skia2/src/sksl/ir/SkSLIRNode.h

676 lines
22 KiB
C
Raw Normal View History

/*
* Copyright 2016 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SKSL_IRNODE
#define SKSL_IRNODE
#include "src/sksl/SkSLASTNode.h"
#include "src/sksl/SkSLLexer.h"
#include "src/sksl/SkSLModifiersPool.h"
#include "src/sksl/SkSLString.h"
#include <algorithm>
#include <vector>
namespace SkSL {
class Expression;
class ExternalValue;
class FunctionDeclaration;
struct FunctionDefinition;
class Statement;
class Symbol;
class SymbolTable;
class Type;
class Variable;
class VariableReference;
/**
* Represents a node in the intermediate representation (IR) tree. The IR is a fully-resolved
* version of the program (all types determined, everything validated), ready for code generation.
*/
class IRNode {
public:
virtual ~IRNode();
Revert "Enable deprecated-copy-dtor warning." This reverts commit e990fcc4b0c7d2d7b7e5350970da538a8c7a6c20. Reason for revert: Build-Win-Clang-x86_64-Release-Shared Original change's description: > Enable deprecated-copy-dtor warning. > > In C++11 a user declared destructor still requires the compiler to > implicitly default the copy constructor and copy assignment operator, > but this is deprecated. Note that a user declared destructor suppresses > the move constructor and move assignment operator; a user declared > destructor exists if any '~Foo' method declaration appears inside > 'class Foo' (even if defaulted); if the copy and move operations are the > same then copy operations that take 'const Foo&' will do fine double > duty as move operations. > > Clang seems to have an issue with this warning, in that it does not > appear to distinguish between compiler defaulted and user defaulted > destructors. As a result, it does not always warn when it should. > There may yet be places in the code where a move operation is desired > but may be suppressed because the implicitly defaulted moves are not > declared because a destructor has been declared. > > This wraps dawn and shaderc configs in 'third_party' so that their > headers will be included through '-isystem' in order to avoid the > warnings generated by including their headers. > > Change-Id: I681524cd890d86305aa99b6b765a52113b4dfa4b > Reviewed-on: https://skia-review.googlesource.com/c/skia/+/280406 > Reviewed-by: Mike Klein <mtklein@google.com> > Reviewed-by: Brian Salomon <bsalomon@google.com> > Commit-Queue: Ben Wagner <bungeman@google.com> TBR=mtklein@google.com,bsalomon@google.com,bungeman@google.com Change-Id: Icd6a2487637d21fcf7c4c7ab7cba7a8adfda5afd No-Presubmit: true No-Tree-Checks: true No-Try: true Reviewed-on: https://skia-review.googlesource.com/c/skia/+/280836 Reviewed-by: Ben Wagner <bungeman@google.com> Commit-Queue: Ben Wagner <bungeman@google.com>
2020-03-31 22:31:46 +00:00
IRNode& operator=(const IRNode& other) {
// Need to have a copy assignment operator because Type requires it, but can't use the
// default version until we finish migrating away from std::unique_ptr children. For now,
// just assert that there are no children (we could theoretically clone them, but we never
// actually copy nodes containing children).
SkASSERT(other.fExpressionChildren.empty());
fKind = other.fKind;
fOffset = other.fOffset;
fData = other.fData;
return *this;
}
virtual String description() const = 0;
// character offset of this element within the program being compiled, for error reporting
// purposes
int fOffset;
protected:
struct BlockData {
std::shared_ptr<SymbolTable> fSymbolTable;
// if isScope is false, this is just a group of statements rather than an actual
// language-level block. This allows us to pass around multiple statements as if they were a
// single unit, with no semantic impact.
