2017-09-06 17:33:30 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2011 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
2019-04-23 17:05:21 +00:00
|
|
|
#include "include/core/SkCanvas.h"
|
|
|
|
#include "include/core/SkFont.h"
|
|
|
|
#include "include/core/SkPaint.h"
|
|
|
|
#include "include/core/SkPathEffect.h"
|
|
|
|
#include "include/core/SkRRect.h"
|
|
|
|
#include "include/core/SkSize.h"
|
|
|
|
#include "include/core/SkStream.h"
|
|
|
|
#include "include/core/SkStrokeRec.h"
|
|
|
|
#include "include/core/SkSurface.h"
|
|
|
|
#include "include/private/SkTo.h"
|
|
|
|
#include "include/utils/SkNullCanvas.h"
|
|
|
|
#include "include/utils/SkParse.h"
|
|
|
|
#include "include/utils/SkParsePath.h"
|
|
|
|
#include "include/utils/SkRandom.h"
|
|
|
|
#include "src/core/SkAutoMalloc.h"
|
|
|
|
#include "src/core/SkGeometry.h"
|
|
|
|
#include "src/core/SkPathPriv.h"
|
|
|
|
#include "src/core/SkReader32.h"
|
|
|
|
#include "src/core/SkWriter32.h"
|
|
|
|
#include "tests/Test.h"
|
2018-06-13 13:42:32 +00:00
|
|
|
|
2018-06-13 13:59:02 +00:00
|
|
|
#include <cmath>
|
2018-06-18 19:11:00 +00:00
|
|
|
#include <utility>
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
#include <vector>
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
static void set_radii(SkVector radii[4], int index, float rad) {
|
|
|
|
sk_bzero(radii, sizeof(SkVector) * 4);
|
|
|
|
radii[index].set(rad, rad);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_add_rrect(skiatest::Reporter* reporter, const SkRect& bounds,
|
|
|
|
const SkVector radii[4]) {
|
|
|
|
SkRRect rrect;
|
|
|
|
rrect.setRectRadii(bounds, radii);
|
|
|
|
REPORTER_ASSERT(reporter, bounds == rrect.rect());
|
|
|
|
|
|
|
|
SkPath path;
|
|
|
|
// this line should not assert in the debug build (from validate)
|
|
|
|
path.addRRect(rrect);
|
|
|
|
REPORTER_ASSERT(reporter, bounds == path.getBounds());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_skbug_3469(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(20, 20);
|
|
|
|
path.quadTo(20, 50, 80, 50);
|
|
|
|
path.quadTo(20, 50, 20, 80);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isConvex());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_skbug_3239(skiatest::Reporter* reporter) {
|
|
|
|
const float min = SkBits2Float(0xcb7f16c8); /* -16717512.000000 */
|
|
|
|
const float max = SkBits2Float(0x4b7f1c1d); /* 16718877.000000 */
|
|
|
|
const float big = SkBits2Float(0x4b7f1bd7); /* 16718807.000000 */
|
|
|
|
|
|
|
|
const float rad = 33436320;
|
|
|
|
|
|
|
|
const SkRect rectx = SkRect::MakeLTRB(min, min, max, big);
|
|
|
|
const SkRect recty = SkRect::MakeLTRB(min, min, big, max);
|
|
|
|
|
|
|
|
SkVector radii[4];
|
|
|
|
for (int i = 0; i < 4; ++i) {
|
|
|
|
set_radii(radii, i, rad);
|
|
|
|
test_add_rrect(reporter, rectx, radii);
|
|
|
|
test_add_rrect(reporter, recty, radii);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void make_path_crbug364224(SkPath* path) {
|
|
|
|
path->reset();
|
|
|
|
path->moveTo(3.747501373f, 2.724499941f);
|
|
|
|
path->lineTo(3.747501373f, 3.75f);
|
|
|
|
path->cubicTo(3.747501373f, 3.88774991f, 3.635501385f, 4.0f, 3.497501373f, 4.0f);
|
|
|
|
path->lineTo(0.7475013733f, 4.0f);
|
|
|
|
path->cubicTo(0.6095013618f, 4.0f, 0.4975013733f, 3.88774991f, 0.4975013733f, 3.75f);
|
|
|
|
path->lineTo(0.4975013733f, 1.0f);
|
|
|
|
path->cubicTo(0.4975013733f, 0.8622499704f, 0.6095013618f, 0.75f, 0.7475013733f,0.75f);
|
|
|
|
path->lineTo(3.497501373f, 0.75f);
|
|
|
|
path->cubicTo(3.50275135f, 0.75f, 3.5070014f, 0.7527500391f, 3.513001442f, 0.753000021f);
|
|
|
|
path->lineTo(3.715001345f, 0.5512499809f);
|
|
|
|
path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f);
|
|
|
|
path->lineTo(0.7475013733f, 0.4999999702f);
|
|
|
|
path->cubicTo(0.4715013802f, 0.4999999702f, 0.2475013733f, 0.7239999771f, 0.2475013733f, 1.0f);
|
|
|
|
path->lineTo(0.2475013733f, 3.75f);
|
|
|
|
path->cubicTo(0.2475013733f, 4.026000023f, 0.4715013504f, 4.25f, 0.7475013733f, 4.25f);
|
|
|
|
path->lineTo(3.497501373f, 4.25f);
|
|
|
|
path->cubicTo(3.773501396f, 4.25f, 3.997501373f, 4.026000023f, 3.997501373f, 3.75f);
|
|
|
|
path->lineTo(3.997501373f, 2.474750042f);
|
|
|
|
path->lineTo(3.747501373f, 2.724499941f);
|
|
|
|
path->close();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void make_path_crbug364224_simplified(SkPath* path) {
|
|
|
|
path->moveTo(3.747501373f, 2.724499941f);
|
|
|
|
path->cubicTo(3.648251295f, 0.5194999576f, 3.575501442f, 0.4999999702f, 3.497501373f, 0.4999999702f);
|
|
|
|
path->close();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_sect_with_horizontal_needs_pinning() {
|
|
|
|
// Test that sect_with_horizontal in SkLineClipper.cpp needs to pin after computing the
|
|
|
|
// intersection.
|
|
|
|
SkPath path;
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(-540000, -720000);
|
|
|
|
path.lineTo(-9.10000017e-05f, 9.99999996e-13f);
|
|
|
|
path.lineTo(1, 1);
|
|
|
|
|
|
|
|
// Without the pinning code in sect_with_horizontal(), this would assert in the lineclipper
|
|
|
|
SkPaint paint;
|
|
|
|
SkSurface::MakeRasterN32Premul(10, 10)->getCanvas()->drawPath(path, paint);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_path_crbug364224() {
|
|
|
|
SkPath path;
|
|
|
|
SkPaint paint;
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(84, 88));
|
|
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
|
|
|
|
|
|
make_path_crbug364224_simplified(&path);
|
|
|
|
canvas->drawPath(path, paint);
|
|
|
|
|
|
|
|
make_path_crbug364224(&path);
|
|
|
|
canvas->drawPath(path, paint);
|
|
|
|
}
|
|
|
|
|
2017-09-14 21:15:04 +00:00
|
|
|
static void test_draw_AA_path(int width, int height, const SkPath& path) {
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(width, height));
|
|
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
|
|
SkPaint paint;
|
|
|
|
paint.setAntiAlias(true);
|
|
|
|
canvas->drawPath(path, paint);
|
|
|
|
}
|
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
// this is a unit test instead of a GM because it doesn't draw anything
|
|
|
|
static void test_fuzz_crbug_638223() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x47452a00), SkBits2Float(0x43211d01)); // 50474, 161.113f
|
|
|
|
path.conicTo(SkBits2Float(0x401c0000), SkBits2Float(0x40680000),
|
|
|
|
SkBits2Float(0x02c25a81), SkBits2Float(0x981a1fa0),
|
|
|
|
SkBits2Float(0x6bf9abea)); // 2.4375f, 3.625f, 2.85577e-37f, -1.992e-24f, 6.03669e+26f
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(250, 250, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_fuzz_crbug_643933() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.conicTo(SkBits2Float(0x002001f2), SkBits2Float(0x4161ffff), // 2.93943e-39f, 14.125f
|
|
|
|
SkBits2Float(0x49f7224d), SkBits2Float(0x45eec8df), // 2.02452e+06f, 7641.11f
|
|
|
|
SkBits2Float(0x721aee0c)); // 3.0687e+30f
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(250, 250, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.conicTo(SkBits2Float(0x00007ff2), SkBits2Float(0x4169ffff), // 4.58981e-41f, 14.625f
|
|
|
|
SkBits2Float(0x43ff2261), SkBits2Float(0x41eeea04), // 510.269f, 29.8643f
|
|
|
|
SkBits2Float(0x5d06eff8)); // 6.07704e+17f
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(250, 250, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_fuzz_crbug_647922() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.conicTo(SkBits2Float(0x00003939), SkBits2Float(0x42487fff), // 2.05276e-41f, 50.125f
|
|
|
|
SkBits2Float(0x48082361), SkBits2Float(0x4408e8e9), // 139406, 547.639f
|
|
|
|
SkBits2Float(0x4d1ade0f)); // 1.6239e+08f
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(250, 250, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_fuzz_crbug_662780() {
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(250, 250));
|
|
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
|
|
SkPaint paint;
|
|
|
|
paint.setAntiAlias(true);
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158
|
|
|
|
path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x42f00000)); // 8, 120
|
|
|
|
// 8, 8, 8.00002f, 8, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x41000000),
|
|
|
|
SkBits2Float(0x41000010), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3));
|
|
|
|
path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000)); // 308, 8
|
|
|
|
// 308, 8, 308, 8, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x41000000),
|
|
|
|
SkBits2Float(0x439a0000), SkBits2Float(0x41000000), SkBits2Float(0x3f3504f3));
|
|
|
|
path.lineTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000)); // 308, 158
|
|
|
|
// 308, 158, 308, 158, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0x439a0000), SkBits2Float(0x431e0000),
|
|
|
|
SkBits2Float(0x439a0000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3));
|
|
|
|
path.lineTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000)); // 8, 158
|
|
|
|
// 8, 158, 8, 158, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0x41000000), SkBits2Float(0x431e0000),
|
|
|
|
SkBits2Float(0x41000000), SkBits2Float(0x431e0000), SkBits2Float(0x3f3504f3));
|
|
|
|
path.close();
|
|
|
|
canvas->clipPath(path, true);
|
|
|
|
canvas->drawRect(SkRect::MakeWH(250, 250), paint);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_mask_overflow() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341
|
|
|
|
path.lineTo(SkBits2Float(0x43de6000), SkBits2Float(0x43aa8000)); // 444.75f, 341
|
|
|
|
// 440.47f, 341, 437, 344.47f, 437, 348.75f
|
|
|
|
path.cubicTo(SkBits2Float(0x43dc3c29), SkBits2Float(0x43aa8000),
|
|
|
|
SkBits2Float(0x43da8000), SkBits2Float(0x43ac3c29),
|
|
|
|
SkBits2Float(0x43da8000), SkBits2Float(0x43ae6000));
|
|
|
|
path.lineTo(SkBits2Float(0x43da8000), SkBits2Float(0x43b18000)); // 437, 355
|
|
|
|
path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43b18000)); // 453, 355
|
|
|
|
path.lineTo(SkBits2Float(0x43e28000), SkBits2Float(0x43aa8000)); // 453, 341
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(500, 500, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_fuzz_crbug_668907() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f
|
|
|
|
path.quadTo(SkBits2Float(0x41410041), SkBits2Float(0xc1414141), SkBits2Float(0x41414141),
|
|
|
|
SkBits2Float(0x414100ff)); // 12.0626f, -12.0784f, 12.0784f, 12.0627f
|
|
|
|
path.lineTo(SkBits2Float(0x46313741), SkBits2Float(0x3b00e540)); // 11341.8f, 0.00196679f
|
|
|
|
path.close();
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(400, 500, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* In debug mode, this path was causing an assertion to fail in
|
|
|
|
* SkPathStroker::preJoinTo() and, in Release, the use of an unitialized value.
|
|
|
|
*/
|
|
|
|
static void make_path_crbugskia2820(SkPath* path, skiatest::Reporter* reporter) {
|
|
|
|
SkPoint orig, p1, p2, p3;
|
|
|
|
orig = SkPoint::Make(1.f, 1.f);
|
|
|
|
p1 = SkPoint::Make(1.f - SK_ScalarNearlyZero, 1.f);
|
|
|
|
p2 = SkPoint::Make(1.f, 1.f + SK_ScalarNearlyZero);
|
|
|
|
p3 = SkPoint::Make(2.f, 2.f);
|
|
|
|
|
|
|
|
path->reset();
|
|
|
|
path->moveTo(orig);
|
|
|
|
path->cubicTo(p1, p2, p3);
|
|
|
|
path->close();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_path_crbugskia2820(skiatest::Reporter* reporter) {//GrContext* context) {
|
|
|
|
SkPath path;
|
|
|
|
make_path_crbugskia2820(&path, reporter);
|
|
|
|
|
|
|
|
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
|
|
|
|
stroke.setStrokeStyle(2 * SK_Scalar1);
|
|
|
|
stroke.applyToPath(&path, path);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_path_crbugskia5995() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x40303030), SkBits2Float(0x3e303030)); // 2.75294f, 0.172059f
|
|
|
|
path.quadTo(SkBits2Float(0x41d63030), SkBits2Float(0x30303030), SkBits2Float(0x41013030),
|
|
|
|
SkBits2Float(0x00000000)); // 26.7735f, 6.40969e-10f, 8.07426f, 0
|
|
|
|
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(500, 500, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void make_path0(SkPath* path) {
|
|
|
|
// from * https://code.google.com/p/skia/issues/detail?id=1706
|
|
|
|
|
|
|
|
path->moveTo(146.939f, 1012.84f);
|
|
|
|
path->lineTo(181.747f, 1009.18f);
|
|
|
|
path->lineTo(182.165f, 1013.16f);
|
|
|
|
path->lineTo(147.357f, 1016.82f);
|
|
|
|
path->lineTo(146.939f, 1012.84f);
|
|
|
|
path->close();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void make_path1(SkPath* path) {
|
|
|
|
path->addRect(SkRect::MakeXYWH(10, 10, 10, 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
typedef void (*PathProc)(SkPath*);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Regression test: we used to crash (overwrite internal storage) during
|
|
|
|
* construction of the region when the path was INVERSE. That is now fixed,
|
|
|
|
* so test these regions (which used to assert/crash).
|
|
|
|
*
|
|
|
|
* https://code.google.com/p/skia/issues/detail?id=1706
|
|
|
|
*/
|
|
|
|
static void test_path_to_region(skiatest::Reporter* reporter) {
|
|
|
|
PathProc procs[] = {
|
|
|
|
make_path0,
|
|
|
|
make_path1,
|
|
|
|
};
|
|
|
|
|
|
|
|
SkRegion clip;
|
2019-08-24 23:39:13 +00:00
|
|
|
clip.setRect({0, 0, 1255, 1925});
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(procs); ++i) {
|
|
|
|
SkPath path;
|
|
|
|
procs[i](&path);
|
|
|
|
|
|
|
|
SkRegion rgn;
|
|
|
|
rgn.setPath(path, clip);
|
|
|
|
path.toggleInverseFillType();
|
|
|
|
rgn.setPath(path, clip);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef SK_BUILD_FOR_WIN
|
|
|
|
#define SUPPRESS_VISIBILITY_WARNING
|
|
|
|
#else
|
|
|
|
#define SUPPRESS_VISIBILITY_WARNING __attribute__((visibility("hidden")))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void test_path_close_issue1474(skiatest::Reporter* reporter) {
|
|
|
|
// This test checks that r{Line,Quad,Conic,Cubic}To following a close()
|
|
|
|
// are relative to the point we close to, not relative to the point we close from.
|
|
|
|
SkPath path;
|
|
|
|
SkPoint last;
|
|
|
|
|
|
|
|
// Test rLineTo().
|
|
|
|
path.rLineTo(0, 100);
|
|
|
|
path.rLineTo(100, 0);
|
|
|
|
path.close(); // Returns us back to 0,0.
|
|
|
|
path.rLineTo(50, 50); // This should go to 50,50.
|
|
|
|
|
|
|
|
path.getLastPt(&last);
|
|
|
|
REPORTER_ASSERT(reporter, 50 == last.fX);
|
|
|
|
REPORTER_ASSERT(reporter, 50 == last.fY);
|
|
|
|
|
|
|
|
// Test rQuadTo().
|
|
|
|
path.rewind();
|
|
|
|
path.rLineTo(0, 100);
|
|
|
|
path.rLineTo(100, 0);
|
|
|
|
path.close();
|
|
|
|
path.rQuadTo(50, 50, 75, 75);
|
|
|
|
|
|
|
|
path.getLastPt(&last);
|
|
|
|
REPORTER_ASSERT(reporter, 75 == last.fX);
|
|
|
|
REPORTER_ASSERT(reporter, 75 == last.fY);
|
|
|
|
|
|
|
|
// Test rConicTo().
|
|
|
|
path.rewind();
|
|
|
|
path.rLineTo(0, 100);
|
|
|
|
path.rLineTo(100, 0);
|
|
|
|
path.close();
|
|
|
|
path.rConicTo(50, 50, 85, 85, 2);
|
|
|
|
|
|
|
|
path.getLastPt(&last);
|
|
|
|
REPORTER_ASSERT(reporter, 85 == last.fX);
|
|
|
|
REPORTER_ASSERT(reporter, 85 == last.fY);
|
|
|
|
|
|
|
|
// Test rCubicTo().
