skia2/tools/sk_app/VulkanWindowContext.cpp

634 lines
27 KiB
C++
Raw Normal View History

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrBackendSurface.h"
#include "GrContext.h"
#include "SkAutoMalloc.h"
#include "SkSurface.h"
#include "VulkanWindowContext.h"
#include "vk/GrVkInterface.h"
#include "vk/GrVkMemory.h"
#include "vk/GrVkUtil.h"
#include "vk/GrVkTypes.h"
#ifdef VK_USE_PLATFORM_WIN32_KHR
// windows wants to define this as CreateSemaphoreA or CreateSemaphoreW
#undef CreateSemaphore
#endif
#define GET_PROC(F) f ## F = (PFN_vk ## F) fGetInstanceProcAddr(instance, "vk" #F)
#define GET_DEV_PROC(F) f ## F = (PFN_vk ## F) fGetDeviceProcAddr(device, "vk" #F)
namespace sk_app {
VulkanWindowContext::VulkanWindowContext(const DisplayParams& params,
CreateVkSurfaceFn createVkSurface,
CanPresentFn canPresent,
PFN_vkGetInstanceProcAddr instProc,
PFN_vkGetDeviceProcAddr devProc)
: WindowContext(params)
, fCreateVkSurfaceFn(createVkSurface)
, fCanPresentFn(canPresent)
, fSurface(VK_NULL_HANDLE)
, fSwapchain(VK_NULL_HANDLE)
, fImages(nullptr)
, fImageLayouts(nullptr)
, fSurfaces(nullptr)
, fCommandPool(VK_NULL_HANDLE)
, fBackbuffers(nullptr) {
fGetInstanceProcAddr = instProc;
fGetDeviceProcAddr = devProc;
this->initializeContext();
}
void VulkanWindowContext::initializeContext() {
// any config code here (particularly for msaa)?
fBackendContext.reset(GrVkBackendContext::Create(fGetInstanceProcAddr, fGetDeviceProcAddr,
&fPresentQueueIndex, fCanPresentFn));
if (!(fBackendContext->fExtensions & kKHR_surface_GrVkExtensionFlag) ||
!(fBackendContext->fExtensions & kKHR_swapchain_GrVkExtensionFlag)) {
fBackendContext.reset(nullptr);
return;
}
VkInstance instance = fBackendContext->fInstance;
VkDevice device = fBackendContext->fDevice;
GET_PROC(DestroySurfaceKHR);
GET_PROC(GetPhysicalDeviceSurfaceSupportKHR);
GET_PROC(GetPhysicalDeviceSurfaceCapabilitiesKHR);
GET_PROC(GetPhysicalDeviceSurfaceFormatsKHR);
GET_PROC(GetPhysicalDeviceSurfacePresentModesKHR);
GET_DEV_PROC(CreateSwapchainKHR);
GET_DEV_PROC(DestroySwapchainKHR);
GET_DEV_PROC(GetSwapchainImagesKHR);
GET_DEV_PROC(AcquireNextImageKHR);
GET_DEV_PROC(QueuePresentKHR);
GET_DEV_PROC(GetDeviceQueue);
fContext = GrContext::MakeVulkan(fBackendContext, fDisplayParams.fGrContextOptions);
fSurface = fCreateVkSurfaceFn(instance);
if (VK_NULL_HANDLE == fSurface) {
fBackendContext.reset(nullptr);
return;
}
VkBool32 supported;
VkResult res = fGetPhysicalDeviceSurfaceSupportKHR(fBackendContext->fPhysicalDevice,
fPresentQueueIndex, fSurface,
&supported);
if (VK_SUCCESS != res) {
this->destroyContext();
return;
}
if (!this->createSwapchain(-1, -1, fDisplayParams)) {
this->destroyContext();
return;
}
// create presentQueue
fGetDeviceQueue(fBackendContext->fDevice, fPresentQueueIndex, 0, &fPresentQueue);
}
bool VulkanWindowContext::createSwapchain(int width, int height,
const DisplayParams& params) {
// check for capabilities
VkSurfaceCapabilitiesKHR caps;
VkResult res = fGetPhysicalDeviceSurfaceCapabilitiesKHR(fBackendContext->fPhysicalDevice,
fSurface, &caps);
if (VK_SUCCESS != res) {
return false;
}
uint32_t surfaceFormatCount;
res = fGetPhysicalDeviceSurfaceFormatsKHR(fBackendContext->fPhysicalDevice, fSurface,
&surfaceFormatCount, nullptr);
if (VK_SUCCESS != res) {
return false;
}
SkAutoMalloc surfaceFormatAlloc(surfaceFormatCount * sizeof(VkSurfaceFormatKHR));
VkSurfaceFormatKHR* surfaceFormats = (VkSurfaceFormatKHR*)surfaceFormatAlloc.get();
