %d %f }",
|
|
|
|
expected.fItem1, expected.fItem2, actual.fItem1, actual.fItem2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static std::vector<GrQuad> generate_quads(float seed, int cnt, const GrQuad::Type types[]) {
|
|
|
|
// For convenience use matrix to derive each quad type, rely on different seed values to
|
|
|
|
// differentiate between quads of the same type
|
|
|
|
SkMatrix rotate;
|
|
|
|
rotate.setRotate(45.f);
|
|
|
|
SkMatrix skew;
|
|
|
|
skew.setSkew(0.5f, 0.5f);
|
|
|
|
SkMatrix perspective;
|
|
|
|
perspective.setPerspX(0.01f);
|
|
|
|
perspective.setPerspY(0.001f);
|
|
|
|
|
|
|
|
std::vector<GrQuad> quads;
|
|
|
|
SkRect rect = SkRect::MakeXYWH(seed, 2.f * seed, 2.f * seed, seed);
|
|
|
|
for (int i = 0; i < cnt; ++i) {
|
|
|
|
GrQuad quad;
|
|
|
|
switch(types[i]) {
|
|
|
|
case GrQuad::Type::kAxisAligned:
|
|
|
|
quad = GrQuad(rect);
|
|
|
|
break;
|
|
|
|
case GrQuad::Type::kRectilinear:
|
|
|
|
quad = GrQuad::MakeFromRect(rect, rotate);
|
|
|
|
break;
|
|
|
|
case GrQuad::Type::kGeneral:
|
|
|
|
quad = GrQuad::MakeFromRect(rect, skew);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
SkASSERT(types[i] == GrQuad::Type::kPerspective);
|
|
|
|
quad = GrQuad::MakeFromRect(rect, perspective);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
SkASSERT(quad.quadType() == types[i]); // sanity check
|
|
|
|
quads.push_back(quad);
|
|
|
|
}
|
|
|
|
return quads;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Append) {
|
|
|
|
// Generate test data, which includes all quad types out of enum-order and duplicates
|
|
|
|
static const int kQuadCount = 6;
|
|
|
|
static const GrQuad::Type kDeviceTypes[] = {
|
|
|
|
GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear, GrQuad::Type::kGeneral,
|
|
|
|
GrQuad::Type::kPerspective, GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned
|
|
|
|
};
|
|
|
|
// Odd indexed quads will be ignored and not stored in the buffer
|
|
|
|
static const GrQuad::Type kLocalTypes[] = {
|
|
|
|
GrQuad::Type::kGeneral, GrQuad::Type::kGeneral, GrQuad::Type::kRectilinear,
|
|
|
|
GrQuad::Type::kRectilinear, GrQuad::Type::kAxisAligned, GrQuad::Type::kAxisAligned
|
|
|
|
};
|
|
|
|
static_assert(SK_ARRAY_COUNT(kDeviceTypes) == kQuadCount, "device quad count");
|
|
|
|
static_assert(SK_ARRAY_COUNT(kLocalTypes) == kQuadCount, "local quad count");
|
|
|
|
|
|
|
|
std::vector<GrQuad> expectedDeviceQuads = generate_quads(1.f, kQuadCount, kDeviceTypes);
|
|
|
|
std::vector<GrQuad> expectedLocalQuads = generate_quads(2.f, kQuadCount, kLocalTypes);
|
|
|
|
|
|
|
|
// Fill in the buffer with the device quads, and a local quad if the index is even
|
|
|
|
GrQuadBuffer<TestData> buffer;
|
|
|
|
for (int i = 0; i < kQuadCount; ++i) {
|
|
|
|
buffer.append(expectedDeviceQuads[i], // device quad
|
|
|
|
{ 2 * i, 3.f * i }, // metadata
|
|
|
|
i % 2 == 0 ? &expectedLocalQuads[i] : nullptr); // optional local quad
|
|
|
|
}
|
|
|
|
|
|
|
|
// Confirm the state of the buffer
|
|
|
|
ASSERT(kQuadCount == buffer.count());
|
|
|
|
ASSERT(GrQuad::Type::kPerspective == buffer.deviceQuadType());
|
|
|
|
ASSERT(GrQuad::Type::kGeneral == buffer.localQuadType());
|
|
|
|
|
|
|
|
int i = 0;
|
|
|
|
auto iter = buffer.iterator();
|
|
|
|
while(iter.next()) {
|
|
|
|
// Each entry always has the device quad
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, expectedDeviceQuads[i], *iter.deviceQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
assert_metadata_eq(r, {2 * i, 3.f * i}, iter.metadata());
|
|
|
|
|
|
|
|
if (i % 2 == 0) {
|
|
|
|
// Confirm local quads included on even entries
|
|
|
|
ASSERT(iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, expectedLocalQuads[i], *iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
} else {
|
|
|
|
// Should not have locals
|
|
|
|
ASSERT(!iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
ASSERT(!iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Concat) {
|
|
|
|
static const int kQuadCount = 2;
|
|
|
|
static const GrQuad::Type kTypesA[] = { GrQuad::Type::kAxisAligned, GrQuad::Type::kRectilinear };
|
|
|
|
static const GrQuad::Type kTypesB[] = { GrQuad::Type::kGeneral, GrQuad::Type::kPerspective };
|
|
|
|
static_assert(SK_ARRAY_COUNT(kTypesA) == kQuadCount, "quadsA count");
|
|
|
|
static_assert(SK_ARRAY_COUNT(kTypesB) == kQuadCount, "quadsB count");
|
|
|
|
|
|
|
|
std::vector<GrQuad> quadsA = generate_quads(1.f, kQuadCount, kTypesA);
|
|
|
|
std::vector<GrQuad> quadsB = generate_quads(2.f, kQuadCount, kTypesB);
|
|
|
|
// Make two buffers, the first uses 'quadsA' for device quads and 'quadsB' for local quads
|
|
|
|
// on even indices. The second uses 'quadsB' for device quads and 'quadsA' for local quads
|
|
|
|
// on odd indices.