|
|
|
|
path.rewind();
|
|
|
|
path.rLineTo(0, 100);
|
|
|
|
path.rLineTo(100, 0);
|
|
|
|
path.close();
|
|
|
|
path.rCubicTo(50, 50, 85, 85, 95, 95);
|
|
|
|
|
|
|
|
path.getLastPt(&last);
|
|
|
|
REPORTER_ASSERT(reporter, 95 == last.fX);
|
|
|
|
REPORTER_ASSERT(reporter, 95 == last.fY);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_gen_id(skiatest::Reporter* reporter) {
|
|
|
|
SkPath a, b;
|
|
|
|
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());
|
|
|
|
|
|
|
|
a.moveTo(0, 0);
|
|
|
|
const uint32_t z = a.getGenerationID();
|
|
|
|
REPORTER_ASSERT(reporter, z != b.getGenerationID());
|
|
|
|
|
|
|
|
a.reset();
|
|
|
|
REPORTER_ASSERT(reporter, a.getGenerationID() == b.getGenerationID());
|
|
|
|
|
|
|
|
a.moveTo(1, 1);
|
|
|
|
const uint32_t y = a.getGenerationID();
|
|
|
|
REPORTER_ASSERT(reporter, z != y);
|
|
|
|
|
|
|
|
b.moveTo(2, 2);
|
|
|
|
const uint32_t x = b.getGenerationID();
|
|
|
|
REPORTER_ASSERT(reporter, x != y && x != z);
|
|
|
|
|
|
|
|
a.swap(b);
|
|
|
|
REPORTER_ASSERT(reporter, b.getGenerationID() == y && a.getGenerationID() == x);
|
|
|
|
|
|
|
|
b = a;
|
|
|
|
REPORTER_ASSERT(reporter, b.getGenerationID() == x);
|
|
|
|
|
|
|
|
SkPath c(a);
|
|
|
|
REPORTER_ASSERT(reporter, c.getGenerationID() == x);
|
|
|
|
|
|
|
|
c.lineTo(3, 3);
|
|
|
|
const uint32_t w = c.getGenerationID();
|
|
|
|
REPORTER_ASSERT(reporter, b.getGenerationID() == x);
|
|
|
|
REPORTER_ASSERT(reporter, a.getGenerationID() == x);
|
|
|
|
REPORTER_ASSERT(reporter, w != x);
|
|
|
|
|
|
|
|
#ifdef SK_BUILD_FOR_ANDROID_FRAMEWORK
|
|
|
|
static bool kExpectGenIDToIgnoreFill = false;
|
|
|
|
#else
|
|
|
|
static bool kExpectGenIDToIgnoreFill = true;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
c.toggleInverseFillType();
|
|
|
|
const uint32_t v = c.getGenerationID();
|
|
|
|
REPORTER_ASSERT(reporter, (v == w) == kExpectGenIDToIgnoreFill);
|
|
|
|
|
|
|
|
c.rewind();
|
|
|
|
REPORTER_ASSERT(reporter, v != c.getGenerationID());
|
|
|
|
}
|
|
|
|
|
|
|
|
// This used to assert in the debug build, as the edges did not all line-up.
|
|
|
|
static void test_bad_cubic_crbug234190() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(13.8509f, 3.16858f);
|
|
|
|
path.cubicTo(-2.35893e+08f, -4.21044e+08f,
|
|
|
|
-2.38991e+08f, -4.26573e+08f,
|
|
|
|
-2.41016e+08f, -4.30188e+08f);
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(84, 88, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_bad_cubic_crbug229478() {
|
|
|
|
const SkPoint pts[] = {
|
|
|
|
{ 4595.91064f, -11596.9873f },
|
|
|
|
{ 4597.2168f, -11595.9414f },
|
|
|
|
{ 4598.52344f, -11594.8955f },
|
|
|
|
{ 4599.83008f, -11593.8496f },
|
|
|
|
};
|
|
|
|
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(pts[0]);
|
|
|
|
path.cubicTo(pts[1], pts[2], pts[3]);
|
|
|
|
|
|
|
|
SkPaint paint;
|
|
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
|
|
paint.setStrokeWidth(20);
|
|
|
|
|
|
|
|
SkPath dst;
|
|
|
|
// Before the fix, this would infinite-recurse, and run out of stack
|
|
|
|
// because we would keep trying to subdivide a degenerate cubic segment.
|
|
|
|
paint.getFillPath(path, &dst, nullptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void build_path_170666(SkPath& path) {
|
|
|
|
path.moveTo(17.9459f, 21.6344f);
|
|
|
|
path.lineTo(139.545f, -47.8105f);
|
|
|
|
path.lineTo(139.545f, -47.8105f);
|
|
|
|
path.lineTo(131.07f, -47.3888f);
|
|
|
|
path.lineTo(131.07f, -47.3888f);
|
|
|
|
path.lineTo(122.586f, -46.9532f);
|
|
|
|
path.lineTo(122.586f, -46.9532f);
|
|
|
|
path.lineTo(18076.6f, 31390.9f);
|
|
|
|
path.lineTo(18076.6f, 31390.9f);
|
|
|
|
path.lineTo(18085.1f, 31390.5f);
|
|
|
|
path.lineTo(18085.1f, 31390.5f);
|
|
|
|
path.lineTo(18076.6f, 31390.9f);
|
|
|
|
path.lineTo(18076.6f, 31390.9f);
|
|
|
|
path.lineTo(17955, 31460.3f);
|
|
|
|
path.lineTo(17955, 31460.3f);
|
|
|
|
path.lineTo(17963.5f, 31459.9f);
|
|
|
|
path.lineTo(17963.5f, 31459.9f);
|
|
|
|
path.lineTo(17971.9f, 31459.5f);
|
|
|
|
path.lineTo(17971.9f, 31459.5f);
|
|
|
|
path.lineTo(17.9551f, 21.6205f);
|
|
|
|
path.lineTo(17.9551f, 21.6205f);
|
|
|
|
path.lineTo(9.47091f, 22.0561f);
|
|
|
|
path.lineTo(9.47091f, 22.0561f);
|
|
|
|
path.lineTo(17.9459f, 21.6344f);
|
|
|
|
path.lineTo(17.9459f, 21.6344f);
|
|
|
|
path.close();path.moveTo(0.995934f, 22.4779f);
|
|
|
|
path.lineTo(0.986725f, 22.4918f);
|
|
|
|
path.lineTo(0.986725f, 22.4918f);
|
|
|
|
path.lineTo(17955, 31460.4f);
|
|
|
|
path.lineTo(17955, 31460.4f);
|
|
|
|
path.lineTo(17971.9f, 31459.5f);
|
|
|
|
path.lineTo(17971.9f, 31459.5f);
|
|
|
|
path.lineTo(18093.6f, 31390.1f);
|
|
|
|
path.lineTo(18093.6f, 31390.1f);
|
|
|
|
path.lineTo(18093.6f, 31390);
|
|
|
|
path.lineTo(18093.6f, 31390);
|
|
|
|
path.lineTo(139.555f, -47.8244f);
|
|
|
|
path.lineTo(139.555f, -47.8244f);
|
|
|
|
path.lineTo(122.595f, -46.9671f);
|
|
|
|
path.lineTo(122.595f, -46.9671f);
|
|
|
|
path.lineTo(0.995934f, 22.4779f);
|
|
|
|
path.lineTo(0.995934f, 22.4779f);
|
|
|
|
path.close();
|
|
|
|
path.moveTo(5.43941f, 25.5223f);
|
|
|
|
path.lineTo(798267, -28871.1f);
|
|
|
|
path.lineTo(798267, -28871.1f);
|
|
|
|
path.lineTo(3.12512e+06f, -113102);
|
|
|
|
path.lineTo(3.12512e+06f, -113102);
|
|
|
|
path.cubicTo(5.16324e+06f, -186882, 8.15247e+06f, -295092, 1.1957e+07f, -432813);
|
|
|
|
path.cubicTo(1.95659e+07f, -708257, 3.04359e+07f, -1.10175e+06f, 4.34798e+07f, -1.57394e+06f);
|
|
|
|
path.cubicTo(6.95677e+07f, -2.51831e+06f, 1.04352e+08f, -3.77748e+06f, 1.39135e+08f, -5.03666e+06f);
|
|
|
|
path.cubicTo(1.73919e+08f, -6.29583e+06f, 2.08703e+08f, -7.555e+06f, 2.34791e+08f, -8.49938e+06f);
|
|
|
|
path.cubicTo(2.47835e+08f, -8.97157e+06f, 2.58705e+08f, -9.36506e+06f, 2.66314e+08f, -9.6405e+06f);
|
|
|
|
path.cubicTo(2.70118e+08f, -9.77823e+06f, 2.73108e+08f, -9.88644e+06f, 2.75146e+08f, -9.96022e+06f);
|
|
|
|
path.cubicTo(2.76165e+08f, -9.99711e+06f, 2.76946e+08f, -1.00254e+07f, 2.77473e+08f, -1.00444e+07f);
|
|
|
|
path.lineTo(2.78271e+08f, -1.00733e+07f);
|
|
|
|
path.lineTo(2.78271e+08f, -1.00733e+07f);
|
|
|
|
path.cubicTo(2.78271e+08f, -1.00733e+07f, 2.08703e+08f, -7.555e+06f, 135.238f, 23.3517f);
|
|
|
|
path.cubicTo(131.191f, 23.4981f, 125.995f, 23.7976f, 123.631f, 24.0206f);
|
|
|
|
path.cubicTo(121.267f, 24.2436f, 122.631f, 24.3056f, 126.677f, 24.1591f);
|
|
|
|
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
|
|
|
|
path.lineTo(2.77473e+08f, -1.00444e+07f);
|
|
|
|
path.lineTo(2.77473e+08f, -1.00444e+07f);
|
|
|
|
path.cubicTo(2.76946e+08f, -1.00254e+07f, 2.76165e+08f, -9.99711e+06f, 2.75146e+08f, -9.96022e+06f);
|
|
|
|
path.cubicTo(2.73108e+08f, -9.88644e+06f, 2.70118e+08f, -9.77823e+06f, 2.66314e+08f, -9.6405e+06f);
|
|
|
|
path.cubicTo(2.58705e+08f, -9.36506e+06f, 2.47835e+08f, -8.97157e+06f, 2.34791e+08f, -8.49938e+06f);
|
|
|
|
path.cubicTo(2.08703e+08f, -7.555e+06f, 1.73919e+08f, -6.29583e+06f, 1.39135e+08f, -5.03666e+06f);
|
|
|
|
path.cubicTo(1.04352e+08f, -3.77749e+06f, 6.95677e+07f, -2.51831e+06f, 4.34798e+07f, -1.57394e+06f);
|
|
|
|
path.cubicTo(3.04359e+07f, -1.10175e+06f, 1.95659e+07f, -708258, 1.1957e+07f, -432814);
|
|
|
|
path.cubicTo(8.15248e+06f, -295092, 5.16324e+06f, -186883, 3.12513e+06f, -113103);
|
|
|
|
path.lineTo(798284, -28872);
|
|
|
|
path.lineTo(798284, -28872);
|
|
|
|
path.lineTo(22.4044f, 24.6677f);
|
|
|
|
path.lineTo(22.4044f, 24.6677f);
|
|
|
|
path.cubicTo(22.5186f, 24.5432f, 18.8134f, 24.6337f, 14.1287f, 24.8697f);
|
|
|
|
path.cubicTo(9.4439f, 25.1057f, 5.55359f, 25.3978f, 5.43941f, 25.5223f);
|
|
|
|
path.close();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void build_path_simple_170666(SkPath& path) {
|
|
|
|
path.moveTo(126.677f, 24.1591f);
|
|
|
|
path.cubicTo(2.08703e+08f, -7.555e+06f, 2.78271e+08f, -1.00733e+07f, 2.78271e+08f, -1.00733e+07f);
|
|
|
|
}
|
|
|
|
|
|
|
|
// This used to assert in the SK_DEBUG build, as the clip step would fail with
|
|
|
|
// too-few interations in our cubic-line intersection code. That code now runs
|
|
|
|
// 24 interations (instead of 16).
|
|
|
|
static void test_crbug_170666() {
|
|
|
|
SkPath path;
|
|
|
|
build_path_simple_170666(path);
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(1000, 1000, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
build_path_170666(path);
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(1000, 1000, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void test_tiny_path_convexity(skiatest::Reporter* reporter, const char* pathBug,
|
|
|
|
SkScalar tx, SkScalar ty, SkScalar scale) {
|
|
|
|
SkPath smallPath;
|
|
|
|
SkAssertResult(SkParsePath::FromSVGString(pathBug, &smallPath));
|
|
|
|
bool smallConvex = smallPath.isConvex();
|
|
|
|
SkPath largePath;
|
|
|
|
SkAssertResult(SkParsePath::FromSVGString(pathBug, &largePath));
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.reset();
|
|
|
|
matrix.preTranslate(100, 100);
|
|
|
|
matrix.preScale(scale, scale);
|
|
|
|
largePath.transform(matrix);
|
|
|
|
bool largeConvex = largePath.isConvex();
|
|
|
|
REPORTER_ASSERT(reporter, smallConvex == largeConvex);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_crbug_493450(skiatest::Reporter* reporter) {
|
|
|
|
const char reducedCase[] =
|
|
|
|
"M0,0"
|
|
|
|
"L0.0002, 0"
|
|
|
|
"L0.0002, 0.0002"
|
|
|
|
"L0.0001, 0.0001"
|
|
|
|
"L0,0.0002"
|
|
|
|
"Z";
|
|
|
|
test_tiny_path_convexity(reporter, reducedCase, 100, 100, 100000);
|
|
|
|
const char originalFiddleData[] =
|
|
|
|
"M-0.3383152268862998,-0.11217565719203619L-0.33846085183212765,-0.11212264406895281"
|
|
|
|
"L-0.338509393480737,-0.11210607966681395L-0.33857792286700894,-0.1121889121487573"
|
|
|
|
"L-0.3383866116636664,-0.11228834570924921L-0.33842087635680235,-0.11246078673250548"
|
|
|
|
"L-0.33809536177201055,-0.11245415228342878L-0.33797257995493996,-0.11216571641452182"
|
|
|
|
"L-0.33802112160354925,-0.11201996164188659L-0.33819815585141844,-0.11218559834671019Z";
|
|
|
|
test_tiny_path_convexity(reporter, originalFiddleData, 280081.4116670522f, 93268.04618493588f,
|
|
|
|
826357.3384828606f);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_crbug_495894(skiatest::Reporter* reporter) {
|
|
|
|
const char originalFiddleData[] =
|
|
|
|
"M-0.34004273849857214,-0.11332803232216355L-0.34008271397389744,-0.11324483772714951"
|
|
|
|
"L-0.3401940742265893,-0.11324483772714951L-0.34017694188002134,-0.11329807920275889"
|
|
|
|
"L-0.3402026403998733,-0.11333468903941245L-0.34029972369709194,-0.11334134592705701"
|
|
|
|
"L-0.3403054344792813,-0.11344121970007795L-0.3403140006525653,-0.11351115418399343"
|
|
|
|
"L-0.34024261587519866,-0.11353446986281181L-0.3402197727464413,-0.11360442946144192"
|
|
|
|
"L-0.34013696640469604,-0.11359110237029302L-0.34009128014718143,-0.1135877707043939"
|
|
|
|
"L-0.3400598708451401,-0.11360776134112742L-0.34004273849857214,-0.11355112520064405"
|
|
|
|
"L-0.3400113291965308,-0.11355112520064405L-0.3399970522410575,-0.11359110237029302"
|
|
|
|
"L-0.33997135372120546,-0.11355112520064405L-0.3399627875479215,-0.11353780084493197"
|
|
|
|
"L-0.3399485105924481,-0.11350782354357004L-0.3400027630232468,-0.11346452910331437"
|
|
|
|
"L-0.3399485105924481,-0.11340126558629839L-0.33993994441916414,-0.11340126558629839"
|
|
|
|
"L-0.33988283659727087,-0.11331804756574679L-0.33989140277055485,-0.11324483772714951"
|
|
|
|
"L-0.33997991989448945,-0.11324483772714951L-0.3399856306766788,-0.11324483772714951"
|
|
|
|
"L-0.34002560615200417,-0.11334467443478255ZM-0.3400684370184241,-0.11338461985124307"
|
|
|
|
"L-0.340154098751264,-0.11341791238732665L-0.340162664924548,-0.1134378899559977"
|
|
|
|
"L-0.34017979727111597,-0.11340126558629839L-0.3401655203156427,-0.11338129083212668"
|
|
|
|
"L-0.34012268944922275,-0.11332137577529414L-0.34007414780061346,-0.11334467443478255Z"
|
|
|
|
"M-0.3400027630232468,-0.11290567901106024L-0.3400113291965308,-0.11298876531245433"
|
|
|
|
"L-0.33997991989448945,-0.11301535852306784L-0.33990282433493346,-0.11296217481488612"
|
|
|
|
"L-0.33993994441916414,-0.11288906492739594Z";
|
|
|
|
test_tiny_path_convexity(reporter, originalFiddleData, 22682.240000000005f,7819.72220766405f,
|
|
|
|
65536);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_crbug_613918() {
|
|
|
|
SkPath path;
|
|
|
|
path.conicTo(-6.62478e-08f, 4.13885e-08f, -6.36935e-08f, 3.97927e-08f, 0.729058f);
|
|
|
|
path.quadTo(2.28206e-09f, -1.42572e-09f, 3.91919e-09f, -2.44852e-09f);
|
|
|
|
path.cubicTo(-16752.2f, -26792.9f, -21.4673f, 10.9347f, -8.57322f, -7.22739f);
|
|
|
|
|
|
|
|
// This call could lead to an assert or uninitialized read due to a failure
|
|
|
|
// to check the return value from SkCubicClipper::ChopMonoAtY.
|
|
|
|
path.contains(-1.84817e-08f, 1.15465e-08f);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_addrect(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.lineTo(0, 0);
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, path.isRect(nullptr));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.lineTo(FLT_EPSILON, FLT_EPSILON);
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.quadTo(0, 0, 0, 0);
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.conicTo(0, 0, 0, 0, 0.5f);
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.cubicTo(0, 0, 0, 0, 0, 0);
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(nullptr));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure we stay non-finite once we get there (unless we reset or rewind).