res = fGetPhysicalDeviceSurfaceFormatsKHR(fBackendContext->fPhysicalDevice, fSurface,
&surfaceFormatCount, surfaceFormats);
if (VK_SUCCESS != res) {
return false;
}
uint32_t presentModeCount;
res = fGetPhysicalDeviceSurfacePresentModesKHR(fBackendContext->fPhysicalDevice, fSurface,
&presentModeCount, nullptr);
if (VK_SUCCESS != res) {
return false;
}
SkAutoMalloc presentModeAlloc(presentModeCount * sizeof(VkPresentModeKHR));
VkPresentModeKHR* presentModes = (VkPresentModeKHR*)presentModeAlloc.get();
res = fGetPhysicalDeviceSurfacePresentModesKHR(fBackendContext->fPhysicalDevice, fSurface,
&presentModeCount, presentModes);
if (VK_SUCCESS != res) {
return false;
}
VkExtent2D extent = caps.currentExtent;
// use the hints
if (extent.width == (uint32_t)-1) {
extent.width = width;
extent.height = height;
}
// clamp width; to protect us from broken hints
if (extent.width < caps.minImageExtent.width) {
extent.width = caps.minImageExtent.width;
} else if (extent.width > caps.maxImageExtent.width) {
extent.width = caps.maxImageExtent.width;
}
// clamp height
if (extent.height < caps.minImageExtent.height) {
extent.height = caps.minImageExtent.height;
} else if (extent.height > caps.maxImageExtent.height) {
extent.height = caps.maxImageExtent.height;
}
fWidth = (int)extent.width;
fHeight = (int)extent.height;
uint32_t imageCount = caps.minImageCount + 2;
if (caps.maxImageCount > 0 && imageCount > caps.maxImageCount) {
// Application must settle for fewer images than desired:
imageCount = caps.maxImageCount;
}
VkImageUsageFlags usageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_SRC_BIT |
VK_IMAGE_USAGE_TRANSFER_DST_BIT;
SkASSERT((caps.supportedUsageFlags & usageFlags) == usageFlags);
SkASSERT(caps.supportedTransforms & caps.currentTransform);
SkASSERT(caps.supportedCompositeAlpha & (VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR |
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR));
VkCompositeAlphaFlagBitsKHR composite_alpha =
(caps.supportedCompositeAlpha & VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR) ?
VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR :
VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
// Pick our surface format. For now, just make sure it matches our sRGB request:
VkFormat surfaceFormat = VK_FORMAT_UNDEFINED;
VkColorSpaceKHR colorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
auto srgbColorSpace = SkColorSpace::MakeSRGB();
bool wantSRGB = srgbColorSpace == params.fColorSpace;
for (uint32_t i = 0; i < surfaceFormatCount; ++i) {
VkFormat localFormat = surfaceFormats[i].format;
if (GrVkFormatIsSupported(localFormat) &&
GrVkFormatIsSRGB(localFormat, nullptr) == wantSRGB) {
surfaceFormat = localFormat;
colorSpace = surfaceFormats[i].colorSpace;
break;
}
}
fDisplayParams = params;
fSampleCount = params.fMSAASampleCount;
fStencilBits = 8;
if (VK_FORMAT_UNDEFINED == surfaceFormat) {
return false;
}
SkColorType colorType;
switch (surfaceFormat) {
case VK_FORMAT_R8G8B8A8_UNORM: // fall through
case VK_FORMAT_R8G8B8A8_SRGB:
colorType = kRGBA_8888_SkColorType;
break;
case VK_FORMAT_B8G8R8A8_UNORM: // fall through
case VK_FORMAT_B8G8R8A8_SRGB:
colorType = kBGRA_8888_SkColorType;
break;
default:
return false;
}
// If mailbox mode is available, use it, as it is the lowest-latency non-
// tearing mode. If not, fall back to FIFO which is always available.