|
|
|
|
GrQuadBuffer<TestData> buffer1;
|
|
|
|
GrQuadBuffer<TestData> buffer2;
|
|
|
|
for (int i = 0; i < kQuadCount; ++i) {
|
|
|
|
buffer1.append(quadsA[i], {i, 2.f * i}, i % 2 == 0 ? &quadsB[i] : nullptr);
|
|
|
|
buffer2.append(quadsB[i], {2 * i, 0.5f * i}, i % 2 == 0 ? nullptr : &quadsA[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sanity check
|
|
|
|
ASSERT(kQuadCount == buffer1.count());
|
|
|
|
ASSERT(kQuadCount == buffer2.count());
|
|
|
|
|
|
|
|
// Perform the concatenation and then confirm the new state of buffer1
|
|
|
|
buffer1.concat(buffer2);
|
|
|
|
|
|
|
|
ASSERT(2 * kQuadCount == buffer1.count());
|
|
|
|
int i = 0;
|
|
|
|
auto iter = buffer1.iterator();
|
|
|
|
while(iter.next()) {
|
|
|
|
if (i < kQuadCount) {
|
|
|
|
// First half should match original buffer1
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, quadsA[i], *iter.deviceQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
assert_metadata_eq(r, {i, 2.f * i}, iter.metadata());
|
|
|
|
if (i % 2 == 0) {
|
|
|
|
ASSERT(iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, quadsB[i], *iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
} else {
|
|
|
|
ASSERT(!iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
ASSERT(!iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Second half should match buffer2
|
|
|
|
int j = i - kQuadCount;
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, quadsB[j], *iter.deviceQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
assert_metadata_eq(r, {2 * j, 0.5f * j}, iter.metadata());
|
|
|
|
if (j % 2 == 0) {
|
|
|
|
ASSERT(!iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
ASSERT(!iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
} else {
|
|
|
|
ASSERT(iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, quadsA[j], *iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
ASSERTF(i == 2 * kQuadCount, "Expected %d iterations, got: %d",2 * kQuadCount, i);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Metadata) {
|
|
|
|
static const int kQuadCount = 3;
|
|
|
|
|
|
|
|
// This test doesn't really care about the quad coordinates (except that they aren't modified
|
|
|
|
// when mutating the metadata)
|
|
|
|
GrQuad quad(SkRect::MakeLTRB(1.f, 2.f, 3.f, 4.f));
|
|
|
|
|
|
|
|
GrQuadBuffer<TestData> buffer;
|
|
|
|
for (int i = 0; i < kQuadCount; ++i) {
|
|
|
|
buffer.append(quad, {i, 2.f * i}, i % 2 == 0 ? &quad : nullptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Iterate once using the metadata iterator, confirm the test data and rewrite
|
|
|
|
int i = 0;
|
|
|
|
auto meta = buffer.metadata();
|
|
|
|
while(meta.next()) {
|
|
|
|
// Confirm initial state
|
|
|
|
assert_metadata_eq(r, {i, 2.f * i}, *meta);
|
|
|
|
// Rewrite
|
|
|
|
*meta = {2 * i, 0.5f * i};
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i);
|
|
|
|
|
|
|
|
// Now that all metadata has been touched, read with regular iterator and confirm updated state
|
|
|
|
// and that no quad coordinates have been changed.
|
|
|
|
i = 0;
|
|
|
|
auto iter = buffer.iterator();
|
|
|
|
while(iter.next()) {
|
|
|
|
// New metadata
|
|
|
|
assert_metadata_eq(r, {2 * i, 0.5f * i}, iter.metadata());
|
|
|
|
|
|
|
|
// Quad coordinates are unchanged
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, quad, *iter.deviceQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
if (i % 2 == 0) {
|
|
|
|
ASSERT(iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
assert_quad_eq(r, quad, *iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
} else {
|
|
|
|
ASSERT(!iter.isLocalValid());
|
2019-11-25 14:43:37 +00:00
|
|
|
ASSERT(!iter.localQuad());
|
2019-06-27 14:13:27 +00:00
|
|
|
}
|
|
|
|
i++;
|
|
|
|
}
|
|
|
|
ASSERTF(i == kQuadCount, "Expected %d iterations, got: %d", kQuadCount, i);
|
|
|
|
}
|