|
|
|
|
static void test_addrect_isfinite(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, path.isFinite());
|
|
|
|
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(SK_ScalarInfinity, 42);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isFinite());
|
|
|
|
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isFinite());
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
REPORTER_ASSERT(reporter, path.isFinite());
|
|
|
|
|
|
|
|
path.addRect(SkRect::MakeWH(50, 100));
|
|
|
|
REPORTER_ASSERT(reporter, path.isFinite());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void build_big_path(SkPath* path, bool reducedCase) {
|
|
|
|
if (reducedCase) {
|
|
|
|
path->moveTo(577330, 1971.72f);
|
|
|
|
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
|
|
|
|
} else {
|
|
|
|
path->moveTo(60.1631f, 7.70567f);
|
|
|
|
path->quadTo(60.1631f, 7.70567f, 0.99474f, 0.901199f);
|
|
|
|
path->lineTo(577379, 1977.77f);
|
|
|
|
path->quadTo(577364, 1979.57f, 577325, 1980.26f);
|
|
|
|
path->quadTo(577286, 1980.95f, 577245, 1980.13f);
|
|
|
|
path->quadTo(577205, 1979.3f, 577187, 1977.45f);
|
|
|
|
path->quadTo(577168, 1975.6f, 577183, 1973.8f);
|
|
|
|
path->quadTo(577198, 1972, 577238, 1971.31f);
|
|
|
|
path->quadTo(577277, 1970.62f, 577317, 1971.45f);
|
|
|
|
path->quadTo(577330, 1971.72f, 577341, 1972.11f);
|
|
|
|
path->cubicTo(10.7082f, -116.596f, 262.057f, 45.6468f, 294.694f, 1.96237f);
|
|
|
|
path->moveTo(306.718f, -32.912f);
|
|
|
|
path->cubicTo(30.531f, 10.0005f, 1502.47f, 13.2804f, 84.3088f, 9.99601f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_clipped_cubic() {
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(640, 480));
|
|
|
|
|
|
|
|
// This path used to assert, because our cubic-chopping code incorrectly
|
|
|
|
// moved control points after the chop. This test should be run in SK_DEBUG
|
|
|
|
// mode to ensure that we no long assert.
|
|
|
|
SkPath path;
|
|
|
|
for (int doReducedCase = 0; doReducedCase <= 1; ++doReducedCase) {
|
|
|
|
build_big_path(&path, SkToBool(doReducedCase));
|
|
|
|
|
|
|
|
SkPaint paint;
|
|
|
|
for (int doAA = 0; doAA <= 1; ++doAA) {
|
|
|
|
paint.setAntiAlias(SkToBool(doAA));
|
|
|
|
surface->getCanvas()->drawPath(path, paint);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void dump_if_ne(skiatest::Reporter* reporter, const SkRect& expected, const SkRect& bounds) {
|
|
|
|
if (expected != bounds) {
|
|
|
|
ERRORF(reporter, "path.getBounds() returned [%g %g %g %g], but expected [%g %g %g %g]",
|
|
|
|
bounds.left(), bounds.top(), bounds.right(), bounds.bottom(),
|
|
|
|
expected.left(), expected.top(), expected.right(), expected.bottom());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_bounds_crbug_513799(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
#if 0
|
|
|
|
// As written these tests were failing on LLVM 4.2 MacMini Release mysteriously, so we've
|
|
|
|
// rewritten them to avoid this (compiler-bug?).
|
|
|
|
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(0, 0, 0, 0) == path.getBounds());
|
|
|
|
|
|
|
|
path.moveTo(-5, -8);
|
|
|
|
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, -5, -8) == path.getBounds());
|
|
|
|
|
|
|
|
path.addRect(SkRect::MakeLTRB(1, 2, 3, 4));
|
|
|
|
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds());
|
|
|
|
|
|
|
|
path.moveTo(1, 2);
|
|
|
|
REPORTER_ASSERT(reporter, SkRect::MakeLTRB(-5, -8, 3, 4) == path.getBounds());
|
|
|
|
#else
|
|
|
|
dump_if_ne(reporter, SkRect::MakeLTRB(0, 0, 0, 0), path.getBounds());
|
|
|
|
|
|
|
|
path.moveTo(-5, -8); // should set the bounds
|
|
|
|
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, -5, -8), path.getBounds());
|
|
|
|
|
|
|
|
path.addRect(SkRect::MakeLTRB(1, 2, 3, 4)); // should extend the bounds
|
|
|
|
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds());
|
|
|
|
|
|
|
|
path.moveTo(1, 2); // don't expect this to have changed the bounds
|
|
|
|
dump_if_ne(reporter, SkRect::MakeLTRB(-5, -8, 3, 4), path.getBounds());
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
2019-04-23 17:05:21 +00:00
|
|
|
#include "include/core/SkSurface.h"
|
2017-09-06 17:33:30 +00:00
|
|
|
static void test_fuzz_crbug_627414(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.conicTo(3.58732e-43f, 2.72084f, 3.00392f, 3.00392f, 8.46e+37f);
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(100, 100, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Inspired by http://ie.microsoft.com/testdrive/Performance/Chalkboard/
|
|
|
|
// which triggered an assert, from a tricky cubic. This test replicates that
|
|
|
|
// example, so we can ensure that we handle it (in SkEdge.cpp), and don't
|
|
|
|
// assert in the SK_DEBUG build.
|
|
|
|
static void test_tricky_cubic() {
|
|
|
|
const SkPoint pts[] = {
|
|
|
|
{ SkDoubleToScalar(18.8943768), SkDoubleToScalar(129.121277) },
|
|
|
|
{ SkDoubleToScalar(18.8937435), SkDoubleToScalar(129.121689) },
|
|
|
|
{ SkDoubleToScalar(18.8950119), SkDoubleToScalar(129.120422) },
|
|
|
|
{ SkDoubleToScalar(18.5030727), SkDoubleToScalar(129.13121) },
|
|
|
|
};
|
|
|
|
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(pts[0]);
|
|
|
|
path.cubicTo(pts[1], pts[2], pts[3]);
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(19, 130, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Inspired by http://code.google.com/p/chromium/issues/detail?id=141651
|
|
|
|
//
|
|
|
|
static void test_isfinite_after_transform(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.quadTo(157, 366, 286, 208);
|
|
|
|
path.arcTo(37, 442, 315, 163, 957494590897113.0f);
|
|
|
|
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setScale(1000*1000, 1000*1000);
|
|
|
|
|
|
|
|
// Be sure that path::transform correctly updates isFinite and the bounds
|
|
|
|
// if the transformation overflows. The previous bug was that isFinite was
|
|
|
|
// set to true in this case, but the bounds were not set to empty (which
|
|
|
|
// they should be).
|
|
|
|
while (path.isFinite()) {
|
|
|
|
REPORTER_ASSERT(reporter, path.getBounds().isFinite());
|
|
|
|
REPORTER_ASSERT(reporter, !path.getBounds().isEmpty());
|
|
|
|
path.transform(matrix);
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
|
|
|
|
|
|
|
|
matrix.setTranslate(SK_Scalar1, SK_Scalar1);
|
|
|
|
path.transform(matrix);
|
|
|
|
// we need to still be non-finite
|
|
|
|
REPORTER_ASSERT(reporter, !path.isFinite());
|
|
|
|
REPORTER_ASSERT(reporter, path.getBounds().isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_corner_arc(SkPath* path, const SkRect& rect,
|
|
|
|
SkScalar xIn, SkScalar yIn,
|
|
|
|
int startAngle)
|
|
|
|
{
|
|
|
|
|
|
|
|
SkScalar rx = SkMinScalar(rect.width(), xIn);
|
|
|
|
SkScalar ry = SkMinScalar(rect.height(), yIn);
|
|
|
|
|
|
|
|
SkRect arcRect;
|
2019-08-24 23:39:13 +00:00
|
|
|
arcRect.setLTRB(-rx, -ry, rx, ry);
|
2017-09-06 17:33:30 +00:00
|
|
|
switch (startAngle) {
|
|
|
|
case 0:
|
|
|
|
arcRect.offset(rect.fRight - arcRect.fRight, rect.fBottom - arcRect.fBottom);
|
|
|
|
break;
|
|
|
|
case 90:
|
|
|
|
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fBottom - arcRect.fBottom);
|
|
|
|
break;
|
|
|
|
case 180:
|
|
|
|
arcRect.offset(rect.fLeft - arcRect.fLeft, rect.fTop - arcRect.fTop);
|
|
|
|
break;
|
|
|
|
case 270:
|
|
|
|
arcRect.offset(rect.fRight - arcRect.fRight, rect.fTop - arcRect.fTop);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
path->arcTo(arcRect, SkIntToScalar(startAngle), SkIntToScalar(90), false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void make_arb_round_rect(SkPath* path, const SkRect& r,
|
|
|
|
SkScalar xCorner, SkScalar yCorner) {
|
|
|
|
// we are lazy here and use the same x & y for each corner
|
|
|
|
add_corner_arc(path, r, xCorner, yCorner, 270);
|
|
|
|
add_corner_arc(path, r, xCorner, yCorner, 0);
|
|
|
|
add_corner_arc(path, r, xCorner, yCorner, 90);
|
|
|
|
add_corner_arc(path, r, xCorner, yCorner, 180);
|
|
|
|
path->close();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Chrome creates its own round rects with each corner possibly being different.
|
|
|
|
// Performance will suffer if they are not convex.
|
|
|
|
// Note: PathBench::ArbRoundRectBench performs almost exactly
|
|
|
|
// the same test (but with drawing)
|
|
|
|
static void test_arb_round_rect_is_convex(skiatest::Reporter* reporter) {
|
|
|
|
SkRandom rand;
|
|
|
|
SkRect r;
|
|
|
|
|
|
|
|
for (int i = 0; i < 5000; ++i) {
|
|
|
|
|
|
|
|
SkScalar size = rand.nextUScalar1() * 30;
|
|
|
|
if (size < SK_Scalar1) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
r.fLeft = rand.nextUScalar1() * 300;
|
|
|
|
r.fTop = rand.nextUScalar1() * 300;
|
|
|
|
r.fRight = r.fLeft + 2 * size;
|
|
|
|
r.fBottom = r.fTop + 2 * size;
|
|
|
|
|
|
|
|
SkPath temp;
|
|
|
|
|
|
|
|
make_arb_round_rect(&temp, r, r.width() / 10, r.height() / 15);
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, temp.isConvex());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Chrome will sometimes create a 0 radius round rect. The degenerate
|
|
|
|
// quads prevent the path from being converted to a rect
|
|
|
|
// Note: PathBench::ArbRoundRectBench performs almost exactly
|
|
|
|
// the same test (but with drawing)
|
|
|
|
static void test_arb_zero_rad_round_rect_is_rect(skiatest::Reporter* reporter) {
|
|
|
|
SkRandom rand;
|
|
|
|
SkRect r;
|
|
|
|
|
|
|
|
for (int i = 0; i < 5000; ++i) {
|
|
|
|
|
|
|
|
SkScalar size = rand.nextUScalar1() * 30;
|
|
|
|
if (size < SK_Scalar1) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
r.fLeft = rand.nextUScalar1() * 300;
|
|
|
|
r.fTop = rand.nextUScalar1() * 300;
|
|
|
|
r.fRight = r.fLeft + 2 * size;
|
|
|
|
r.fBottom = r.fTop + 2 * size;
|
|
|
|
|
|
|
|
SkPath temp;
|
|
|
|
|
|
|
|
make_arb_round_rect(&temp, r, 0, 0);
|
|
|
|
|
|
|
|
SkRect result;
|
|
|
|
REPORTER_ASSERT(reporter, temp.isRect(&result));
|
|
|
|
REPORTER_ASSERT(reporter, r == result);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_rect_isfinite(skiatest::Reporter* reporter) {
|
|
|
|
const SkScalar inf = SK_ScalarInfinity;
|
|
|
|
const SkScalar negInf = SK_ScalarNegativeInfinity;
|
|
|
|
const SkScalar nan = SK_ScalarNaN;
|
|
|
|
|
|
|
|
SkRect r;
|
|
|
|
r.setEmpty();
|
|
|
|
REPORTER_ASSERT(reporter, r.isFinite());
|
2019-08-24 23:39:13 +00:00
|
|
|
r.setLTRB(0, 0, inf, negInf);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !r.isFinite());
|
2019-08-24 23:39:13 +00:00
|
|
|
r.setLTRB(0, 0, nan, 0);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !r.isFinite());
|
|
|
|
|
|
|
|
SkPoint pts[] = {
|
|
|
|
{ 0, 0 },
|
|
|
|
{ SK_Scalar1, 0 },
|
|
|
|
{ 0, SK_Scalar1 },
|
|
|
|
};
|
|
|
|
|
|
|
|
bool isFine = r.setBoundsCheck(pts, 3);
|
|
|
|
REPORTER_ASSERT(reporter, isFine);
|
|
|
|
REPORTER_ASSERT(reporter, !r.isEmpty());
|
|
|
|
|
|
|
|
pts[1].set(inf, 0);
|
|
|
|
isFine = r.setBoundsCheck(pts, 3);
|
|
|
|
REPORTER_ASSERT(reporter, !isFine);
|
|
|
|
REPORTER_ASSERT(reporter, r.isEmpty());
|
|
|
|
|
|
|
|
pts[1].set(nan, 0);
|
|
|
|
isFine = r.setBoundsCheck(pts, 3);
|
|
|
|
REPORTER_ASSERT(reporter, !isFine);
|
|
|
|
REPORTER_ASSERT(reporter, r.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_path_isfinite(skiatest::Reporter* reporter) {
|
|
|
|
const SkScalar inf = SK_ScalarInfinity;
|
|
|
|
const SkScalar negInf = SK_ScalarNegativeInfinity;
|
|
|
|
const SkScalar nan = SK_ScalarNaN;
|
|
|
|
|
|
|
|
SkPath path;
|
|
|
|
REPORTER_ASSERT(reporter, path.isFinite());
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
REPORTER_ASSERT(reporter, path.isFinite());
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(SK_Scalar1, 0);
|
|
|
|
REPORTER_ASSERT(reporter, path.isFinite());
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(inf, negInf);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isFinite());
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(nan, 0);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isFinite());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_isfinite(skiatest::Reporter* reporter) {
|
|
|
|
test_rect_isfinite(reporter);
|
|
|
|
test_path_isfinite(reporter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_islastcontourclosed(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, path.isLastContourClosed());
|
|
|
|
path.lineTo(100, 100);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
|
|
|
|
path.moveTo(200, 200);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, path.isLastContourClosed());
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLastContourClosed());
|
|
|
|
}
|
|
|
|
|
|
|
|
// assert that we always
|
|
|
|
// start with a moveTo
|
|
|
|
// only have 1 moveTo
|
|
|
|
// only have Lines after that
|
|
|
|
// end with a single close
|
|
|
|
// only have (at most) 1 close
|
|
|
|
//
|
|
|
|
static void test_poly(skiatest::Reporter* reporter, const SkPath& path,
|
|
|
|
const SkPoint srcPts[], bool expectClose) {
|
|
|
|
SkPath::RawIter iter(path);
|
|
|
|
SkPoint pts[4];
|
|
|
|
|
|
|
|
bool firstTime = true;
|
|
|
|
bool foundClose = false;
|
|
|
|
for (;;) {
|
|
|
|
switch (iter.next(pts)) {
|
|
|
|
case SkPath::kMove_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, firstTime);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0] == srcPts[0]);
|
|
|
|
srcPts++;
|
|
|
|
firstTime = false;
|
|
|
|
break;
|
|
|
|
case SkPath::kLine_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, !firstTime);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1] == srcPts[0]);
|
|
|
|
srcPts++;
|
|
|
|
break;
|
|
|
|
case SkPath::kQuad_Verb:
|
2018-01-29 14:50:47 +00:00
|
|
|
REPORTER_ASSERT(reporter, false, "unexpected quad verb");
|
2017-09-06 17:33:30 +00:00
|
|
|
break;
|
|
|
|
case SkPath::kConic_Verb:
|
2018-01-29 14:50:47 +00:00
|
|
|
REPORTER_ASSERT(reporter, false, "unexpected conic verb");
|
2017-09-06 17:33:30 +00:00
|
|
|
break;
|
|
|
|
case SkPath::kCubic_Verb:
|
2018-01-29 14:50:47 +00:00
|
|
|
REPORTER_ASSERT(reporter, false, "unexpected cubic verb");
|
2017-09-06 17:33:30 +00:00
|
|
|
break;
|
|
|
|
case SkPath::kClose_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, !firstTime);
|
|
|
|
REPORTER_ASSERT(reporter, !foundClose);
|
|
|
|
REPORTER_ASSERT(reporter, expectClose);
|
|
|
|
foundClose = true;
|
|
|
|
break;
|
|
|
|
case SkPath::kDone_Verb:
|
|
|
|
goto DONE;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
DONE:
|
|
|
|
REPORTER_ASSERT(reporter, foundClose == expectClose);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_addPoly(skiatest::Reporter* reporter) {
|
|
|
|
SkPoint pts[32];
|
|
|
|
SkRandom rand;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(pts); ++i) {
|
|
|
|
pts[i].fX = rand.nextSScalar1();
|
|
|
|
pts[i].fY = rand.nextSScalar1();
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int doClose = 0; doClose <= 1; ++doClose) {
|
|
|
|
for (size_t count = 1; count <= SK_ARRAY_COUNT(pts); ++count) {
|
|
|
|
SkPath path;
|
|
|
|
path.addPoly(pts, SkToInt(count), SkToBool(doClose));
|
|
|
|
test_poly(reporter, path, pts, SkToBool(doClose));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_strokerec(skiatest::Reporter* reporter) {
|
|
|
|
SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
|
|
|
|
REPORTER_ASSERT(reporter, rec.isFillStyle());
|
|
|
|
|
|
|
|
rec.setHairlineStyle();
|
|
|
|
REPORTER_ASSERT(reporter, rec.isHairlineStyle());
|
|
|
|
|
|
|
|
rec.setStrokeStyle(SK_Scalar1, false);
|
|
|
|
REPORTER_ASSERT(reporter, SkStrokeRec::kStroke_Style == rec.getStyle());
|
|
|
|
|
|
|
|
rec.setStrokeStyle(SK_Scalar1, true);
|
|
|
|
REPORTER_ASSERT(reporter, SkStrokeRec::kStrokeAndFill_Style == rec.getStyle());
|
|
|
|
|
|
|
|
rec.setStrokeStyle(0, false);
|
|
|
|
REPORTER_ASSERT(reporter, SkStrokeRec::kHairline_Style == rec.getStyle());
|
|
|
|
|
|
|
|
rec.setStrokeStyle(0, true);
|
|
|
|
REPORTER_ASSERT(reporter, SkStrokeRec::kFill_Style == rec.getStyle());
|
|
|
|
}
|
|
|
|
|
|
|
|
// Set this for paths that don't have a consistent direction such as a bowtie.