VkPresentModeKHR mode = VK_PRESENT_MODE_FIFO_KHR;
for (uint32_t i = 0; i < presentModeCount; ++i) {
// use mailbox
if (VK_PRESENT_MODE_MAILBOX_KHR == presentModes[i]) {
mode = presentModes[i];
break;
}
}
VkSwapchainCreateInfoKHR swapchainCreateInfo;
memset(&swapchainCreateInfo, 0, sizeof(VkSwapchainCreateInfoKHR));
swapchainCreateInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainCreateInfo.surface = fSurface;
swapchainCreateInfo.minImageCount = imageCount;
swapchainCreateInfo.imageFormat = surfaceFormat;
swapchainCreateInfo.imageColorSpace = colorSpace;
swapchainCreateInfo.imageExtent = extent;
swapchainCreateInfo.imageArrayLayers = 1;
swapchainCreateInfo.imageUsage = usageFlags;
uint32_t queueFamilies[] = { fBackendContext->fGraphicsQueueIndex, fPresentQueueIndex };
if (fBackendContext->fGraphicsQueueIndex != fPresentQueueIndex) {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_CONCURRENT;
swapchainCreateInfo.queueFamilyIndexCount = 2;
swapchainCreateInfo.pQueueFamilyIndices = queueFamilies;
} else {
swapchainCreateInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainCreateInfo.queueFamilyIndexCount = 0;
swapchainCreateInfo.pQueueFamilyIndices = nullptr;
}
swapchainCreateInfo.preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
swapchainCreateInfo.compositeAlpha = composite_alpha;
swapchainCreateInfo.presentMode = mode;
swapchainCreateInfo.clipped = true;
swapchainCreateInfo.oldSwapchain = fSwapchain;
res = fCreateSwapchainKHR(fBackendContext->fDevice, &swapchainCreateInfo, nullptr, &fSwapchain);
if (VK_SUCCESS != res) {
return false;
}
// destroy the old swapchain
if (swapchainCreateInfo.oldSwapchain != VK_NULL_HANDLE) {
GR_VK_CALL(fBackendContext->fInterface, DeviceWaitIdle(fBackendContext->fDevice));
this->destroyBuffers();
fDestroySwapchainKHR(fBackendContext->fDevice, swapchainCreateInfo.oldSwapchain, nullptr);
}
this->createBuffers(swapchainCreateInfo.imageFormat, colorType);
return true;
}
void VulkanWindowContext::createBuffers(VkFormat format, SkColorType colorType) {
fGetSwapchainImagesKHR(fBackendContext->fDevice, fSwapchain, &fImageCount, nullptr);
SkASSERT(fImageCount);
fImages = new VkImage[fImageCount];
fGetSwapchainImagesKHR(fBackendContext->fDevice, fSwapchain, &fImageCount, fImages);
// set up initial image layouts and create surfaces
fImageLayouts = new VkImageLayout[fImageCount];
fSurfaces = new sk_sp<SkSurface>[fImageCount];
for (uint32_t i = 0; i < fImageCount; ++i) {
fImageLayouts[i] = VK_IMAGE_LAYOUT_UNDEFINED;
GrVkImageInfo info;
info.fImage = fImages[i];
info.fAlloc = GrVkAlloc();
info.fImageLayout = VK_IMAGE_LAYOUT_UNDEFINED;
info.fImageTiling = VK_IMAGE_TILING_OPTIMAL;
info.fFormat = format;
info.fLevelCount = 1;
GrBackendRenderTarget backendRT(fWidth, fHeight, fSampleCount, info);
fSurfaces[i] = SkSurface::MakeFromBackendRenderTarget(fContext.get(),
backendRT,
kTopLeft_GrSurfaceOrigin,
colorType,
fDisplayParams.fColorSpace,
&fSurfaceProps);
}
// create the command pool for the command buffers
if (VK_NULL_HANDLE == fCommandPool) {
VkCommandPoolCreateInfo commandPoolInfo;
memset(&commandPoolInfo, 0, sizeof(VkCommandPoolCreateInfo));
commandPoolInfo.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