bool fIsScope;
};
struct BoolLiteralData {
const Type* fType;
bool fValue;
};
struct EnumData {
StringFragment fTypeName;
std::shared_ptr<SymbolTable> fSymbols;
bool fIsBuiltin;
};
struct ExternalValueData {
const Type* fType;
const ExternalValue* fValue;
};
struct FieldData {
StringFragment fName;
const Type* fType;
const Variable* fOwner;
int fFieldIndex;
};
struct FloatLiteralData {
const Type* fType;
float fValue;
};
struct ForStatementData {
std::shared_ptr<SymbolTable> fSymbolTable;
};
struct FunctionCallData {
const Type* fType;
const FunctionDeclaration* fFunction;
};
struct FunctionDeclarationData {
StringFragment fName;
mutable const FunctionDefinition* fDefinition;
ModifiersPool::Handle fModifiersHandle;
// FIXME after killing fExpressionChildren / fStatementChildren in favor of just fChildren,
// the parameters should move into that vector
std::vector<Variable*> fParameters;
const Type* fReturnType;
mutable std::atomic<int> fCallCount;
bool fBuiltin;
FunctionDeclarationData& operator=(const FunctionDeclarationData& other) {
fName = other.fName;
fDefinition = other.fDefinition;
fModifiersHandle = other.fModifiersHandle;
fParameters = other.fParameters;
fReturnType = other.fReturnType;
fCallCount = other.fCallCount.load();
fBuiltin = other.fBuiltin;
return *this;
}
};
struct IfStatementData {
bool fIsStatic;
};
struct IntLiteralData {
const Type* fType;
int64_t fValue;
};
struct SettingData {
String fName;
const Type* fType;
};
struct SymbolData {
StringFragment fName;
const Type* fType;
};
struct SymbolAliasData {
StringFragment fName;
Symbol* fOrigSymbol;
};
struct TypeTokenData {
const Type* fType;
Token::Kind fToken;
};
struct VariableData {
StringFragment fName;
const Type* fType;
const Expression* fInitialValue = nullptr;
ModifiersPool::Handle fModifiersHandle;
// Tracks how many sites read from the variable. If this is zero for a non-out variable (or
// becomes zero during optimization), the variable is dead and may be eliminated.
mutable int16_t fReadCount;
// Tracks how many sites write to the variable. If this is zero, the variable is dead and
// may be eliminated.
mutable int16_t fWriteCount;
/*Variable::Storage*/int8_t fStorage;
bool fBuiltin;
};
struct VariableReferenceData {
const Variable* fVariable;
/*VariableReference::RefKind*/int8_t fRefKind;
};
struct NodeData {
enum class Kind {
kBlock,
kBoolLiteral,
kEnum,
kExternalValue,
kField,
kFloatLiteral,
kForStatement,
kFunctionCall,
kFunctionDeclaration,
kIfStatement,
kIntLiteral,
kSetting,
kString,
kSymbol,
kSymbolAlias,
kType,
kTypeToken,
kVariable,
kVariableReference,
} fKind = Kind::kType;
// it doesn't really matter what kind we default to, as long as it's a POD type
union Contents {
BlockData fBlock;
BoolLiteralData fBoolLiteral;
EnumData fEnum;
ExternalValueData fExternalValue;
FieldData fField;
FloatLiteralData fFloatLiteral;
ForStatementData fForStatement;
FunctionCallData fFunctionCall;
FunctionDeclarationData fFunctionDeclaration;
IfStatementData fIfStatement;
IntLiteralData fIntLiteral;
SettingData fSetting;
String fString;
SymbolData fSymbol;
SymbolAliasData fSymbolAlias;
const Type* fType;
TypeTokenData fTypeToken;
VariableData fVariable;
VariableReferenceData fVariableReference;
Contents() {}
~Contents() {}
} fContents;
NodeData(const BlockData& data)
: fKind(Kind::kBlock) {
*(new(&fContents) BlockData) = data;
}
NodeData(const BoolLiteralData& data)
: fKind(Kind::kBoolLiteral) {
*(new(&fContents) BoolLiteralData) = data;
}
NodeData(const EnumData& data)
: fKind(Kind::kEnum) {
*(new(&fContents) EnumData) = data;
}
NodeData(const ExternalValueData& data)
: fKind(Kind::kExternalValue) {
*(new(&fContents) ExternalValueData) = data;
}
NodeData(const FieldData& data)