|
|
|
|
// (cheapComputeDirection is not expected to catch these.)
|
2018-08-13 16:19:28 +00:00
|
|
|
// Legal values are CW (0), CCW (1) and Unknown (2), leaving 3 as a convenient sentinel.
|
|
|
|
const SkPathPriv::FirstDirection kDontCheckDir = static_cast<SkPathPriv::FirstDirection>(3);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
static void check_direction(skiatest::Reporter* reporter, const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection expected) {
|
|
|
|
if (expected == kDontCheckDir) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
|
|
|
|
|
|
|
|
SkPathPriv::FirstDirection dir;
|
|
|
|
if (SkPathPriv::CheapComputeFirstDirection(copy, &dir)) {
|
|
|
|
REPORTER_ASSERT(reporter, dir == expected);
|
|
|
|
} else {
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::kUnknown_FirstDirection == expected);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_direction(skiatest::Reporter* reporter) {
|
|
|
|
size_t i;
|
|
|
|
SkPath path;
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr));
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection));
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection));
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kUnknown_FirstDirection));
|
|
|
|
|
|
|
|
static const char* gDegen[] = {
|
|
|
|
"M 10 10",
|
|
|
|
"M 10 10 M 20 20",
|
|
|
|
"M 10 10 L 20 20",
|
|
|
|
"M 10 10 L 10 10 L 10 10",
|
|
|
|
"M 10 10 Q 10 10 10 10",
|
|
|
|
"M 10 10 C 10 10 10 10 10 10",
|
|
|
|
};
|
|
|
|
for (i = 0; i < SK_ARRAY_COUNT(gDegen); ++i) {
|
|
|
|
path.reset();
|
|
|
|
bool valid = SkParsePath::FromSVGString(gDegen[i], &path);
|
|
|
|
REPORTER_ASSERT(reporter, valid);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::CheapComputeFirstDirection(path, nullptr));
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char* gCW[] = {
|
|
|
|
"M 10 10 L 10 10 Q 20 10 20 20",
|
|
|
|
"M 10 10 C 20 10 20 20 20 20",
|
|
|
|
"M 20 10 Q 20 20 30 20 L 10 20", // test double-back at y-max
|
|
|
|
// rect with top two corners replaced by cubics with identical middle
|
|
|
|
// control points
|
|
|
|
"M 10 10 C 10 0 10 0 20 0 L 40 0 C 50 0 50 0 50 10",
|
|
|
|
"M 20 10 L 0 10 Q 10 10 20 0", // left, degenerate serif
|
|
|
|
};
|
|
|
|
for (i = 0; i < SK_ARRAY_COUNT(gCW); ++i) {
|
|
|
|
path.reset();
|
|
|
|
bool valid = SkParsePath::FromSVGString(gCW[i], &path);
|
|
|
|
REPORTER_ASSERT(reporter, valid);
|
|
|
|
check_direction(reporter, path, SkPathPriv::kCW_FirstDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char* gCCW[] = {
|
|
|
|
"M 10 10 L 10 10 Q 20 10 20 -20",
|
|
|
|
"M 10 10 C 20 10 20 -20 20 -20",
|
|
|
|
"M 20 10 Q 20 20 10 20 L 30 20", // test double-back at y-max
|
|
|
|
// rect with top two corners replaced by cubics with identical middle
|
|
|
|
// control points
|
|
|
|
"M 50 10 C 50 0 50 0 40 0 L 20 0 C 10 0 10 0 10 10",
|
|
|
|
"M 10 10 L 30 10 Q 20 10 10 0", // right, degenerate serif
|
|
|
|
};
|
|
|
|
for (i = 0; i < SK_ARRAY_COUNT(gCCW); ++i) {
|
|
|
|
path.reset();
|
|
|
|
bool valid = SkParsePath::FromSVGString(gCCW[i], &path);
|
|
|
|
REPORTER_ASSERT(reporter, valid);
|
|
|
|
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test two donuts, each wound a different direction. Only the outer contour
|
|
|
|
// determines the cheap direction
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(2), SkPathDirection::kCW);
|
|
|
|
path.addCircle(0, 0, SkIntToScalar(1), SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, path, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(1), SkPathDirection::kCW);
|
|
|
|
path.addCircle(0, 0, SkIntToScalar(2), SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection);
|
|
|
|
|
|
|
|
// triangle with one point really far from the origin.
|
|
|
|
path.reset();
|
|
|
|
// the first point is roughly 1.05e10, 1.05e10
|
|
|
|
path.moveTo(SkBits2Float(0x501c7652), SkBits2Float(0x501c7652));
|
|
|
|
path.lineTo(110 * SK_Scalar1, -10 * SK_Scalar1);
|
|
|
|
path.lineTo(-10 * SK_Scalar1, 60 * SK_Scalar1);
|
|
|
|
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection);
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.conicTo(20, 0, 20, 20, 0.5f);
|
|
|
|
path.close();
|
|
|
|
check_direction(reporter, path, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.lineTo(1, 1e7f);
|
|
|
|
path.lineTo(1e7f, 2e7f);
|
|
|
|
path.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isConvex());
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, path, SkPathPriv::kCCW_FirstDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_rect(SkPath* path, const SkRect& r) {
|
|
|
|
path->moveTo(r.fLeft, r.fTop);
|
|
|
|
path->lineTo(r.fRight, r.fTop);
|
|
|
|
path->lineTo(r.fRight, r.fBottom);
|
|
|
|
path->lineTo(r.fLeft, r.fBottom);
|
|
|
|
path->close();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_bounds(skiatest::Reporter* reporter) {
|
|
|
|
static const SkRect rects[] = {
|
|
|
|
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(160) },
|
|
|
|
{ SkIntToScalar(610), SkIntToScalar(160), SkIntToScalar(610), SkIntToScalar(199) },
|
|
|
|
{ SkIntToScalar(10), SkIntToScalar(198), SkIntToScalar(610), SkIntToScalar(199) },
|
|
|
|
{ SkIntToScalar(10), SkIntToScalar(160), SkIntToScalar(10), SkIntToScalar(199) },
|
|
|
|
};
|
|
|
|
|
|
|
|
SkPath path0, path1;
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(rects); ++i) {
|
|
|
|
path0.addRect(rects[i]);
|
|
|
|
add_rect(&path1, rects[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, path0.getBounds() == path1.getBounds());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void stroke_cubic(const SkPoint pts[4]) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(pts[0]);
|
|
|
|
path.cubicTo(pts[1], pts[2], pts[3]);
|
|
|
|
|
|
|
|
SkPaint paint;
|
|
|
|
paint.setStyle(SkPaint::kStroke_Style);
|
|
|
|
paint.setStrokeWidth(SK_Scalar1 * 2);
|
|
|
|
|
|
|
|
SkPath fill;
|
|
|
|
paint.getFillPath(path, &fill);
|
|
|
|
}
|
|
|
|
|
|
|
|
// just ensure this can run w/o any SkASSERTS firing in the debug build
|
|
|
|
// we used to assert due to differences in how we determine a degenerate vector
|
|
|
|
// but that was fixed with the introduction of SkPoint::CanNormalize
|
|
|
|
static void stroke_tiny_cubic() {
|
|
|
|
SkPoint p0[] = {
|
|
|
|
{ 372.0f, 92.0f },
|
|
|
|
{ 372.0f, 92.0f },
|
|
|
|
{ 372.0f, 92.0f },
|
|
|
|
{ 372.0f, 92.0f },
|
|
|
|
};
|
|
|
|
|
|
|
|
stroke_cubic(p0);
|
|
|
|
|
|
|
|
SkPoint p1[] = {
|
|
|
|
{ 372.0f, 92.0f },
|
|
|
|
{ 372.0007f, 92.000755f },
|
|
|
|
{ 371.99927f, 92.003922f },
|
|
|
|
{ 371.99826f, 92.003899f },
|
|
|
|
};
|
|
|
|
|
|
|
|
stroke_cubic(p1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_close(skiatest::Reporter* reporter, const SkPath& path) {
|
|
|
|
for (int i = 0; i < 2; ++i) {
|
|
|
|
SkPath::Iter iter(path, SkToBool(i));
|
|
|
|
SkPoint mv;
|
|
|
|
SkPoint pts[4];
|
|
|
|
SkPath::Verb v;
|
|
|
|
int nMT = 0;
|
|
|
|
int nCL = 0;
|
|
|
|
mv.set(0, 0);
|
|
|
|
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
|
|
|
|
switch (v) {
|
|
|
|
case SkPath::kMove_Verb:
|
|
|
|
mv = pts[0];
|
|
|
|
++nMT;
|
|
|
|
break;
|
|
|
|
case SkPath::kClose_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, mv == pts[0]);
|
|
|
|
++nCL;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// if we force a close on the interator we should have a close
|
|
|
|
// for every moveTo
|
|
|
|
REPORTER_ASSERT(reporter, !i || nMT == nCL);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_close(skiatest::Reporter* reporter) {
|
|
|
|
SkPath closePt;
|
|
|
|
closePt.moveTo(0, 0);
|
|
|
|
closePt.close();
|
|
|
|
check_close(reporter, closePt);
|
|
|
|
|
|
|
|
SkPath openPt;
|
|
|
|
openPt.moveTo(0, 0);
|
|
|
|
check_close(reporter, openPt);
|
|
|
|
|
|
|
|
SkPath empty;
|
|
|
|
check_close(reporter, empty);
|
|
|
|
empty.close();
|
|
|
|
check_close(reporter, empty);
|
|
|
|
|
|
|
|
SkPath rect;
|
|
|
|
rect.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
|
|
|
|
check_close(reporter, rect);
|
|
|
|
rect.close();
|
|
|
|
check_close(reporter, rect);
|
|
|
|
|
|
|
|
SkPath quad;
|
|
|
|
quad.quadTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
|
|
|
|
check_close(reporter, quad);
|
|
|
|
quad.close();
|
|
|
|
check_close(reporter, quad);
|
|
|
|
|
|
|
|
SkPath cubic;
|
|
|
|
quad.cubicTo(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1,
|
|
|
|
10*SK_Scalar1, 20 * SK_Scalar1, 20*SK_Scalar1);
|
|
|
|
check_close(reporter, cubic);
|
|
|
|
cubic.close();
|
|
|
|
check_close(reporter, cubic);
|
|
|
|
|
|
|
|
SkPath line;
|
|
|
|
line.moveTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
line.lineTo(10 * SK_Scalar1, 10*SK_Scalar1);
|
|
|
|
check_close(reporter, line);
|
|
|
|
line.close();
|
|
|
|
check_close(reporter, line);
|
|
|
|
|
|
|
|
SkPath rect2;
|
|
|
|
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
|
|
|
|
rect2.close();
|
|
|
|
rect2.addRect(SK_Scalar1, SK_Scalar1, 10 * SK_Scalar1, 10*SK_Scalar1);
|
|
|
|
check_close(reporter, rect2);
|
|
|
|
rect2.close();
|
|
|
|
check_close(reporter, rect2);
|
|
|
|
|
|
|
|
SkPath oval3;
|
|
|
|
oval3.addOval(SkRect::MakeWH(SK_Scalar1*100,SK_Scalar1*100));
|
|
|
|
oval3.close();
|
|
|
|
oval3.addOval(SkRect::MakeWH(SK_Scalar1*200,SK_Scalar1*200));
|
|
|
|
check_close(reporter, oval3);
|
|
|
|
oval3.close();
|
|
|
|
check_close(reporter, oval3);
|
|
|
|
|
|
|
|
SkPath moves;
|
|
|
|
moves.moveTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
moves.moveTo(5 * SK_Scalar1, SK_Scalar1);
|
|
|
|
moves.moveTo(SK_Scalar1, 10 * SK_Scalar1);
|
|
|
|
moves.moveTo(10 *SK_Scalar1, SK_Scalar1);
|
|
|
|
check_close(reporter, moves);
|
|
|
|
|
|
|
|
stroke_tiny_cubic();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_convexity(skiatest::Reporter* reporter, const SkPath& path,
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathConvexityType expected) {
|
2017-09-06 17:33:30 +00:00
|
|
|
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathConvexityType c = copy.getConvexityType();
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, c == expected);
|
2019-11-22 17:59:01 +00:00
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
// test points-by-array interface
|
|
|
|
SkPath::Iter iter(path, true);
|
|
|
|
int initialMoves = 0;
|
|
|
|
SkPoint pts[4];
|
2019-08-16 17:30:34 +00:00
|
|
|
while (SkPath::kMove_Verb == iter.next(pts)) {
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
++initialMoves;
|
|
|
|
}
|
|
|
|
if (initialMoves > 0) {
|
|
|
|
std::vector<SkPoint> points;
|
|
|
|
points.resize(path.getPoints(nullptr, 0));
|
|
|
|
(void) path.getPoints(&points.front(), points.size());
|
|
|
|
int skip = initialMoves - 1;
|
|
|
|
bool isConvex = SkPathPriv::IsConvex(&points.front() + skip, points.size() - skip);
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, isConvex == (SkPathConvexityType::kConvex == expected));
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
}
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_path_crbug389050(skiatest::Reporter* reporter) {
|
|
|
|
SkPath tinyConvexPolygon;
|
|
|
|
tinyConvexPolygon.moveTo(600.131559f, 800.112512f);
|
|
|
|
tinyConvexPolygon.lineTo(600.161735f, 800.118627f);
|
|
|
|
tinyConvexPolygon.lineTo(600.148962f, 800.142338f);
|
|
|
|
tinyConvexPolygon.lineTo(600.134891f, 800.137724f);
|
|
|
|
tinyConvexPolygon.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
tinyConvexPolygon.getConvexityType();
|
2019-04-19 16:58:21 +00:00
|
|
|
// This is convex, but so small that it fails many of our checks, and the three "backwards"
|
|
|
|
// bends convince the checker that it's concave. That's okay though, we draw it correctly.