// this needs to be on the render queue
commandPoolInfo.queueFamilyIndex = fBackendContext->fGraphicsQueueIndex;
commandPoolInfo.flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateCommandPool(fBackendContext->fDevice, &commandPoolInfo,
nullptr, &fCommandPool));
}
// set up the backbuffers
VkSemaphoreCreateInfo semaphoreInfo;
memset(&semaphoreInfo, 0, sizeof(VkSemaphoreCreateInfo));
semaphoreInfo.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO;
semaphoreInfo.pNext = nullptr;
semaphoreInfo.flags = 0;
VkCommandBufferAllocateInfo commandBuffersInfo;
memset(&commandBuffersInfo, 0, sizeof(VkCommandBufferAllocateInfo));
commandBuffersInfo.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
commandBuffersInfo.pNext = nullptr;
commandBuffersInfo.commandPool = fCommandPool;
commandBuffersInfo.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
commandBuffersInfo.commandBufferCount = 2;
VkFenceCreateInfo fenceInfo;
memset(&fenceInfo, 0, sizeof(VkFenceCreateInfo));
fenceInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceInfo.pNext = nullptr;
fenceInfo.flags = VK_FENCE_CREATE_SIGNALED_BIT;
// we create one additional backbuffer structure here, because we want to
// give the command buffers they contain a chance to finish before we cycle back
fBackbuffers = new BackbufferInfo[fImageCount + 1];
for (uint32_t i = 0; i < fImageCount + 1; ++i) {
fBackbuffers[i].fImageIndex = -1;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateSemaphore(fBackendContext->fDevice, &semaphoreInfo,
nullptr, &fBackbuffers[i].fAcquireSemaphore));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateSemaphore(fBackendContext->fDevice, &semaphoreInfo,
nullptr, &fBackbuffers[i].fRenderSemaphore));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
AllocateCommandBuffers(fBackendContext->fDevice, &commandBuffersInfo,
fBackbuffers[i].fTransitionCmdBuffers));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateFence(fBackendContext->fDevice, &fenceInfo, nullptr,
&fBackbuffers[i].fUsageFences[0]));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
CreateFence(fBackendContext->fDevice, &fenceInfo, nullptr,
&fBackbuffers[i].fUsageFences[1]));
}
fCurrentBackbufferIndex = fImageCount;
}
void VulkanWindowContext::destroyBuffers() {
if (fBackbuffers) {
for (uint32_t i = 0; i < fImageCount + 1; ++i) {
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
WaitForFences(fBackendContext->fDevice, 2,
fBackbuffers[i].fUsageFences,
true, UINT64_MAX));
fBackbuffers[i].fImageIndex = -1;
GR_VK_CALL(fBackendContext->fInterface,
DestroySemaphore(fBackendContext->fDevice,
fBackbuffers[i].fAcquireSemaphore,
nullptr));
GR_VK_CALL(fBackendContext->fInterface,
DestroySemaphore(fBackendContext->fDevice,
fBackbuffers[i].fRenderSemaphore,
nullptr));
GR_VK_CALL(fBackendContext->fInterface,
FreeCommandBuffers(fBackendContext->fDevice, fCommandPool, 2,
fBackbuffers[i].fTransitionCmdBuffers));
GR_VK_CALL(fBackendContext->fInterface,
DestroyFence(fBackendContext->fDevice, fBackbuffers[i].fUsageFences[0], 0));
GR_VK_CALL(fBackendContext->fInterface,
DestroyFence(fBackendContext->fDevice, fBackbuffers[i].fUsageFences[1], 0));
}
}
delete[] fBackbuffers;
fBackbuffers = nullptr;
// Does this actually free the surfaces?