: fKind(Kind::kField) {
*(new(&fContents) FieldData) = data;
}
NodeData(const FloatLiteralData& data)
: fKind(Kind::kFloatLiteral) {
*(new(&fContents) FloatLiteralData) = data;
}
NodeData(const ForStatementData& data)
: fKind(Kind::kForStatement) {
*(new(&fContents) ForStatementData) = data;
}
NodeData(const FunctionCallData& data)
: fKind(Kind::kFunctionCall) {
*(new(&fContents) FunctionCallData) = data;
}
NodeData(const FunctionDeclarationData& data)
: fKind(Kind::kFunctionDeclaration) {
*(new(&fContents) FunctionDeclarationData) = data;
}
NodeData(IfStatementData data)
: fKind(Kind::kIfStatement) {
*(new(&fContents) IfStatementData) = data;
}
NodeData(IntLiteralData data)
: fKind(Kind::kIntLiteral) {
*(new(&fContents) IntLiteralData) = data;
}
NodeData(const SettingData& data)
: fKind(Kind::kSetting) {
*(new(&fContents) SettingData) = data;
}
NodeData(const String& data)
: fKind(Kind::kString) {
*(new(&fContents) String) = data;
}
NodeData(const SymbolData& data)
: fKind(Kind::kSymbol) {
*(new(&fContents) SymbolData) = data;
}
NodeData(const SymbolAliasData& data)
: fKind(Kind::kSymbolAlias) {
*(new(&fContents) SymbolAliasData) = data;
}
NodeData(const Type* data)
: fKind(Kind::kType) {
*(new(&fContents) const Type*) = data;
}
NodeData(const TypeTokenData& data)
: fKind(Kind::kTypeToken) {
*(new(&fContents) TypeTokenData) = data;
}
NodeData(const VariableData& data)
: fKind(Kind::kVariable) {
*(new(&fContents) VariableData) = data;
}
NodeData(const VariableReferenceData& data)
: fKind(Kind::kVariableReference) {
*(new(&fContents) VariableReferenceData) = data;
}
NodeData(const NodeData& other) {
*this = other;
}
NodeData& operator=(const NodeData& other) {
this->cleanup();
fKind = other.fKind;
switch (fKind) {
case Kind::kBlock:
*(new(&fContents) BlockData) = other.fContents.fBlock;
break;
case Kind::kBoolLiteral:
*(new(&fContents) BoolLiteralData) = other.fContents.fBoolLiteral;
break;
case Kind::kEnum:
*(new(&fContents) EnumData) = other.fContents.fEnum;
break;
case Kind::kExternalValue:
*(new(&fContents) ExternalValueData) = other.fContents.fExternalValue;
break;
case Kind::kField:
*(new(&fContents) FieldData) = other.fContents.fField;
break;
case Kind::kFloatLiteral:
*(new(&fContents) FloatLiteralData) = other.fContents.fFloatLiteral;
break;
case Kind::kForStatement:
*(new(&fContents) ForStatementData) = other.fContents.fForStatement;
break;
case Kind::kFunctionCall:
*(new(&fContents) FunctionCallData) = other.fContents.fFunctionCall;
break;
case Kind::kFunctionDeclaration:
*(new(&fContents) FunctionDeclarationData) =
other.fContents.fFunctionDeclaration;
break;
case Kind::kIfStatement:
*(new(&fContents) IfStatementData) = other.fContents.fIfStatement;
break;
case Kind::kIntLiteral:
*(new(&fContents) IntLiteralData) = other.fContents.fIntLiteral;
break;
case Kind::kSetting:
*(new(&fContents) SettingData) = other.fContents.fSetting;
break;
case Kind::kString:
*(new(&fContents) String) = other.fContents.fString;
break;
case Kind::kSymbol:
*(new(&fContents) SymbolData) = other.fContents.fSymbol;
break;
case Kind::kSymbolAlias:
*(new(&fContents) SymbolAliasData) = other.fContents.fSymbolAlias;
break;
case Kind::kType:
*(new(&fContents) const Type*) = other.fContents.fType;
break;
case Kind::kTypeToken:
*(new(&fContents) TypeTokenData) = other.fContents.fTypeToken;
break;
case Kind::kVariable:
*(new(&fContents) VariableData) = other.fContents.fVariable;
break;
case Kind::kVariableReference:
*(new(&fContents) VariableReferenceData) = other.fContents.fVariableReference;
break;
}
return *this;
}
~NodeData() {
this->cleanup();
}
private:
void cleanup() {
switch (fKind) {
case Kind::kBlock:
fContents.fBlock.~BlockData();
break;
case Kind::kBoolLiteral:
fContents.fBoolLiteral.~BoolLiteralData();
break;
case Kind::kEnum:
fContents.fEnum.~EnumData();
break;
case Kind::kExternalValue:
fContents.fExternalValue.~ExternalValueData();
break;
case Kind::kField:
fContents.fField.~FieldData();
break;
case Kind::kFloatLiteral:
fContents.fFloatLiteral.~FloatLiteralData();
break;
case Kind::kForStatement:
fContents.fForStatement.~ForStatementData();
break;
case Kind::kFunctionCall:
fContents.fFunctionCall.~FunctionCallData();
break;
case Kind::kIfStatement:
fContents.fIfStatement.~IfStatementData();
break;
case Kind::kFunctionDeclaration:
fContents.fFunctionDeclaration.~FunctionDeclarationData();
break;
case Kind::kIntLiteral:
fContents.fIntLiteral.~IntLiteralData();
break;
case Kind::kSetting:
fContents.fSetting.~SettingData();
break;
case Kind::kString:
fContents.fString.~String();
break;
case Kind::kSymbol:
fContents.fSymbol.~SymbolData();
break;
case Kind::kSymbolAlias:
fContents.fSymbolAlias.~SymbolAliasData();
break;
case Kind::kType:
break;
case Kind::kTypeToken:
fContents.fTypeToken.~TypeTokenData();
break;
case Kind::kVariable:
fContents.fVariable.~VariableData();
break;
case Kind::kVariableReference:
fContents.fVariableReference.~VariableReferenceData();
break;
}
}
};
IRNode(int offset, int kind, const BlockData& data,
std::vector<std::unique_ptr<Statement>> stmts);
IRNode(int offset, int kind, const BoolLiteralData& data);
IRNode(int offset, int kind, const EnumData& data);
IRNode(int offset, int kind, const ExternalValueData& data);
IRNode(int offset, int kind, const FieldData& data);
IRNode(int offset, int kind, const FloatLiteralData& data);
IRNode(int offset, int kind, const ForStatementData& data);
IRNode(int offset, int kind, const FunctionCallData& data);
IRNode(int offset, int kind, const IfStatementData& data);
IRNode(int offset, int kind, const FunctionDeclarationData& data);
IRNode(int offset, int kind, const IntLiteralData& data);
IRNode(int offset, int kind, const SettingData& data);
IRNode(int offset, int kind, const String& data);
IRNode(int offset, int kind, const SymbolData& data);
IRNode(int offset, int kind, const SymbolAliasData& data);
IRNode(int offset, int kind, const Type* data = nullptr);
IRNode(int offset, int kind, const TypeTokenData& data);
IRNode(int offset, int kind, const VariableData& data);
IRNode(int offset, int kind, const VariableReferenceData& data);
Expression& expressionChild(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return *fExpressionChildren[index];
}
std::unique_ptr<Expression>& expressionPointer(int index) {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
const std::unique_ptr<Expression>& expressionPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fExpressionChildren.size());
return fExpressionChildren[index];
}
int expressionChildCount() const {
return fExpressionChildren.size();
}
Statement& statementChild(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return *fStatementChildren[index];
}
std::unique_ptr<Statement>& statementPointer(int index) {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
const std::unique_ptr<Statement>& statementPointer(int index) const {
SkASSERT(index >= 0 && index < (int) fStatementChildren.size());
return fStatementChildren[index];
}
int statementChildCount() const {
return fStatementChildren.size();
}
BlockData& blockData() {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return fData.fContents.fBlock;
}
const BlockData& blockData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBlock);
return fData.fContents.fBlock;
}
const BoolLiteralData& boolLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kBoolLiteral);
return fData.fContents.fBoolLiteral;
}
const EnumData& enumData() const {