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, tinyConvexPolygon, SkPathConvexityType::kConcave);
|
2019-04-19 16:58:21 +00:00
|
|
|
check_direction(reporter, tinyConvexPolygon, SkPathPriv::kCW_FirstDirection);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
SkPath platTriangle;
|
|
|
|
platTriangle.moveTo(0, 0);
|
|
|
|
platTriangle.lineTo(200, 0);
|
|
|
|
platTriangle.lineTo(100, 0.04f);
|
|
|
|
platTriangle.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
platTriangle.getConvexityType();
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
platTriangle.reset();
|
|
|
|
platTriangle.moveTo(0, 0);
|
|
|
|
platTriangle.lineTo(200, 0);
|
|
|
|
platTriangle.lineTo(100, 0.03f);
|
|
|
|
platTriangle.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
platTriangle.getConvexityType();
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, platTriangle, SkPathPriv::kCW_FirstDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_convexity2(skiatest::Reporter* reporter) {
|
|
|
|
SkPath pt;
|
|
|
|
pt.moveTo(0, 0);
|
|
|
|
pt.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, pt, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, pt, SkPathPriv::kUnknown_FirstDirection);
|
|
|
|
|
|
|
|
SkPath line;
|
|
|
|
line.moveTo(12*SK_Scalar1, 20*SK_Scalar1);
|
|
|
|
line.lineTo(-12*SK_Scalar1, -20*SK_Scalar1);
|
|
|
|
line.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, line, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, line, SkPathPriv::kUnknown_FirstDirection);
|
|
|
|
|
|
|
|
SkPath triLeft;
|
|
|
|
triLeft.moveTo(0, 0);
|
|
|
|
triLeft.lineTo(SK_Scalar1, 0);
|
|
|
|
triLeft.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
triLeft.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, triLeft, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, triLeft, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
SkPath triRight;
|
|
|
|
triRight.moveTo(0, 0);
|
|
|
|
triRight.lineTo(-SK_Scalar1, 0);
|
|
|
|
triRight.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
triRight.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, triRight, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, triRight, SkPathPriv::kCCW_FirstDirection);
|
|
|
|
|
|
|
|
SkPath square;
|
|
|
|
square.moveTo(0, 0);
|
|
|
|
square.lineTo(SK_Scalar1, 0);
|
|
|
|
square.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
square.lineTo(0, SK_Scalar1);
|
|
|
|
square.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, square, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, square, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
SkPath redundantSquare;
|
|
|
|
redundantSquare.moveTo(0, 0);
|
|
|
|
redundantSquare.lineTo(0, 0);
|
|
|
|
redundantSquare.lineTo(0, 0);
|
|
|
|
redundantSquare.lineTo(SK_Scalar1, 0);
|
|
|
|
redundantSquare.lineTo(SK_Scalar1, 0);
|
|
|
|
redundantSquare.lineTo(SK_Scalar1, 0);
|
|
|
|
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
redundantSquare.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
redundantSquare.lineTo(0, SK_Scalar1);
|
|
|
|
redundantSquare.lineTo(0, SK_Scalar1);
|
|
|
|
redundantSquare.lineTo(0, SK_Scalar1);
|
|
|
|
redundantSquare.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, redundantSquare, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, redundantSquare, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
SkPath bowTie;
|
|
|
|
bowTie.moveTo(0, 0);
|
|
|
|
bowTie.lineTo(0, 0);
|
|
|
|
bowTie.lineTo(0, 0);
|
|
|
|
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
bowTie.lineTo(SK_Scalar1, SK_Scalar1);
|
|
|
|
bowTie.lineTo(SK_Scalar1, 0);
|
|
|
|
bowTie.lineTo(SK_Scalar1, 0);
|
|
|
|
bowTie.lineTo(SK_Scalar1, 0);
|
|
|
|
bowTie.lineTo(0, SK_Scalar1);
|
|
|
|
bowTie.lineTo(0, SK_Scalar1);
|
|
|
|
bowTie.lineTo(0, SK_Scalar1);
|
|
|
|
bowTie.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, bowTie, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, bowTie, kDontCheckDir);
|
|
|
|
|
|
|
|
SkPath spiral;
|
|
|
|
spiral.moveTo(0, 0);
|
|
|
|
spiral.lineTo(100*SK_Scalar1, 0);
|
|
|
|
spiral.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
|
|
|
|
spiral.lineTo(0, 100*SK_Scalar1);
|
|
|
|
spiral.lineTo(0, 50*SK_Scalar1);
|
|
|
|
spiral.lineTo(50*SK_Scalar1, 50*SK_Scalar1);
|
|
|
|
spiral.lineTo(50*SK_Scalar1, 75*SK_Scalar1);
|
|
|
|
spiral.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, spiral, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, spiral, kDontCheckDir);
|
|
|
|
|
|
|
|
SkPath dent;
|
|
|
|
dent.moveTo(0, 0);
|
|
|
|
dent.lineTo(100*SK_Scalar1, 100*SK_Scalar1);
|
|
|
|
dent.lineTo(0, 100*SK_Scalar1);
|
|
|
|
dent.lineTo(-50*SK_Scalar1, 200*SK_Scalar1);
|
|
|
|
dent.lineTo(-200*SK_Scalar1, 100*SK_Scalar1);
|
|
|
|
dent.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, dent, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, dent, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
// https://bug.skia.org/2235
|
|
|
|
SkPath strokedSin;
|
|
|
|
for (int i = 0; i < 2000; i++) {
|
|
|
|
SkScalar x = SkIntToScalar(i) / 2;
|
|
|
|
SkScalar y = 500 - (x + SkScalarSin(x / 100) * 40) / 3;
|
|
|
|
if (0 == i) {
|
|
|
|
strokedSin.moveTo(x, y);
|
|
|
|
} else {
|
|
|
|
strokedSin.lineTo(x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
SkStrokeRec stroke(SkStrokeRec::kFill_InitStyle);
|
|
|
|
stroke.setStrokeStyle(2 * SK_Scalar1);
|
|
|
|
stroke.applyToPath(&strokedSin, strokedSin);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, strokedSin, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, strokedSin, kDontCheckDir);
|
|
|
|
|
|
|
|
// http://crbug.com/412640
|
|
|
|
SkPath degenerateConcave;
|
|
|
|
degenerateConcave.moveTo(148.67912f, 191.875f);
|
|
|
|
degenerateConcave.lineTo(470.37695f, 7.5f);
|
|
|
|
degenerateConcave.lineTo(148.67912f, 191.875f);
|
|
|
|
degenerateConcave.lineTo(41.446522f, 376.25f);
|
|
|
|
degenerateConcave.lineTo(-55.971577f, 460.0f);
|
|
|
|
degenerateConcave.lineTo(41.446522f, 376.25f);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, degenerateConcave, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, degenerateConcave, SkPathPriv::kUnknown_FirstDirection);
|
|
|
|
|
|
|
|
// http://crbug.com/433683
|
|
|
|
SkPath badFirstVector;
|
|
|
|
badFirstVector.moveTo(501.087708f, 319.610352f);
|
|
|
|
badFirstVector.lineTo(501.087708f, 319.610352f);
|
|
|
|
badFirstVector.cubicTo(501.087677f, 319.610321f, 449.271606f, 258.078674f, 395.084564f, 198.711182f);
|
|
|
|
badFirstVector.cubicTo(358.967072f, 159.140717f, 321.910553f, 120.650436f, 298.442322f, 101.955399f);
|
|
|
|
badFirstVector.lineTo(301.557678f, 98.044601f);
|
|
|
|
badFirstVector.cubicTo(325.283844f, 116.945084f, 362.615204f, 155.720825f, 398.777557f, 195.340454f);
|
|
|
|
badFirstVector.cubicTo(453.031860f, 254.781662f, 504.912262f, 316.389618f, 504.912292f, 316.389648f);
|
|
|
|
badFirstVector.lineTo(504.912292f, 316.389648f);
|
|
|
|
badFirstVector.lineTo(501.087708f, 319.610352f);
|
|
|
|
badFirstVector.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, badFirstVector, SkPathConvexityType::kConcave);
|
2019-08-20 19:35:26 +00:00
|
|
|
|
|
|
|
// http://crbug.com/993330
|
|
|
|
SkPath falseBackEdge;
|
|
|
|
falseBackEdge.moveTo(-217.83430557928145f, -382.14948768484857f);
|
|
|
|
falseBackEdge.lineTo(-227.73867866614847f, -399.52485512718323f);
|
|
|
|
falseBackEdge.cubicTo(-158.3541047666846f, -439.0757140459542f,
|
|
|
|
-79.8654464485281f, -459.875f,
|
|
|
|
-1.1368683772161603e-13f, -459.875f);
|
|
|
|
falseBackEdge.lineTo(-8.08037266162413e-14f, -439.875f);
|
|
|
|
falseBackEdge.lineTo(-8.526512829121202e-14f, -439.87499999999994f);
|
|
|
|
falseBackEdge.cubicTo(-76.39209188702645f, -439.87499999999994f,
|
|
|
|
-151.46727226799754f, -419.98027663161537f,
|
|
|
|
-217.83430557928145f, -382.14948768484857f);
|
|
|
|
falseBackEdge.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, falseBackEdge, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
static void test_convexity_doubleback(skiatest::Reporter* reporter) {
|
|
|
|
SkPath doubleback;
|
|
|
|
doubleback.lineTo(1, 1);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.lineTo(2, 2);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.reset();
|
|
|
|
doubleback.lineTo(1, 0);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.lineTo(2, 0);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.lineTo(1, 0);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.reset();
|
|
|
|
doubleback.quadTo(1, 1, 2, 2);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.reset();
|
|
|
|
doubleback.quadTo(1, 0, 2, 0);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
doubleback.quadTo(1, 0, 0, 0);
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, doubleback, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
}
|
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
static void check_convex_bounds(skiatest::Reporter* reporter, const SkPath& p,
|
|
|
|
const SkRect& bounds) {
|
|
|
|
REPORTER_ASSERT(reporter, p.isConvex());
|
|
|
|
REPORTER_ASSERT(reporter, p.getBounds() == bounds);
|
|
|
|
|
|
|
|
SkPath p2(p);
|
|
|
|
REPORTER_ASSERT(reporter, p2.isConvex());
|
|
|
|
REPORTER_ASSERT(reporter, p2.getBounds() == bounds);
|
|
|
|
|
|
|
|
SkPath other;
|
|
|
|
other.swap(p2);
|
|
|
|
REPORTER_ASSERT(reporter, other.isConvex());
|
|
|
|
REPORTER_ASSERT(reporter, other.getBounds() == bounds);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void setFromString(SkPath* path, const char str[]) {
|
|
|
|
bool first = true;
|
|
|
|
while (str) {
|
|
|
|
SkScalar x, y;
|
|
|
|
str = SkParse::FindScalar(str, &x);
|
|
|
|
if (nullptr == str) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
str = SkParse::FindScalar(str, &y);
|
|
|
|
SkASSERT(str);
|
|
|
|
if (first) {
|
|
|
|
path->moveTo(x, y);
|
|
|
|
first = false;
|
|
|
|
} else {
|
|
|
|
path->lineTo(x, y);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_convexity(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(10));
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(10)); // 2nd circle
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPathDirection::kCCW);
|
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCCW_FirstDirection));
|
|
|
|
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addRect(0, 0, SkIntToScalar(10), SkIntToScalar(10), SkPathDirection::kCW);
|
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, SkPathPriv::kCW_FirstDirection));
|
|
|
|
|
|
|
|
path.reset();
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
path.quadTo(100, 100, 50, 50); // This from GM:convexpaths
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
static const struct {
|
|
|
|
const char* fPathStr;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathConvexityType fExpectedConvexity;
|
2017-09-06 17:33:30 +00:00
|
|
|
SkPathPriv::FirstDirection fExpectedDirection;
|
|
|
|
} gRec[] = {
|
2019-11-22 18:34:02 +00:00
|
|
|
{ "", SkPathConvexityType::kConvex, SkPathPriv::kUnknown_FirstDirection },
|
|
|
|
{ "0 0", SkPathConvexityType::kConvex, SkPathPriv::kUnknown_FirstDirection },
|
|
|
|
{ "0 0 10 10", SkPathConvexityType::kConvex, SkPathPriv::kUnknown_FirstDirection },
|
|
|
|
{ "0 0 10 10 20 20 0 0 10 10", SkPathConvexityType::kConcave, SkPathPriv::kUnknown_FirstDirection },
|
|
|
|
{ "0 0 10 10 10 20", SkPathConvexityType::kConvex, SkPathPriv::kCW_FirstDirection },
|
|
|
|
{ "0 0 10 10 10 0", SkPathConvexityType::kConvex, SkPathPriv::kCCW_FirstDirection },
|
|
|
|
{ "0 0 10 10 10 0 0 10", SkPathConvexityType::kConcave, kDontCheckDir },
|
|
|
|
{ "0 0 10 0 0 10 -10 -10", SkPathConvexityType::kConcave, SkPathPriv::kCW_FirstDirection },
|
2017-09-06 17:33:30 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gRec); ++i) {
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
path.reset();
|
2017-09-06 17:33:30 +00:00
|
|
|
setFromString(&path, gRec[i].fPathStr);
|
|
|
|
check_convexity(reporter, path, gRec[i].fExpectedConvexity);
|
|
|
|
check_direction(reporter, path, gRec[i].fExpectedDirection);
|
|
|
|
// check after setting the initial convex and direction
|
|
|
|
if (kDontCheckDir != gRec[i].fExpectedDirection) {
|
|
|
|
SkPath copy(path);
|
|
|
|
SkPathPriv::FirstDirection dir;
|
|
|
|
bool foundDir = SkPathPriv::CheapComputeFirstDirection(copy, &dir);
|
|
|
|
REPORTER_ASSERT(reporter, (gRec[i].fExpectedDirection == SkPathPriv::kUnknown_FirstDirection)
|
|
|
|
^ foundDir);
|
|
|
|
REPORTER_ASSERT(reporter, !foundDir || gRec[i].fExpectedDirection == dir);
|
|
|
|
check_convexity(reporter, copy, gRec[i].fExpectedConvexity);
|
|
|
|
}
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, gRec[i].fExpectedConvexity == path.getConvexityType());
|
2017-09-06 17:33:30 +00:00
|
|
|
check_direction(reporter, path, gRec[i].fExpectedDirection);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const SkPoint nonFinitePts[] = {
|
|
|
|
{ SK_ScalarInfinity, 0 },
|
|
|
|
{ 0, SK_ScalarInfinity },
|
|
|
|
{ SK_ScalarInfinity, SK_ScalarInfinity },
|
|
|
|
{ SK_ScalarNegativeInfinity, 0},
|
|
|
|
{ 0, SK_ScalarNegativeInfinity },
|
|
|
|
{ SK_ScalarNegativeInfinity, SK_ScalarNegativeInfinity },
|
|
|
|
{ SK_ScalarNegativeInfinity, SK_ScalarInfinity },
|
|
|
|
{ SK_ScalarInfinity, SK_ScalarNegativeInfinity },
|
|
|
|
{ SK_ScalarNaN, 0 },
|
|
|
|
{ 0, SK_ScalarNaN },
|
|
|
|
{ SK_ScalarNaN, SK_ScalarNaN },
|
|
|
|
};
|
|
|
|
|
|
|
|
const size_t nonFinitePtsCount = sizeof(nonFinitePts) / sizeof(nonFinitePts[0]);
|
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
static const SkPoint axisAlignedPts[] = {
|
2017-09-06 17:33:30 +00:00
|
|
|
{ SK_ScalarMax, 0 },
|
|
|
|
{ 0, SK_ScalarMax },
|
|
|
|
{ SK_ScalarMin, 0 },
|
|
|
|
{ 0, SK_ScalarMin },
|
|
|
|
};
|
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
const size_t axisAlignedPtsCount = sizeof(axisAlignedPts) / sizeof(axisAlignedPts[0]);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
for (int index = 0; index < (int) (13 * nonFinitePtsCount * axisAlignedPtsCount); ++index) {
|
2017-09-06 17:33:30 +00:00
|
|
|
int i = (int) (index % nonFinitePtsCount);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
int f = (int) (index % axisAlignedPtsCount);
|
|
|
|
int g = (int) ((f + 1) % axisAlignedPtsCount);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.reset();
|
|
|
|
switch (index % 13) {
|
|
|
|
case 0: path.lineTo(nonFinitePts[i]); break;
|
|
|
|
case 1: path.quadTo(nonFinitePts[i], nonFinitePts[i]); break;
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
case 2: path.quadTo(nonFinitePts[i], axisAlignedPts[f]); break;
|
|
|
|
case 3: path.quadTo(axisAlignedPts[f], nonFinitePts[i]); break;
|
|
|
|
case 4: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[f]); break;
|
|
|
|
case 5: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], axisAlignedPts[f]); break;
|
|
|
|
case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], nonFinitePts[i]); break;
|
|
|
|
case 7: path.cubicTo(nonFinitePts[i], nonFinitePts[i], axisAlignedPts[f]); break;
|
|
|
|
case 8: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], nonFinitePts[i]); break;
|
|
|
|
case 9: path.cubicTo(axisAlignedPts[f], nonFinitePts[i], nonFinitePts[i]); break;
|
2017-09-06 17:33:30 +00:00
|
|
|
case 10: path.cubicTo(nonFinitePts[i], nonFinitePts[i], nonFinitePts[i]); break;
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
case 11: path.cubicTo(nonFinitePts[i], axisAlignedPts[f], axisAlignedPts[g]); break;
|
2017-09-06 17:33:30 +00:00
|
|
|
case 12: path.moveTo(nonFinitePts[i]); break;
|
|
|
|
}
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kUnknown);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
for (int index = 0; index < (int) (11 * axisAlignedPtsCount); ++index) {
|
|
|
|
int f = (int) (index % axisAlignedPtsCount);
|
|
|
|
int g = (int) ((f + 1) % axisAlignedPtsCount);
|
|
|
|
path.reset();
|
|
|
|
int curveSelect = index % 11;
|
|
|
|
switch (curveSelect) {
|
|
|
|
case 0: path.moveTo(axisAlignedPts[f]); break;
|
|
|
|
case 1: path.lineTo(axisAlignedPts[f]); break;
|
|
|
|
case 2: path.quadTo(axisAlignedPts[f], axisAlignedPts[f]); break;
|
|
|
|
case 3: path.quadTo(axisAlignedPts[f], axisAlignedPts[g]); break;
|
|
|
|
case 4: path.quadTo(axisAlignedPts[g], axisAlignedPts[f]); break;
|
|
|
|
case 5: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[f]); break;
|
|
|
|
case 6: path.cubicTo(axisAlignedPts[f], axisAlignedPts[f], axisAlignedPts[g]); break;
|
|
|
|
case 7: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[f]); break;
|
|
|
|
case 8: path.cubicTo(axisAlignedPts[f], axisAlignedPts[g], axisAlignedPts[g]); break;
|
|
|
|
case 9: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[f]); break;
|
|
|
|
case 10: path.cubicTo(axisAlignedPts[g], axisAlignedPts[f], axisAlignedPts[g]); break;
|
|
|
|
}
|
|
|
|
if (curveSelect == 0 || curveSelect == 1 || curveSelect == 2 || curveSelect == 5) {
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
} else {
|
|
|
|
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathConvexityType c = copy.getConvexityType();
|
|
|
|
REPORTER_ASSERT(reporter, SkPathConvexityType::kUnknown == c
|
|
|
|
|| SkPathConvexityType::kConcave == c);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static const SkPoint diagonalPts[] = {
|
|
|
|
{ SK_ScalarMax, SK_ScalarMax },
|
|
|
|
{ SK_ScalarMin, SK_ScalarMin },
|
|
|
|
};
|
|
|
|
|
|
|
|
const size_t diagonalPtsCount = sizeof(diagonalPts) / sizeof(diagonalPts[0]);
|
|
|
|
|
|
|
|
for (int index = 0; index < (int) (7 * diagonalPtsCount); ++index) {
|
|
|
|
int f = (int) (index % diagonalPtsCount);
|
|
|
|
int g = (int) ((f + 1) % diagonalPtsCount);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.reset();
|
|
|
|
int curveSelect = index % 11;
|
|
|
|
switch (curveSelect) {
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
case 0: path.moveTo(diagonalPts[f]); break;
|
|
|
|
case 1: path.lineTo(diagonalPts[f]); break;
|
|
|
|
case 2: path.quadTo(diagonalPts[f], diagonalPts[f]); break;
|
|
|
|
case 3: path.quadTo(axisAlignedPts[f], diagonalPts[g]); break;
|
|
|
|
case 4: path.quadTo(diagonalPts[g], axisAlignedPts[f]); break;
|
|
|
|
case 5: path.cubicTo(diagonalPts[f], diagonalPts[f], diagonalPts[f]); break;
|
|
|
|
case 6: path.cubicTo(diagonalPts[f], diagonalPts[f], axisAlignedPts[g]); break;
|
|
|
|
case 7: path.cubicTo(diagonalPts[f], axisAlignedPts[g], diagonalPts[f]); break;
|
|
|
|
case 8: path.cubicTo(axisAlignedPts[f], diagonalPts[g], diagonalPts[g]); break;
|
|
|
|
case 9: path.cubicTo(diagonalPts[g], diagonalPts[f], axisAlignedPts[f]); break;
|
|
|
|
case 10: path.cubicTo(diagonalPts[g], axisAlignedPts[f], diagonalPts[g]); break;
|
|
|
|
}
|
|
|
|
if (curveSelect == 0) {
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConvex);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
} else {
|
|
|
|
SkPath copy(path); // we make a copy so that we don't cache the result on the passed in path.