delete[] fSurfaces;
fSurfaces = nullptr;
delete[] fImageLayouts;
fImageLayouts = nullptr;
delete[] fImages;
fImages = nullptr;
}
VulkanWindowContext::~VulkanWindowContext() {
this->destroyContext();
}
void VulkanWindowContext::destroyContext() {
if (!fBackendContext.get()) {
return;
}
GR_VK_CALL(fBackendContext->fInterface, QueueWaitIdle(fPresentQueue));
GR_VK_CALL(fBackendContext->fInterface, DeviceWaitIdle(fBackendContext->fDevice));
this->destroyBuffers();
if (VK_NULL_HANDLE != fCommandPool) {
GR_VK_CALL(fBackendContext->fInterface, DestroyCommandPool(fBackendContext->fDevice,
fCommandPool, nullptr));
fCommandPool = VK_NULL_HANDLE;
}
if (VK_NULL_HANDLE != fSwapchain) {
fDestroySwapchainKHR(fBackendContext->fDevice, fSwapchain, nullptr);
fSwapchain = VK_NULL_HANDLE;
}
if (VK_NULL_HANDLE != fSurface) {
fDestroySurfaceKHR(fBackendContext->fInstance, fSurface, nullptr);
fSurface = VK_NULL_HANDLE;
}
fContext.reset();
fBackendContext.reset(nullptr);
}
VulkanWindowContext::BackbufferInfo* VulkanWindowContext::getAvailableBackbuffer() {
SkASSERT(fBackbuffers);
++fCurrentBackbufferIndex;
if (fCurrentBackbufferIndex > fImageCount) {
fCurrentBackbufferIndex = 0;
}
BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
WaitForFences(fBackendContext->fDevice, 2, backbuffer->fUsageFences,
true, UINT64_MAX));
return backbuffer;
}
sk_sp<SkSurface> VulkanWindowContext::getBackbufferSurface() {
BackbufferInfo* backbuffer = this->getAvailableBackbuffer();
SkASSERT(backbuffer);
// reset the fence
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetFences(fBackendContext->fDevice, 2, backbuffer->fUsageFences));
// semaphores should be in unsignaled state
// acquire the image
VkResult res = fAcquireNextImageKHR(fBackendContext->fDevice, fSwapchain, UINT64_MAX,
backbuffer->fAcquireSemaphore, VK_NULL_HANDLE,
&backbuffer->fImageIndex);
if (VK_ERROR_SURFACE_LOST_KHR == res) {
// need to figure out how to create a new vkSurface without the platformData*
// maybe use attach somehow? but need a Window
return nullptr;
}
if (VK_ERROR_OUT_OF_DATE_KHR == res) {
// tear swapchain down and try again
if (!this->createSwapchain(-1, -1, fDisplayParams)) {
return nullptr;
}
backbuffer = this->getAvailableBackbuffer();
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetFences(fBackendContext->fDevice, 2, backbuffer->fUsageFences));
// acquire the image
res = fAcquireNextImageKHR(fBackendContext->fDevice, fSwapchain, UINT64_MAX,
backbuffer->fAcquireSemaphore, VK_NULL_HANDLE,
&backbuffer->fImageIndex);
if (VK_SUCCESS != res) {
return nullptr;
}
}
// set up layout transfer from initial to color attachment
VkImageLayout layout = fImageLayouts[backbuffer->fImageIndex];
SkASSERT(VK_IMAGE_LAYOUT_UNDEFINED == layout || VK_IMAGE_LAYOUT_PRESENT_SRC_KHR == layout);
VkPipelineStageFlags srcStageMask = (VK_IMAGE_LAYOUT_UNDEFINED == layout) ?
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT :
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
VkAccessFlags srcAccessMask = (VK_IMAGE_LAYOUT_UNDEFINED == layout) ?