SkASSERT(fData.fKind == NodeData::Kind::kEnum);
return fData.fContents.fEnum;
}
const ExternalValueData& externalValueData() const {
SkASSERT(fData.fKind == NodeData::Kind::kExternalValue);
return fData.fContents.fExternalValue;
}
const FieldData& fieldData() const {
SkASSERT(fData.fKind == NodeData::Kind::kField);
return fData.fContents.fField;
}
const FloatLiteralData& floatLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFloatLiteral);
return fData.fContents.fFloatLiteral;
}
const ForStatementData& forStatementData() const {
SkASSERT(fData.fKind == NodeData::Kind::kForStatement);
return fData.fContents.fForStatement;
}
const FunctionCallData& functionCallData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionCall);
return fData.fContents.fFunctionCall;
}
FunctionDeclarationData& functionDeclarationData() {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionDeclaration);
return fData.fContents.fFunctionDeclaration;
}
const IfStatementData& ifStatementData() const {
SkASSERT(fData.fKind == NodeData::Kind::kIfStatement);
return fData.fContents.fIfStatement;
}
const FunctionDeclarationData& functionDeclarationData() const {
SkASSERT(fData.fKind == NodeData::Kind::kFunctionDeclaration);
return fData.fContents.fFunctionDeclaration;
}
const IntLiteralData& intLiteralData() const {
SkASSERT(fData.fKind == NodeData::Kind::kIntLiteral);
return fData.fContents.fIntLiteral;
}
const SettingData& settingData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSetting);
return fData.fContents.fSetting;
}
const String& stringData() const {
SkASSERT(fData.fKind == NodeData::Kind::kString);
return fData.fContents.fString;
}
SymbolData& symbolData() {
SkASSERT(fData.fKind == NodeData::Kind::kSymbol);
return fData.fContents.fSymbol;
}
const SymbolData& symbolData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSymbol);
return fData.fContents.fSymbol;
}
const SymbolAliasData& symbolAliasData() const {
SkASSERT(fData.fKind == NodeData::Kind::kSymbolAlias);
return fData.fContents.fSymbolAlias;
}
const Type* typeData() const {
SkASSERT(fData.fKind == NodeData::Kind::kType);
return fData.fContents.fType;
}
const TypeTokenData& typeTokenData() const {
SkASSERT(fData.fKind == NodeData::Kind::kTypeToken);
return fData.fContents.fTypeToken;
}
VariableData& variableData() {
SkASSERT(fData.fKind == NodeData::Kind::kVariable);
return fData.fContents.fVariable;
}
const VariableData& variableData() const {
SkASSERT(fData.fKind == NodeData::Kind::kVariable);
return fData.fContents.fVariable;
}
VariableReferenceData& variableReferenceData() {
SkASSERT(fData.fKind == NodeData::Kind::kVariableReference);
return fData.fContents.fVariableReference;
}
const VariableReferenceData& variableReferenceData() const {
SkASSERT(fData.fKind == NodeData::Kind::kVariableReference);
return fData.fContents.fVariableReference;
}
int fKind;
NodeData fData;
// Needing two separate vectors is a temporary issue. Ideally, we'd just be able to use a single
// vector of nodes, but there are various spots where we take pointers to std::unique_ptr<>,
// and it isn't safe to pun std::unique_ptr<IRNode> to std::unique_ptr<Statement / Expression>.
// And we can't update the call sites to expect std::unique_ptr<IRNode> while there are still
// old-style nodes around.
// When the transition is finished, we'll be able to drop the unique_ptrs and just handle
// <IRNode> directly.
std::vector<std::unique_ptr<Expression>> fExpressionChildren;
// it's important to keep fStatements defined after (and thus destroyed before) fData,
// because destroying statements can modify reference counts in a SymbolTable contained in fData
std::vector<std::unique_ptr<Statement>> fStatementChildren;
};
} // namespace SkSL
#endif