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathConvexityType c = copy.getConvexityType();
|
|
|
|
REPORTER_ASSERT(reporter, SkPathConvexityType::kUnknown == c
|
|
|
|
|| SkPathConvexityType::kConcave == c);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
path.reset();
|
|
|
|
path.moveTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f
|
|
|
|
path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eea38)); // -0.284072f, -0.0622351f
|
|
|
|
path.lineTo(SkBits2Float(0xbe9171a0), SkBits2Float(0xbd7ee5a7)); // -0.28407f, -0.0622307f
|
|
|
|
path.lineTo(SkBits2Float(0xbe917147), SkBits2Float(0xbd7ed886)); // -0.284067f, -0.0622182f
|
|
|
|
path.lineTo(SkBits2Float(0xbe917378), SkBits2Float(0xbd7ee1a9)); // -0.284084f, -0.0622269f
|
|
|
|
path.lineTo(SkBits2Float(0xbe9171db), SkBits2Float(0xbd7eeb5d)); // -0.284072f, -0.0622362f
|
|
|
|
path.close();
|
2019-11-22 18:34:02 +00:00
|
|
|
check_convexity(reporter, path, SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_isLine(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
SkPoint pts[2];
|
|
|
|
const SkScalar value = SkIntToScalar(5);
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
|
|
|
|
|
|
|
|
// set some non-zero values
|
|
|
|
pts[0].set(value, value);
|
|
|
|
pts[1].set(value, value);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(pts));
|
|
|
|
// check that pts was untouched
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
|
|
|
|
|
|
|
|
const SkScalar moveX = SkIntToScalar(1);
|
|
|
|
const SkScalar moveY = SkIntToScalar(2);
|
|
|
|
REPORTER_ASSERT(reporter, value != moveX && value != moveY);
|
|
|
|
|
|
|
|
path.moveTo(moveX, moveY);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(pts));
|
|
|
|
// check that pts was untouched
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].equals(value, value));
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].equals(value, value));
|
|
|
|
|
|
|
|
const SkScalar lineX = SkIntToScalar(2);
|
|
|
|
const SkScalar lineY = SkIntToScalar(2);
|
|
|
|
REPORTER_ASSERT(reporter, value != lineX && value != lineY);
|
|
|
|
|
|
|
|
path.lineTo(lineX, lineY);
|
|
|
|
REPORTER_ASSERT(reporter, path.isLine(nullptr));
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, !pts[0].equals(moveX, moveY));
|
|
|
|
REPORTER_ASSERT(reporter, !pts[1].equals(lineX, lineY));
|
|
|
|
REPORTER_ASSERT(reporter, path.isLine(pts));
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
|
|
|
|
|
|
|
|
path.lineTo(0, 0); // too many points/verbs
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(pts));
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].equals(moveX, moveY));
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].equals(lineX, lineY));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.quadTo(1, 1, 2, 2);
|
|
|
|
REPORTER_ASSERT(reporter, !path.isLine(nullptr));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_conservativelyContains(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
|
|
|
|
// kBaseRect is used to construct most our test paths: a rect, a circle, and a round-rect.
|
|
|
|
static const SkRect kBaseRect = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100));
|
|
|
|
|
|
|
|
// A circle that bounds kBaseRect (with a significant amount of slop)
|
|
|
|
SkScalar circleR = SkMaxScalar(kBaseRect.width(), kBaseRect.height());
|
|
|
|
circleR *= 1.75f / 2;
|
|
|
|
static const SkPoint kCircleC = {kBaseRect.centerX(), kBaseRect.centerY()};
|
|
|
|
|
|
|
|
// round-rect radii
|
|
|
|
static const SkScalar kRRRadii[] = {SkIntToScalar(5), SkIntToScalar(3)};
|
|
|
|
|
|
|
|
static const struct SUPPRESS_VISIBILITY_WARNING {
|
|
|
|
SkRect fQueryRect;
|
|
|
|
bool fInRect;
|
|
|
|
bool fInCircle;
|
|
|
|
bool fInRR;
|
|
|
|
bool fInCubicRR;
|
|
|
|
} kQueries[] = {
|
|
|
|
{kBaseRect, true, true, false, false},
|
|
|
|
|
|
|
|
// rect well inside of kBaseRect
|
|
|
|
{SkRect::MakeLTRB(kBaseRect.fLeft + 0.25f*kBaseRect.width(),
|
|
|
|
kBaseRect.fTop + 0.25f*kBaseRect.height(),
|
|
|
|
kBaseRect.fRight - 0.25f*kBaseRect.width(),
|
|
|
|
kBaseRect.fBottom - 0.25f*kBaseRect.height()),
|
|
|
|
true, true, true, true},
|
|
|
|
|
|
|
|
// rects with edges off by one from kBaseRect's edges
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
|
|
|
|
kBaseRect.width(), kBaseRect.height() + 1),
|
|
|
|
false, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
|
|
|
|
kBaseRect.width() + 1, kBaseRect.height()),
|
|
|
|
false, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop,
|
|
|
|
kBaseRect.width() + 1, kBaseRect.height() + 1),
|
|
|
|
false, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
|
|
|
|
kBaseRect.width(), kBaseRect.height()),
|
|
|
|
false, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
|
|
|
|
kBaseRect.width(), kBaseRect.height()),
|
|
|
|
false, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft - 1, kBaseRect.fTop,
|
|
|
|
kBaseRect.width() + 2, kBaseRect.height()),
|
|
|
|
false, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop - 1,
|
|
|
|
kBaseRect.width() + 2, kBaseRect.height()),
|
|
|
|
false, true, false, false},
|
|
|
|
|
|
|
|
// zero-w/h rects at each corner of kBaseRect
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fTop, 0, 0), true, true, false, false},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fTop, 0, 0), true, true, false, true},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.fBottom, 0, 0), true, true, false, true},
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fRight, kBaseRect.fBottom, 0, 0), true, true, false, true},
|
|
|
|
|
|
|
|
// far away rect
|
|
|
|
{SkRect::MakeXYWH(10 * kBaseRect.fRight, 10 * kBaseRect.fBottom,
|
|
|
|
SkIntToScalar(10), SkIntToScalar(10)),
|
|
|
|
false, false, false, false},
|
|
|
|
|
|
|
|
// very large rect containing kBaseRect
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft - 5 * kBaseRect.width(),
|
|
|
|
kBaseRect.fTop - 5 * kBaseRect.height(),
|
|
|
|
11 * kBaseRect.width(), 11 * kBaseRect.height()),
|
|
|
|
false, false, false, false},
|
|
|
|
|
|
|
|
// skinny rect that spans same y-range as kBaseRect
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
|
|
|
|
SkIntToScalar(1), kBaseRect.height()),
|
|
|
|
true, true, true, true},
|
|
|
|
|
|
|
|
// short rect that spans same x-range as kBaseRect
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(), kBaseRect.width(), SkScalar(1)),
|
|
|
|
true, true, true, true},
|
|
|
|
|
|
|
|
// skinny rect that spans slightly larger y-range than kBaseRect
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.centerX(), kBaseRect.fTop,
|
|
|
|
SkIntToScalar(1), kBaseRect.height() + 1),
|
|
|
|
false, true, false, false},
|
|
|
|
|
|
|
|
// short rect that spans slightly larger x-range than kBaseRect
|
|
|
|
{SkRect::MakeXYWH(kBaseRect.fLeft, kBaseRect.centerY(),
|
|
|
|
kBaseRect.width() + 1, SkScalar(1)),
|
|
|
|
false, true, false, false},
|
|
|
|
};
|
|
|
|
|
|
|
|
for (int inv = 0; inv < 4; ++inv) {
|
|
|
|
for (size_t q = 0; q < SK_ARRAY_COUNT(kQueries); ++q) {
|
|
|
|
SkRect qRect = kQueries[q].fQueryRect;
|
|
|
|
if (inv & 0x1) {
|
2018-06-18 19:11:00 +00:00
|
|
|
using std::swap;
|
|
|
|
swap(qRect.fLeft, qRect.fRight);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
if (inv & 0x2) {
|
2018-06-18 19:11:00 +00:00
|
|
|
using std::swap;
|
|
|
|
swap(qRect.fTop, qRect.fBottom);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
for (int d = 0; d < 2; ++d) {
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir = d ? SkPathDirection::kCCW : SkPathDirection::kCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
path.reset();
|
|
|
|
path.addRect(kBaseRect, dir);
|
|
|
|
REPORTER_ASSERT(reporter, kQueries[q].fInRect ==
|
|
|
|
path.conservativelyContainsRect(qRect));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.addCircle(kCircleC.fX, kCircleC.fY, circleR, dir);
|
|
|
|
REPORTER_ASSERT(reporter, kQueries[q].fInCircle ==
|
|
|
|
path.conservativelyContainsRect(qRect));
|
|
|
|
|
|
|
|
path.reset();
|
2019-09-14 19:13:23 +00:00
|
|
|
path.addRoundRect(kBaseRect, kRRRadii[0], kRRRadii[1], dir);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, kQueries[q].fInRR ==
|
|
|
|
path.conservativelyContainsRect(qRect));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(kBaseRect.fLeft + kRRRadii[0], kBaseRect.fTop);
|
|
|
|
path.cubicTo(kBaseRect.fLeft + kRRRadii[0] / 2, kBaseRect.fTop,
|
|
|
|
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1] / 2,
|
|
|
|
kBaseRect.fLeft, kBaseRect.fTop + kRRRadii[1]);
|
|
|
|
path.lineTo(kBaseRect.fLeft, kBaseRect.fBottom);
|
|
|
|
path.lineTo(kBaseRect.fRight, kBaseRect.fBottom);
|
|
|
|
path.lineTo(kBaseRect.fRight, kBaseRect.fTop);
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, kQueries[q].fInCubicRR ==
|
|
|
|
path.conservativelyContainsRect(qRect));
|
|
|
|
|
|
|
|
}
|
|
|
|
// Slightly non-convex shape, shouldn't contain any rects.
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(SkIntToScalar(50), 0.05f);
|
|
|
|
path.lineTo(SkIntToScalar(100), 0);
|
|
|
|
path.lineTo(SkIntToScalar(100), SkIntToScalar(100));
|
|
|
|
path.lineTo(0, SkIntToScalar(100));
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(qRect));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// make sure a minimal convex shape works, a right tri with edges along pos x and y axes.
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(SkIntToScalar(100), 0);
|
|
|
|
path.lineTo(0, SkIntToScalar(100));
|
|
|
|
|
|
|
|
// inside, on along top edge
|
|
|
|
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
|
|
|
|
SkIntToScalar(10),
|
|
|
|
SkIntToScalar(10))));
|
|
|
|
// above
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
|
|
|
|
SkRect::MakeXYWH(SkIntToScalar(50),
|
|
|
|
SkIntToScalar(-10),
|
|
|
|
SkIntToScalar(10),
|
|
|
|
SkIntToScalar(10))));
|
|
|
|
// to the left
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(-10),
|
|
|
|
SkIntToScalar(5),
|
|
|
|
SkIntToScalar(5),
|
|
|
|
SkIntToScalar(5))));
|
|
|
|
|
|
|
|
// outside the diagonal edge
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(10),
|
|
|
|
SkIntToScalar(200),
|
|
|
|
SkIntToScalar(20),
|
|
|
|
SkIntToScalar(5))));
|
|
|
|
|
|
|
|
|
|
|
|
// Test that multiple move commands do not cause asserts.
|
|
|
|
path.moveTo(SkIntToScalar(100), SkIntToScalar(100));
|
|
|
|
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
|
|
|
|
SkIntToScalar(10),
|
|
|
|
SkIntToScalar(10))));
|
|
|
|
|
|
|
|
// Same as above path and first test but with an extra moveTo.
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(100, 100);
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(SkIntToScalar(100), 0);
|
|
|
|
path.lineTo(0, SkIntToScalar(100));
|
2017-09-18 13:13:48 +00:00
|
|
|
// Convexity logic is now more conservative, so that multiple (non-trailing) moveTos make a
|
|
|
|
// path non-convex.
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
|
|
|
|
SkRect::MakeXYWH(SkIntToScalar(50), 0,
|
|
|
|
SkIntToScalar(10),
|
|
|
|
SkIntToScalar(10))));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// Same as above path and first test but with the extra moveTo making a degenerate sub-path
|
|
|
|
// following the non-empty sub-path. Verifies that this does not trigger assertions.
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(SkIntToScalar(100), 0);
|
|
|
|
path.lineTo(0, SkIntToScalar(100));
|
|
|
|
path.moveTo(100, 100);
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, path.conservativelyContainsRect(SkRect::MakeXYWH(SkIntToScalar(50), 0,
|
|
|
|
SkIntToScalar(10),
|
|
|
|
SkIntToScalar(10))));
|
|
|
|
|
|
|
|
// Test that multiple move commands do not cause asserts and that the function
|
|
|
|
// is not confused by the multiple moves.
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(SkIntToScalar(100), 0);
|
|
|
|
path.lineTo(0, SkIntToScalar(100));
|
|
|
|
path.moveTo(0, SkIntToScalar(200));
|
|
|
|
path.lineTo(SkIntToScalar(100), SkIntToScalar(200));
|
|
|
|
path.lineTo(0, SkIntToScalar(300));
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(
|
|
|
|
SkRect::MakeXYWH(SkIntToScalar(50), 0,
|
|
|
|
SkIntToScalar(10),
|
|
|
|
SkIntToScalar(10))));
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.lineTo(100, 100);
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeXYWH(0, 0, 1, 1)));
|
|
|
|
|
|
|
|
// An empty path should not contain any rectangle. It's questionable whether an empty path
|
|
|
|
// contains an empty rectangle. However, since it is a conservative test it is ok to
|
|
|
|
// return false.
|
|
|
|
path.reset();
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(1,1)));
|
|
|
|
REPORTER_ASSERT(reporter, !path.conservativelyContainsRect(SkRect::MakeWH(0,0)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_isRect_open_close(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
bool isClosed;
|
|
|
|
|
|
|
|
path.moveTo(0, 0); path.lineTo(1, 0); path.lineTo(1, 1); path.lineTo(0, 1);
|
|
|
|
path.close();
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, path.isRect(nullptr, &isClosed, nullptr));
|
|
|
|
REPORTER_ASSERT(reporter, isClosed);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Simple isRect test is inline TestPath, below.
|
|
|
|
// test_isRect provides more extensive testing.
|
|
|
|
static void test_isRect(skiatest::Reporter* reporter) {
|
|
|
|
test_isRect_open_close(reporter);
|
|
|
|
|
|
|
|
// passing tests (all moveTo / lineTo...