0 : VK_ACCESS_MEMORY_READ_BIT;
VkAccessFlags dstAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
NULL, // pNext
srcAccessMask, // outputMask
dstAccessMask, // inputMask
layout, // oldLayout
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, // newLayout
fPresentQueueIndex, // srcQueueFamilyIndex
fBackendContext->fGraphicsQueueIndex, // dstQueueFamilyIndex
fImages[backbuffer->fImageIndex], // image
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } // subresourceRange
};
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetCommandBuffer(backbuffer->fTransitionCmdBuffers[0], 0));
VkCommandBufferBeginInfo info;
memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = 0;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
BeginCommandBuffer(backbuffer->fTransitionCmdBuffers[0], &info));
GR_VK_CALL(fBackendContext->fInterface,
CmdPipelineBarrier(backbuffer->fTransitionCmdBuffers[0],
srcStageMask, dstStageMask, 0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
EndCommandBuffer(backbuffer->fTransitionCmdBuffers[0]));
VkPipelineStageFlags waitDstStageFlags = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
// insert the layout transfer into the queue and wait on the acquire
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 1;
submitInfo.pWaitSemaphores = &backbuffer->fAcquireSemaphore;
submitInfo.pWaitDstStageMask = &waitDstStageFlags;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &backbuffer->fTransitionCmdBuffers[0];
submitInfo.signalSemaphoreCount = 0;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
QueueSubmit(fBackendContext->fQueue, 1, &submitInfo,
backbuffer->fUsageFences[0]));
GrVkImageInfo* imageInfo;
SkSurface* surface = fSurfaces[backbuffer->fImageIndex].get();
surface->getRenderTargetHandle((GrBackendObject*)&imageInfo,
SkSurface::kFlushRead_BackendHandleAccess);
imageInfo->updateImageLayout(VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
return sk_ref_sp(surface);
}
void VulkanWindowContext::swapBuffers() {
BackbufferInfo* backbuffer = fBackbuffers + fCurrentBackbufferIndex;
GrVkImageInfo* imageInfo;
SkSurface* surface = fSurfaces[backbuffer->fImageIndex].get();
surface->getRenderTargetHandle((GrBackendObject*)&imageInfo,
SkSurface::kFlushRead_BackendHandleAccess);
// Check to make sure we never change the actually wrapped image
SkASSERT(imageInfo->fImage == fImages[backbuffer->fImageIndex]);
VkImageLayout layout = imageInfo->fImageLayout;
VkPipelineStageFlags srcStageMask = GrVkMemory::LayoutToPipelineStageFlags(layout);
VkPipelineStageFlags dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT;
VkAccessFlags srcAccessMask = GrVkMemory::LayoutToSrcAccessMask(layout);
VkAccessFlags dstAccessMask = VK_ACCESS_MEMORY_READ_BIT;
VkImageMemoryBarrier imageMemoryBarrier = {
VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER, // sType
NULL, // pNext
srcAccessMask, // outputMask
dstAccessMask, // inputMask
layout, // oldLayout
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, // newLayout
fBackendContext->fGraphicsQueueIndex, // srcQueueFamilyIndex
fPresentQueueIndex, // dstQueueFamilyIndex
fImages[backbuffer->fImageIndex], // image
{ VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 } // subresourceRange
};
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
ResetCommandBuffer(backbuffer->fTransitionCmdBuffers[1], 0));
VkCommandBufferBeginInfo info;
memset(&info, 0, sizeof(VkCommandBufferBeginInfo));
info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
info.flags = 0;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
BeginCommandBuffer(backbuffer->fTransitionCmdBuffers[1], &info));
GR_VK_CALL(fBackendContext->fInterface,
CmdPipelineBarrier(backbuffer->fTransitionCmdBuffers[1],
srcStageMask, dstStageMask, 0,
0, nullptr,
0, nullptr,
1, &imageMemoryBarrier));
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
EndCommandBuffer(backbuffer->fTransitionCmdBuffers[1]));
fImageLayouts[backbuffer->fImageIndex] = VK_IMAGE_LAYOUT_PRESENT_SRC_KHR;
// insert the layout transfer into the queue and wait on the acquire
VkSubmitInfo submitInfo;
memset(&submitInfo, 0, sizeof(VkSubmitInfo));
submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submitInfo.waitSemaphoreCount = 0;
submitInfo.pWaitDstStageMask = 0;
submitInfo.commandBufferCount = 1;
submitInfo.pCommandBuffers = &backbuffer->fTransitionCmdBuffers[1];
submitInfo.signalSemaphoreCount = 1;
submitInfo.pSignalSemaphores = &backbuffer->fRenderSemaphore;
GR_VK_CALL_ERRCHECK(fBackendContext->fInterface,
QueueSubmit(fBackendContext->fQueue, 1, &submitInfo,
backbuffer->fUsageFences[1]));
// Submit present operation to present queue
const VkPresentInfoKHR presentInfo =
{
VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, // sType
NULL, // pNext
1, // waitSemaphoreCount
&backbuffer->fRenderSemaphore, // pWaitSemaphores
1, // swapchainCount
&fSwapchain, // pSwapchains
&backbuffer->fImageIndex, // pImageIndices
NULL // pResults
};
fQueuePresentKHR(fPresentQueue, &presentInfo);
}
} //namespace sk_app