2017-03-20 15:19:23 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2017 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
2017-03-27 17:35:15 +00:00
|
|
|
#ifndef SkMalloc_DEFINED
|
|
|
|
#define SkMalloc_DEFINED
|
2017-03-20 15:19:23 +00:00
|
|
|
|
|
|
|
#include <cstddef>
|
|
|
|
#include <cstring>
|
|
|
|
|
2018-01-04 18:52:07 +00:00
|
|
|
#include "SkTypes.h"
|
2017-03-20 15:19:23 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
memory wrappers to be implemented by the porting layer (platform)
|
|
|
|
*/
|
|
|
|
|
2018-01-05 16:20:10 +00:00
|
|
|
|
|
|
|
/** Free memory returned by sk_malloc(). It is safe to pass null. */
|
|
|
|
SK_API extern void sk_free(void*);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Called internally if we run out of memory. The platform implementation must
|
|
|
|
* not return, but should either throw an exception or otherwise exit.
|
|
|
|
*/
|
|
|
|
SK_API extern void sk_out_of_memory(void);
|
|
|
|
|
2017-03-20 15:19:23 +00:00
|
|
|
enum {
|
2018-01-05 16:20:10 +00:00
|
|
|
/**
|
|
|
|
* If this bit is set, the returned buffer must be zero-initialized. If this bit is not set
|
|
|
|
* the buffer can be uninitialized.
|
|
|
|
*/
|
|
|
|
SK_MALLOC_ZERO_INITIALIZE = 1 << 0,
|
|
|
|
|
|
|
|
/**
|
|
|
|
* If this bit is set, the implementation must throw/crash/quit if the request cannot
|
|
|
|
* be fulfilled. If this bit is not set, then it should return nullptr on failure.
|
|
|
|
*/
|
|
|
|
SK_MALLOC_THROW = 1 << 1,
|
2017-03-20 15:19:23 +00:00
|
|
|
};
|
2018-01-05 16:20:10 +00:00
|
|
|
/**
|
|
|
|
* Return a block of memory (at least 4-byte aligned) of at least the specified size.
|
|
|
|
* If the requested memory cannot be returned, either return nullptr or throw/exit, depending
|
|
|
|
* on the SK_MALLOC_THROW bit. If the allocation succeeds, the memory will be zero-initialized
|
|
|
|
* if the SK_MALLOC_ZERO_INITIALIZE bit was set.
|
|
|
|
*
|
|
|
|
* To free the memory, call sk_free()
|
|
|
|
*/
|
2017-03-20 15:19:23 +00:00
|
|
|
SK_API extern void* sk_malloc_flags(size_t size, unsigned flags);
|
2018-01-05 16:20:10 +00:00
|
|
|
|
2017-03-20 15:19:23 +00:00
|
|
|
/** Same as standard realloc(), but this one never returns null on failure. It will throw
|
2018-01-05 16:20:10 +00:00
|
|
|
* an exception if it fails.
|
|
|
|
*/
|
2017-03-20 15:19:23 +00:00
|
|
|
SK_API extern void* sk_realloc_throw(void* buffer, size_t size);
|
2018-01-05 16:20:10 +00:00
|
|
|
|
|
|
|
static inline void* sk_malloc_throw(size_t size) {
|
|
|
|
return sk_malloc_flags(size, SK_MALLOC_THROW);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void* sk_calloc_throw(size_t size) {
|
|
|
|
return sk_malloc_flags(size, SK_MALLOC_THROW | SK_MALLOC_ZERO_INITIALIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void* sk_calloc_canfail(size_t size) {
|
2018-02-12 13:26:39 +00:00
|
|
|
#if defined(IS_FUZZING_WITH_LIBFUZZER)
|
|
|
|
// The Libfuzzer environment is very susceptible to OOM, so to avoid those
|
|
|
|
// just pretend we can't allocate more than 200kb.
|
|
|
|
if (size > 200000) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
#endif
|
2018-01-05 16:20:10 +00:00
|
|
|
return sk_malloc_flags(size, SK_MALLOC_ZERO_INITIALIZE);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Performs a safe multiply count * elemSize, checking for overflow
|
|
|
|
SK_API extern void* sk_calloc_throw(size_t count, size_t elemSize);
|
|
|
|
SK_API extern void* sk_malloc_throw(size_t count, size_t elemSize);
|
|
|
|
SK_API extern void* sk_realloc_throw(void* buffer, size_t count, size_t elemSize);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* These variants return nullptr on failure
|
|
|
|
*/
|
|
|
|
static inline void* sk_malloc_canfail(size_t size) {
|
2018-02-12 13:26:39 +00:00
|
|
|
#if defined(IS_FUZZING_WITH_LIBFUZZER)
|
|
|
|
// The Libfuzzer environment is very susceptible to OOM, so to avoid those
|
|
|
|
// just pretend we can't allocate more than 200kb.
|
|
|
|
if (size > 200000) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
#endif
|
2018-01-05 16:20:10 +00:00
|
|
|
return sk_malloc_flags(size, 0);
|
|
|
|
}
|
|
|
|
SK_API extern void* sk_malloc_canfail(size_t count, size_t elemSize);
|
2017-03-20 15:19:23 +00:00
|
|
|
|
|
|
|
// bzero is safer than memset, but we can't rely on it, so... sk_bzero()
|
|
|
|
static inline void sk_bzero(void* buffer, size_t size) {
|
|
|
|
// Please c.f. sk_careful_memcpy. It's undefined behavior to call memset(null, 0, 0).
|
|
|
|
if (size) {
|
|
|
|
memset(buffer, 0, size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* sk_careful_memcpy() is just like memcpy(), but guards against undefined behavior.
|
|
|
|
*
|
|
|
|
* It is undefined behavior to call memcpy() with null dst or src, even if len is 0.
|
|
|
|
* If an optimizer is "smart" enough, it can exploit this to do unexpected things.
|
|
|
|
* memcpy(dst, src, 0);
|
|
|
|
* if (src) {
|
|
|
|
* printf("%x\n", *src);
|
|
|
|
* }
|
|
|
|
* In this code the compiler can assume src is not null and omit the if (src) {...} check,
|
|
|
|
* unconditionally running the printf, crashing the program if src really is null.
|
|
|
|
* Of the compilers we pay attention to only GCC performs this optimization in practice.
|
|
|
|
*/
|
|
|
|
static inline void* sk_careful_memcpy(void* dst, const void* src, size_t len) {
|
|
|
|
// When we pass >0 len we had better already be passing valid pointers.
|
|
|
|
// So we just need to skip calling memcpy when len == 0.
|
|
|
|
if (len) {
|
|
|
|
memcpy(dst,src,len);
|
|
|
|
}
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
2019-04-11 21:10:17 +00:00
|
|
|
static inline void* sk_careful_memmove(void* dst, const void* src, size_t len) {
|
|
|
|
// When we pass >0 len we had better already be passing valid pointers.
|
|
|
|
// So we just need to skip calling memcpy when len == 0.
|
|
|
|
if (len) {
|
|
|
|
memmove(dst,src,len);
|
|
|
|
}
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
2017-03-27 17:35:15 +00:00
|
|
|
#endif // SkMalloc_DEFINED
|