|
|
|
|
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
|
|
|
|
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
|
|
|
|
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
|
|
|
|
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
|
|
|
|
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}};
|
|
|
|
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
|
|
|
|
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
|
|
|
|
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
|
|
|
|
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
|
|
|
|
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}};
|
|
|
|
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}};
|
|
|
|
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}};
|
|
|
|
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}};
|
|
|
|
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}};
|
|
|
|
SkPoint rf[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}};
|
|
|
|
|
|
|
|
// failing tests
|
|
|
|
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
|
|
|
|
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
|
|
|
|
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
|
|
|
|
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
|
|
|
|
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
|
|
|
|
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
|
|
|
|
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
|
|
|
|
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
|
|
|
|
SkPoint f9[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 0}, {2, 0}}; // overlaps
|
|
|
|
SkPoint fa[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, -1}, {1, -1}}; // non colinear gap
|
|
|
|
SkPoint fb[] = {{1, 0}, {8, 0}, {8, 8}, {0, 8}, {0, 1}}; // falls short
|
|
|
|
|
|
|
|
// no close, but we should detect them as fillably the same as a rect
|
|
|
|
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}};
|
|
|
|
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}};
|
|
|
|
SkPoint c3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 0}}; // hit the start
|
|
|
|
|
|
|
|
// like c2, but we double-back on ourselves
|
|
|
|
SkPoint d1[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}, {0, 2}};
|
|
|
|
// like c2, but we overshoot the start point
|
|
|
|
SkPoint d2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}};
|
|
|
|
SkPoint d3[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, -1}, {0, 0}};
|
|
|
|
|
|
|
|
struct IsRectTest {
|
|
|
|
SkPoint *fPoints;
|
|
|
|
int fPointCount;
|
|
|
|
bool fClose;
|
|
|
|
bool fIsRect;
|
|
|
|
} tests[] = {
|
|
|
|
{ r1, SK_ARRAY_COUNT(r1), true, true },
|
|
|
|
{ r2, SK_ARRAY_COUNT(r2), true, true },
|
|
|
|
{ r3, SK_ARRAY_COUNT(r3), true, true },
|
|
|
|
{ r4, SK_ARRAY_COUNT(r4), true, true },
|
|
|
|
{ r5, SK_ARRAY_COUNT(r5), true, true },
|
|
|
|
{ r6, SK_ARRAY_COUNT(r6), true, true },
|
|
|
|
{ r7, SK_ARRAY_COUNT(r7), true, true },
|
|
|
|
{ r8, SK_ARRAY_COUNT(r8), true, true },
|
|
|
|
{ r9, SK_ARRAY_COUNT(r9), true, true },
|
|
|
|
{ ra, SK_ARRAY_COUNT(ra), true, true },
|
|
|
|
{ rb, SK_ARRAY_COUNT(rb), true, true },
|
|
|
|
{ rc, SK_ARRAY_COUNT(rc), true, true },
|
|
|
|
{ rd, SK_ARRAY_COUNT(rd), true, true },
|
|
|
|
{ re, SK_ARRAY_COUNT(re), true, true },
|
|
|
|
{ rf, SK_ARRAY_COUNT(rf), true, true },
|
|
|
|
|
|
|
|
{ f1, SK_ARRAY_COUNT(f1), true, false },
|
|
|
|
{ f2, SK_ARRAY_COUNT(f2), true, false },
|
|
|
|
{ f3, SK_ARRAY_COUNT(f3), true, false },
|
|
|
|
{ f4, SK_ARRAY_COUNT(f4), true, false },
|
|
|
|
{ f5, SK_ARRAY_COUNT(f5), true, false },
|
|
|
|
{ f6, SK_ARRAY_COUNT(f6), true, false },
|
|
|
|
{ f7, SK_ARRAY_COUNT(f7), true, false },
|
|
|
|
{ f8, SK_ARRAY_COUNT(f8), true, false },
|
|
|
|
{ f9, SK_ARRAY_COUNT(f9), true, false },
|
|
|
|
{ fa, SK_ARRAY_COUNT(fa), true, false },
|
|
|
|
{ fb, SK_ARRAY_COUNT(fb), true, false },
|
|
|
|
|
|
|
|
{ c1, SK_ARRAY_COUNT(c1), false, true },
|
|
|
|
{ c2, SK_ARRAY_COUNT(c2), false, true },
|
|
|
|
{ c3, SK_ARRAY_COUNT(c3), false, true },
|
|
|
|
|
|
|
|
{ d1, SK_ARRAY_COUNT(d1), false, false },
|
2018-04-19 11:37:29 +00:00
|
|
|
{ d2, SK_ARRAY_COUNT(d2), false, true },
|
2017-09-06 17:33:30 +00:00
|
|
|
{ d3, SK_ARRAY_COUNT(d3), false, false },
|
|
|
|
};
|
|
|
|
|
|
|
|
const size_t testCount = SK_ARRAY_COUNT(tests);
|
|
|
|
int index;
|
|
|
|
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
|
|
|
|
for (index = 1; index < tests[testIndex].fPointCount; ++index) {
|
|
|
|
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
|
|
|
|
}
|
|
|
|
if (tests[testIndex].fClose) {
|
|
|
|
path.close();
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, tests[testIndex].fIsRect == path.isRect(nullptr));
|
|
|
|
|
|
|
|
if (tests[testIndex].fIsRect) {
|
|
|
|
SkRect computed, expected;
|
|
|
|
bool isClosed;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection direction;
|
2017-09-06 17:33:30 +00:00
|
|
|
SkPathPriv::FirstDirection cheapDirection;
|
2018-04-19 11:37:29 +00:00
|
|
|
int pointCount = tests[testIndex].fPointCount - (d2 == tests[testIndex].fPoints);
|
2019-08-24 23:39:13 +00:00
|
|
|
expected.setBounds(tests[testIndex].fPoints, pointCount);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapComputeFirstDirection(path, &cheapDirection));
|
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&computed, &isClosed, &direction));
|
|
|
|
REPORTER_ASSERT(reporter, expected == computed);
|
|
|
|
REPORTER_ASSERT(reporter, isClosed == tests[testIndex].fClose);
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(direction) == cheapDirection);
|
|
|
|
} else {
|
|
|
|
SkRect computed;
|
2019-08-24 23:39:13 +00:00
|
|
|
computed.setLTRB(123, 456, 789, 1011);
|
2018-08-13 16:09:41 +00:00
|
|
|
for (auto c : {true, false})
|
2019-11-22 18:34:02 +00:00
|
|
|
for (auto d : {SkPathDirection::kCW, SkPathDirection::kCCW}) {
|
2018-08-13 16:09:41 +00:00
|
|
|
bool isClosed = c;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection direction = d;
|
2018-08-13 16:09:41 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&computed, &isClosed, &direction));
|
|
|
|
REPORTER_ASSERT(reporter, computed.fLeft == 123 && computed.fTop == 456);
|
|
|
|
REPORTER_ASSERT(reporter, computed.fRight == 789 && computed.fBottom == 1011);
|
|
|
|
REPORTER_ASSERT(reporter, isClosed == c);
|
|
|
|
REPORTER_ASSERT(reporter, direction == d);
|
|
|
|
}
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fail, close then line
|
|
|
|
SkPath path1;
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
path1.lineTo(1, 0);
|
|
|
|
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
|
|
|
|
|
|
|
|
// fail, move in the middle
|
|
|
|
path1.reset();
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
if (index == 2) {
|
|
|
|
path1.moveTo(1, .5f);
|
|
|
|
}
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
|
|
|
|
|
|
|
|
// fail, move on the edge
|
|
|
|
path1.reset();
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
|
|
|
|
|
|
|
|
// fail, quad
|
|
|
|
path1.reset();
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
if (index == 2) {
|
|
|
|
path1.quadTo(1, .5f, 1, .5f);
|
|
|
|
}
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
|
|
|
|
|
|
|
|
// fail, cubic
|
|
|
|
path1.reset();
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
if (index == 2) {
|
|
|
|
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
|
|
|
|
}
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
REPORTER_ASSERT(reporter, !path1.isRect(nullptr));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_simple_closed_rect(skiatest::Reporter* reporter, const SkPath& path,
|
2019-11-22 18:34:02 +00:00
|
|
|
const SkRect& rect, SkPathDirection dir, unsigned start) {
|
2017-09-06 17:33:30 +00:00
|
|
|
SkRect r = SkRect::MakeEmpty();
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection d = SkPathDirection::kCCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
unsigned s = ~0U;
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::IsSimpleClosedRect(path, &r, &d, &s));
|
|
|
|
REPORTER_ASSERT(reporter, r == rect);
|
|
|
|
REPORTER_ASSERT(reporter, d == dir);
|
|
|
|
REPORTER_ASSERT(reporter, s == start);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_is_simple_closed_rect(skiatest::Reporter* reporter) {
|
2018-06-18 19:11:00 +00:00
|
|
|
using std::swap;
|
2017-09-06 17:33:30 +00:00
|
|
|
SkRect r = SkRect::MakeEmpty();
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection d = SkPathDirection::kCCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
unsigned s = ~0U;
|
|
|
|
|
|
|
|
const SkRect testRect = SkRect::MakeXYWH(10, 10, 50, 70);
|
|
|
|
const SkRect emptyRect = SkRect::MakeEmpty();
|
|
|
|
SkPath path;
|
|
|
|
for (int start = 0; start < 4; ++start) {
|
2019-11-22 18:34:02 +00:00
|
|
|
for (auto dir : {SkPathDirection::kCCW, SkPathDirection::kCW}) {
|
2017-09-06 17:33:30 +00:00
|
|
|
SkPath path;
|
|
|
|
path.addRect(testRect, dir, start);
|
|
|
|
check_simple_closed_rect(reporter, path, testRect, dir, start);
|
|
|
|
path.close();
|
|
|
|
check_simple_closed_rect(reporter, path, testRect, dir, start);
|
|
|
|
SkPath path2 = path;
|
|
|
|
path2.lineTo(10, 10);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
path2 = path;
|
|
|
|
path2.moveTo(10, 10);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
path2 = path;
|
|
|
|
path2.addRect(testRect, dir, start);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
// Make the path by hand, manually closing it.
|
|
|
|
path2.reset();
|
|
|
|
SkPath::RawIter iter(path);
|
|
|
|
SkPath::Verb v;
|
|
|
|
SkPoint verbPts[4];
|
|
|
|
SkPoint firstPt = {0.f, 0.f};
|
|
|
|
while ((v = iter.next(verbPts)) != SkPath::kDone_Verb) {
|
|
|
|
switch(v) {
|
|
|
|
case SkPath::kMove_Verb:
|
|
|
|
firstPt = verbPts[0];
|
|
|
|
path2.moveTo(verbPts[0]);
|
|
|
|
break;
|
|
|
|
case SkPath::kLine_Verb:
|
|
|
|
path2.lineTo(verbPts[1]);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// We haven't closed it yet...
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
// ... now we do and test again.
|
|
|
|
path2.lineTo(firstPt);
|
|
|
|
check_simple_closed_rect(reporter, path2, testRect, dir, start);
|
|
|
|
// A redundant close shouldn't cause a failure.
|
|
|
|
path2.close();
|
|
|
|
check_simple_closed_rect(reporter, path2, testRect, dir, start);
|
|
|
|
// Degenerate point and line rects are not allowed
|
|
|
|
path2.reset();
|
|
|
|
path2.addRect(emptyRect, dir, start);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
SkRect degenRect = testRect;
|
|
|
|
degenRect.fLeft = degenRect.fRight;
|
|
|
|
path2.reset();
|
|
|
|
path2.addRect(degenRect, dir, start);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
degenRect = testRect;
|
|
|
|
degenRect.fTop = degenRect.fBottom;
|
|
|
|
path2.reset();
|
|
|
|
path2.addRect(degenRect, dir, start);
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path2, &r, &d, &s));
|
|
|
|
// An inverted rect makes a rect path, but changes the winding dir and start point.
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection swapDir = (dir == SkPathDirection::kCW)
|
|
|
|
? SkPathDirection::kCCW
|
|
|
|
: SkPathDirection::kCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
static constexpr unsigned kXSwapStarts[] = { 1, 0, 3, 2 };
|
|
|
|
static constexpr unsigned kYSwapStarts[] = { 3, 2, 1, 0 };
|
|
|
|
SkRect swapRect = testRect;
|
2018-06-18 19:11:00 +00:00
|
|
|
swap(swapRect.fLeft, swapRect.fRight);
|
2017-09-06 17:33:30 +00:00
|
|
|
path2.reset();
|
|
|
|
path2.addRect(swapRect, dir, start);
|
|
|
|
check_simple_closed_rect(reporter, path2, testRect, swapDir, kXSwapStarts[start]);
|
|
|
|
swapRect = testRect;
|
2018-06-18 19:11:00 +00:00
|
|
|
swap(swapRect.fTop, swapRect.fBottom);
|
2017-09-06 17:33:30 +00:00
|
|
|
path2.reset();
|
|
|
|
path2.addRect(swapRect, dir, start);
|
|
|
|
check_simple_closed_rect(reporter, path2, testRect, swapDir, kYSwapStarts[start]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// down, up, left, close
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(1, 1);
|
|
|
|
path.lineTo(1, 2);
|
|
|
|
path.lineTo(1, 1);
|
|
|
|
path.lineTo(0, 1);
|
|
|
|
SkRect rect;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir;
|
2017-09-06 17:33:30 +00:00
|
|
|
unsigned start;
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start));
|
|
|
|
// right, left, up, close
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(1, 1);
|
|
|
|
path.lineTo(2, 1);
|
|
|
|
path.lineTo(1, 1);
|
|
|
|
path.lineTo(1, 0);
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start));
|
|
|
|
// parallelogram with horizontal edges
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(1, 0);
|
|
|
|
path.lineTo(3, 0);
|
|
|
|
path.lineTo(2, 1);
|
|
|
|
path.lineTo(0, 1);
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start));
|
|
|
|
// parallelogram with vertical edges
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 1);
|
|
|
|
path.lineTo(0, 3);
|
|
|
|
path.lineTo(1, 2);
|
|
|
|
path.lineTo(1, 0);
|
|
|
|
path.close();
|
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsSimpleClosedRect(path, &rect, &dir, &start));
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_isNestedFillRects(skiatest::Reporter* reporter) {
|
|
|
|
// passing tests (all moveTo / lineTo...
|
|
|
|
SkPoint r1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
|
|
|
|
SkPoint r2[] = {{1, 0}, {1, 1}, {0, 1}, {0, 0}};
|
|
|
|
SkPoint r3[] = {{1, 1}, {0, 1}, {0, 0}, {1, 0}};
|
|
|
|
SkPoint r4[] = {{0, 1}, {0, 0}, {1, 0}, {1, 1}};
|
|
|
|
SkPoint r5[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}}; // CCW
|
|
|
|
SkPoint r6[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
|
|
|
|
SkPoint r7[] = {{1, 1}, {1, 0}, {0, 0}, {0, 1}};
|
|
|
|
SkPoint r8[] = {{1, 0}, {0, 0}, {0, 1}, {1, 1}};
|
|
|
|
SkPoint r9[] = {{0, 1}, {1, 1}, {1, 0}, {0, 0}};
|
|
|
|
SkPoint ra[] = {{0, 0}, {0, .5f}, {0, 1}, {.5f, 1}, {1, 1}, {1, .5f}, {1, 0}, {.5f, 0}}; // CCW
|
|
|
|
SkPoint rb[] = {{0, 0}, {.5f, 0}, {1, 0}, {1, .5f}, {1, 1}, {.5f, 1}, {0, 1}, {0, .5f}}; // CW
|
|
|
|
SkPoint rc[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}; // CW
|
|
|
|
SkPoint rd[] = {{0, 0}, {0, 1}, {1, 1}, {1, 0}, {0, 0}}; // CCW
|
|
|
|
SkPoint re[] = {{0, 0}, {1, 0}, {1, 0}, {1, 1}, {0, 1}}; // CW
|
|
|
|
|
|
|
|
// failing tests
|
|
|
|
SkPoint f1[] = {{0, 0}, {1, 0}, {1, 1}}; // too few points
|
|
|
|
SkPoint f2[] = {{0, 0}, {1, 1}, {0, 1}, {1, 0}}; // diagonal
|
|
|
|
SkPoint f3[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}, {1, 0}}; // wraps
|
|
|
|
SkPoint f4[] = {{0, 0}, {1, 0}, {0, 0}, {1, 0}, {1, 1}, {0, 1}}; // backs up
|
|
|
|
SkPoint f5[] = {{0, 0}, {1, 0}, {1, 1}, {2, 0}}; // end overshoots
|
|
|
|
SkPoint f6[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 2}}; // end overshoots
|
|
|
|
SkPoint f7[] = {{0, 0}, {1, 0}, {1, 1}, {0, 2}}; // end overshoots
|
|
|
|
SkPoint f8[] = {{0, 0}, {1, 0}, {1, 1}, {1, 0}}; // 'L'
|
|
|
|
|
|
|
|
// success, no close is OK
|
|
|
|
SkPoint c1[] = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; // close doesn't match
|
|
|
|
SkPoint c2[] = {{0, 0}, {1, 0}, {1, 2}, {0, 2}, {0, 1}}; // ditto
|
|
|
|
|
|
|
|
struct IsNestedRectTest {
|
|
|
|
SkPoint *fPoints;
|
|
|
|
int fPointCount;
|
|
|
|
SkPathPriv::FirstDirection fDirection;
|
|
|
|
bool fClose;
|
|
|
|
bool fIsNestedRect; // nests with path.addRect(-1, -1, 2, 2);
|
|
|
|
} tests[] = {
|
|
|
|
{ r1, SK_ARRAY_COUNT(r1), SkPathPriv::kCW_FirstDirection , true, true },
|
|
|
|
{ r2, SK_ARRAY_COUNT(r2), SkPathPriv::kCW_FirstDirection , true, true },
|
|
|
|
{ r3, SK_ARRAY_COUNT(r3), SkPathPriv::kCW_FirstDirection , true, true },
|
|
|
|
{ r4, SK_ARRAY_COUNT(r4), SkPathPriv::kCW_FirstDirection , true, true },
|
|
|
|
{ r5, SK_ARRAY_COUNT(r5), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ r6, SK_ARRAY_COUNT(r6), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ r7, SK_ARRAY_COUNT(r7), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ r8, SK_ARRAY_COUNT(r8), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ r9, SK_ARRAY_COUNT(r9), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ ra, SK_ARRAY_COUNT(ra), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ rb, SK_ARRAY_COUNT(rb), SkPathPriv::kCW_FirstDirection, true, true },
|
|
|
|
{ rc, SK_ARRAY_COUNT(rc), SkPathPriv::kCW_FirstDirection, true, true },
|
|
|
|
{ rd, SK_ARRAY_COUNT(rd), SkPathPriv::kCCW_FirstDirection, true, true },
|
|
|
|
{ re, SK_ARRAY_COUNT(re), SkPathPriv::kCW_FirstDirection, true, true },
|
|
|
|
|
|
|
|
{ f1, SK_ARRAY_COUNT(f1), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f2, SK_ARRAY_COUNT(f2), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f3, SK_ARRAY_COUNT(f3), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f4, SK_ARRAY_COUNT(f4), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f5, SK_ARRAY_COUNT(f5), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f6, SK_ARRAY_COUNT(f6), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f7, SK_ARRAY_COUNT(f7), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
{ f8, SK_ARRAY_COUNT(f8), SkPathPriv::kUnknown_FirstDirection, true, false },
|
|
|
|
|
|
|
|
{ c1, SK_ARRAY_COUNT(c1), SkPathPriv::kCW_FirstDirection, false, true },
|
|
|
|
{ c2, SK_ARRAY_COUNT(c2), SkPathPriv::kCW_FirstDirection, false, true },
|
|
|
|
};
|
|
|
|
|
|
|
|
const size_t testCount = SK_ARRAY_COUNT(tests);
|
|
|
|
int index;
|
|
|
|
for (int rectFirst = 0; rectFirst <= 1; ++rectFirst) {
|
|
|
|
for (size_t testIndex = 0; testIndex < testCount; ++testIndex) {
|
|
|
|
SkPath path;
|
|
|
|
if (rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
path.moveTo(tests[testIndex].fPoints[0].fX, tests[testIndex].fPoints[0].fY);
|
|
|
|
for (index = 1; index < tests[testIndex].fPointCount; ++index) {
|
|
|
|
path.lineTo(tests[testIndex].fPoints[index].fX, tests[testIndex].fPoints[index].fY);
|
|
|
|
}
|
|
|
|
if (tests[testIndex].fClose) {
|
|
|
|
path.close();
|
|
|
|
}
|
|
|
|
if (!rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter,
|
2019-09-12 21:09:12 +00:00
|
|
|
tests[testIndex].fIsNestedRect == SkPathPriv::IsNestedFillRects(path, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
if (tests[testIndex].fIsNestedRect) {
|
|
|
|
SkRect expected[2], computed[2];
|
|
|
|
SkPathPriv::FirstDirection expectedDirs[2];
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection computedDirs[2];
|
2017-09-06 17:33:30 +00:00
|
|
|
SkRect testBounds;
|
2019-08-24 23:39:13 +00:00
|
|
|
testBounds.setBounds(tests[testIndex].fPoints, tests[testIndex].fPointCount);
|
2017-09-06 17:33:30 +00:00
|
|
|
expected[0] = SkRect::MakeLTRB(-1, -1, 2, 2);
|
|
|
|
expected[1] = testBounds;
|
|
|
|
if (rectFirst) {
|
|
|
|
expectedDirs[0] = SkPathPriv::kCW_FirstDirection;
|
|
|
|
} else {
|
|
|
|
expectedDirs[0] = SkPathPriv::kCCW_FirstDirection;
|
|
|
|
}
|
|
|
|
expectedDirs[1] = tests[testIndex].fDirection;
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, computed, computedDirs));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, expected[0] == computed[0]);
|
|
|
|
REPORTER_ASSERT(reporter, expected[1] == computed[1]);
|
|
|
|
REPORTER_ASSERT(reporter, expectedDirs[0] == SkPathPriv::AsFirstDirection(computedDirs[0]));
|
|
|
|
REPORTER_ASSERT(reporter, expectedDirs[1] == SkPathPriv::AsFirstDirection(computedDirs[1]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// fail, close then line
|
|
|
|
SkPath path1;
|
|
|
|
if (rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
path1.lineTo(1, 0);
|
|
|
|
if (!rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// fail, move in the middle
|
|
|
|
path1.reset();
|
|
|
|
if (rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
if (index == 2) {
|
|
|
|
path1.moveTo(1, .5f);
|
|
|
|
}
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
if (!rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// fail, move on the edge
|
|
|
|
path1.reset();
|
|
|
|
if (rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
path1.moveTo(r1[index - 1].fX, r1[index - 1].fY);
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
if (!rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// fail, quad
|
|
|
|
path1.reset();
|
|
|
|
if (rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
if (index == 2) {
|
|
|
|
path1.quadTo(1, .5f, 1, .5f);
|
|
|
|
}
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
if (!rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// fail, cubic
|
|
|
|
path1.reset();
|
|
|
|
if (rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
path1.moveTo(r1[0].fX, r1[0].fY);
|
|
|
|
for (index = 1; index < SkToInt(SK_ARRAY_COUNT(r1)); ++index) {
|
|
|
|
if (index == 2) {
|
|
|
|
path1.cubicTo(1, .5f, 1, .5f, 1, .5f);
|
|
|
|
}
|
|
|
|
path1.lineTo(r1[index].fX, r1[index].fY);
|
|
|
|
}
|
|
|
|
path1.close();
|
|
|
|
if (!rectFirst) {
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(-1, -1, 2, 2, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// fail, not nested
|
|
|
|
path1.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path1.addRect(1, 1, 3, 3, SkPathDirection::kCW);
|
|
|
|
path1.addRect(2, 2, 4, 4, SkPathDirection::kCW);
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, !SkPathPriv::IsNestedFillRects(path1, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// pass, constructed explicitly from manually closed rects specified as moves/lines.
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.lineTo(10, 0);
|
|
|
|
path.lineTo(10, 10);
|
|
|
|
path.lineTo(0, 10);
|
|
|
|
path.lineTo(0, 0);
|
|
|
|
path.moveTo(1, 1);
|
|
|
|
path.lineTo(9, 1);
|
|
|
|
path.lineTo(9, 9);
|
|
|
|
path.lineTo(1, 9);
|
|
|
|
path.lineTo(1, 1);
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(path, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// pass, stroke rect
|
|
|
|
SkPath src, dst;
|
2019-11-22 18:34:02 +00:00
|
|
|
src.addRect(1, 1, 7, 7, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
SkPaint strokePaint;
|
|
|
|
strokePaint.setStyle(SkPaint::kStroke_Style);
|
|
|
|
strokePaint.setStrokeWidth(2);
|
|
|
|
strokePaint.getFillPath(src, &dst);
|
2019-09-12 21:09:12 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::IsNestedFillRects(dst, nullptr));
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void write_and_read_back(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& p) {
|
|
|
|
SkWriter32 writer;
|
|
|
|
writer.writePath(p);
|
|
|
|
size_t size = writer.bytesWritten();
|
|
|
|
SkAutoMalloc storage(size);
|
|
|
|
writer.flatten(storage.get());
|
|
|
|
SkReader32 reader(storage.get(), size);
|
|
|
|
|
|
|
|
SkPath readBack;
|
|
|
|
REPORTER_ASSERT(reporter, readBack != p);
|
|
|
|
reader.readPath(&readBack);
|
|
|
|
REPORTER_ASSERT(reporter, readBack == p);
|
|
|
|
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, readBack.getConvexityTypeOrUnknown() ==
|
|
|
|
p.getConvexityTypeOrUnknown());
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
SkRect oval0, oval1;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir0, dir1;
|
2017-09-06 17:33:30 +00:00
|
|
|
unsigned start0, start1;
|
|
|
|
REPORTER_ASSERT(reporter, readBack.isOval(nullptr) == p.isOval(nullptr));
|
2018-02-20 18:57:05 +00:00
|
|
|
if (SkPathPriv::IsOval(p, &oval0, &dir0, &start0) &&
|
|
|
|
SkPathPriv::IsOval(readBack, &oval1, &dir1, &start1)) {
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, oval0 == oval1);
|
|
|
|
REPORTER_ASSERT(reporter, dir0 == dir1);
|
|
|
|
REPORTER_ASSERT(reporter, start0 == start1);
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, readBack.isRRect(nullptr) == p.isRRect(nullptr));
|
|
|
|
SkRRect rrect0, rrect1;
|
2018-02-20 18:57:05 +00:00
|
|
|
if (SkPathPriv::IsRRect(p, &rrect0, &dir0, &start0) &&
|
|
|
|
SkPathPriv::IsRRect(readBack, &rrect1, &dir1, &start1)) {
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, rrect0 == rrect1);
|
|
|
|
REPORTER_ASSERT(reporter, dir0 == dir1);
|
|
|
|
REPORTER_ASSERT(reporter, start0 == start1);
|
|
|
|
}
|
|
|
|
const SkRect& origBounds = p.getBounds();
|
|
|
|
const SkRect& readBackBounds = readBack.getBounds();
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, origBounds == readBackBounds);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_flattening(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
|
|
|
|
static const SkPoint pts[] = {
|
|
|
|
{ 0, 0 },
|
|
|
|
{ SkIntToScalar(10), SkIntToScalar(10) },
|
|
|
|
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 },
|
|
|
|
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }
|
|
|
|
};
|
|
|
|
p.moveTo(pts[0]);
|
|
|
|
p.lineTo(pts[1]);
|
|
|
|
p.quadTo(pts[2], pts[3]);
|
|
|
|
p.cubicTo(pts[4], pts[5], pts[6]);
|
|
|
|
|
|
|
|
write_and_read_back(reporter, p);
|
|
|
|
|
|
|
|
// create a buffer that should be much larger than the path so we don't
|
|
|
|
// kill our stack if writer goes too far.
|
|
|
|
char buffer[1024];
|
|
|
|
size_t size1 = p.writeToMemory(nullptr);
|
|
|
|
size_t size2 = p.writeToMemory(buffer);
|
|
|
|
REPORTER_ASSERT(reporter, size1 == size2);
|
|
|
|
|
|
|
|
SkPath p2;
|
|
|
|
size_t size3 = p2.readFromMemory(buffer, 1024);
|
|
|
|
REPORTER_ASSERT(reporter, size1 == size3);
|
|
|
|
REPORTER_ASSERT(reporter, p == p2);
|
|
|
|
|
|
|
|
size3 = p2.readFromMemory(buffer, 0);
|
|
|
|
REPORTER_ASSERT(reporter, !size3);
|
|
|
|
|
|
|
|
SkPath tooShort;
|
|
|
|
size3 = tooShort.readFromMemory(buffer, size1 - 1);
|
|
|
|
REPORTER_ASSERT(reporter, tooShort.isEmpty());
|
|
|
|
|
|
|
|
char buffer2[1024];
|
|
|
|
size3 = p2.writeToMemory(buffer2);
|
|
|
|
REPORTER_ASSERT(reporter, size1 == size3);
|
|
|
|
REPORTER_ASSERT(reporter, memcmp(buffer, buffer2, size1) == 0);
|
|
|
|
|
|
|
|
// test persistence of the oval flag & convexity
|
|
|
|
{
|
|
|
|
SkPath oval;
|
|
|
|
SkRect rect = SkRect::MakeWH(10, 10);
|
|
|
|
oval.addOval(rect);
|
|
|
|
|
|
|
|
write_and_read_back(reporter, oval);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_transform(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
|
|
|
|
#define CONIC_PERSPECTIVE_BUG_FIXED 0
|
|
|
|
static const SkPoint pts[] = {
|
|
|
|
{ 0, 0 }, // move
|
|
|
|
{ SkIntToScalar(10), SkIntToScalar(10) }, // line
|
|
|
|
{ SkIntToScalar(20), SkIntToScalar(10) }, { SkIntToScalar(20), 0 }, // quad
|
|
|
|
{ 0, 0 }, { 0, SkIntToScalar(10) }, { SkIntToScalar(1), SkIntToScalar(10) }, // cubic
|
|
|
|
#if CONIC_PERSPECTIVE_BUG_FIXED
|
|
|
|
{ 0, 0 }, { SkIntToScalar(20), SkIntToScalar(10) }, // conic
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
const int kPtCount = SK_ARRAY_COUNT(pts);
|
|
|
|
|
|
|
|
p.moveTo(pts[0]);
|
|
|
|
p.lineTo(pts[1]);
|
|
|
|
p.quadTo(pts[2], pts[3]);
|
|
|
|
p.cubicTo(pts[4], pts[5], pts[6]);
|
|
|
|
#if CONIC_PERSPECTIVE_BUG_FIXED
|
|
|
|
p.conicTo(pts[4], pts[5], 0.5f);
|
|
|
|
#endif
|
|
|
|
p.close();
|
|
|
|
|
|
|
|
{
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.reset();
|
|
|
|
SkPath p1;
|
|
|
|
p.transform(matrix, &p1);
|
|
|
|
REPORTER_ASSERT(reporter, p == p1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setScale(SK_Scalar1 * 2, SK_Scalar1 * 3);
|
|
|
|
|
|
|
|
SkPath p1; // Leave p1 non-unique (i.e., the empty path)
|
|
|
|
|
|
|
|
p.transform(matrix, &p1);
|
|
|
|
SkPoint pts1[kPtCount];
|
|
|
|
int count = p1.getPoints(pts1, kPtCount);
|
|
|
|
REPORTER_ASSERT(reporter, kPtCount == count);
|
|
|
|
for (int i = 0; i < count; ++i) {
|
|
|
|
SkPoint newPt = SkPoint::Make(pts[i].fX * 2, pts[i].fY * 3);
|
|
|
|
REPORTER_ASSERT(reporter, newPt == pts1[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.reset();
|
|
|
|
matrix.setPerspX(4);
|
|
|
|
|
|
|
|
SkPath p1;
|
|
|
|
p1.moveTo(SkPoint::Make(0, 0));
|
|
|
|
|
2019-12-12 19:48:28 +00:00
|
|
|
p.transform(matrix, &p1, SkApplyPerspectiveClip::kNo);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, matrix.invert(&matrix));
|
2019-12-12 19:48:28 +00:00
|
|
|
p1.transform(matrix, nullptr, SkApplyPerspectiveClip::kNo);
|
2017-09-06 17:33:30 +00:00
|
|
|
SkRect pBounds = p.getBounds();
|
|
|
|
SkRect p1Bounds = p1.getBounds();
|
|
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fLeft, p1Bounds.fLeft));
|
|
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fTop, p1Bounds.fTop));
|
|
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fRight, p1Bounds.fRight));
|
|
|
|
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(pBounds.fBottom, p1Bounds.fBottom));
|
|
|
|
}
|
|
|
|
|
|
|
|
p.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
p.addCircle(0, 0, 1, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
{
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.reset();
|
|
|
|
SkPath p1;
|
|
|
|
p1.moveTo(SkPoint::Make(0, 0));
|
|
|
|
|
|
|
|
p.transform(matrix, &p1);
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCW_FirstDirection));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.reset();
|
|
|
|
matrix.setScaleX(-1);
|
|
|
|
SkPath p1;
|
|
|
|
p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path)
|
|
|
|
|
|
|
|
p.transform(matrix, &p1);
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kCCW_FirstDirection));
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setAll(1, 1, 0, 1, 1, 0, 0, 0, 1);
|
|
|
|
SkPath p1;
|
|
|
|
p1.moveTo(SkPoint::Make(0, 0)); // Make p1 unique (i.e., not empty path)
|
|
|
|
|
|
|
|
p.transform(matrix, &p1);
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p1, SkPathPriv::kUnknown_FirstDirection));
|
|
|
|
}
|
2019-03-07 21:50:30 +00:00
|
|
|
|
|
|
|
{
|
|
|
|
SkPath p1;
|
|
|
|
p1.addRect({ 10, 20, 30, 40 });
|
|
|
|
SkPath p2;
|
|
|
|
p2.addRect({ 10, 20, 30, 40 });
|
|
|
|
uint32_t id1 = p1.getGenerationID();
|
|
|
|
uint32_t id2 = p2.getGenerationID();
|
2019-09-05 18:14:38 +00:00
|
|
|
REPORTER_ASSERT(reporter, id1 != id2);
|
2019-03-07 21:50:30 +00:00
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setScale(2, 2);
|
|
|
|
p1.transform(matrix, &p2);
|
2019-09-05 18:14:38 +00:00
|
|
|
REPORTER_ASSERT(reporter, id1 == p1.getGenerationID());
|
|
|
|
REPORTER_ASSERT(reporter, id2 != p2.getGenerationID());
|
2019-03-07 21:50:30 +00:00
|
|
|
p1.transform(matrix);
|
|
|
|
REPORTER_ASSERT(reporter, id1 != p1.getGenerationID());
|
|
|
|
}
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_zero_length_paths(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
uint8_t verbs[32];
|
|
|
|
|
|
|
|
struct SUPPRESS_VISIBILITY_WARNING zeroPathTestData {
|
|
|
|
const char* testPath;
|
|
|
|
const size_t numResultPts;
|
|
|
|
const SkRect resultBound;
|
|
|
|
const SkPath::Verb* resultVerbs;
|
|
|
|
const size_t numResultVerbs;
|
|
|
|
};
|
|
|
|
|
|
|
|
static const SkPath::Verb resultVerbs1[] = { SkPath::kMove_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs2[] = { SkPath::kMove_Verb, SkPath::kMove_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs3[] = { SkPath::kMove_Verb, SkPath::kClose_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs4[] = { SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs5[] = { SkPath::kMove_Verb, SkPath::kLine_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs6[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs7[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs8[] = {
|
|
|
|
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb
|
|
|
|
};
|
|
|
|
static const SkPath::Verb resultVerbs9[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs10[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs11[] = { SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs12[] = {
|
|
|
|
SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kQuad_Verb, SkPath::kClose_Verb
|
|
|
|
};
|
|
|
|
static const SkPath::Verb resultVerbs13[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs14[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs15[] = { SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs16[] = {
|
|
|
|
SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kCubic_Verb, SkPath::kClose_Verb
|
|
|
|
};
|
|
|
|
static const struct zeroPathTestData gZeroLengthTests[] = {
|
|
|
|
{ "M 1 1", 1, {1, 1, 1, 1}, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
|
|
|
|
{ "M 1 1 M 2 1", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
|
|
|
|
{ "M 1 1 z", 1, {1, 1, 1, 1}, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) },
|
|
|
|
{ "M 1 1 z M 2 1 z", 2, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs4, SK_ARRAY_COUNT(resultVerbs4) },
|
|
|
|
{ "M 1 1 L 1 1", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs5, SK_ARRAY_COUNT(resultVerbs5) },
|
|
|
|
{ "M 1 1 L 1 1 M 2 1 L 2 1", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs6, SK_ARRAY_COUNT(resultVerbs6) },
|
|
|
|
{ "M 1 1 L 1 1 z", 2, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs7, SK_ARRAY_COUNT(resultVerbs7) },
|
|
|
|
{ "M 1 1 L 1 1 z M 2 1 L 2 1 z", 4, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs8, SK_ARRAY_COUNT(resultVerbs8) },
|
|
|
|
{ "M 1 1 Q 1 1 1 1", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs9, SK_ARRAY_COUNT(resultVerbs9) },
|
|
|
|
{ "M 1 1 Q 1 1 1 1 M 2 1 Q 2 1 2 1", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs10, SK_ARRAY_COUNT(resultVerbs10) },
|
|
|
|
{ "M 1 1 Q 1 1 1 1 z", 3, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs11, SK_ARRAY_COUNT(resultVerbs11) },
|
|
|
|
{ "M 1 1 Q 1 1 1 1 z M 2 1 Q 2 1 2 1 z", 6, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs12, SK_ARRAY_COUNT(resultVerbs12) },
|
|
|
|
{ "M 1 1 C 1 1 1 1 1 1", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs13, SK_ARRAY_COUNT(resultVerbs13) },
|
|
|
|
{ "M 1 1 C 1 1 1 1 1 1 M 2 1 C 2 1 2 1 2 1", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs14,
|
|
|
|
SK_ARRAY_COUNT(resultVerbs14)
|
|
|
|
},
|
|
|
|
{ "M 1 1 C 1 1 1 1 1 1 z", 4, {SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1}, resultVerbs15, SK_ARRAY_COUNT(resultVerbs15) },
|
|
|
|
{ "M 1 1 C 1 1 1 1 1 1 z M 2 1 C 2 1 2 1 2 1 z", 8, {SK_Scalar1, SK_Scalar1, 2*SK_Scalar1, SK_Scalar1}, resultVerbs16,
|
|
|
|
SK_ARRAY_COUNT(resultVerbs16)
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gZeroLengthTests); ++i) {
|
|
|
|
p.reset();
|
|
|
|
bool valid = SkParsePath::FromSVGString(gZeroLengthTests[i].testPath, &p);
|
|
|
|
REPORTER_ASSERT(reporter, valid);
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultPts == (size_t)p.countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultBound == p.getBounds());
|
|
|
|
REPORTER_ASSERT(reporter, gZeroLengthTests[i].numResultVerbs == (size_t)p.getVerbs(verbs, SK_ARRAY_COUNT(verbs)));
|
|
|
|
for (size_t j = 0; j < gZeroLengthTests[i].numResultVerbs; ++j) {
|
|
|
|
REPORTER_ASSERT(reporter, gZeroLengthTests[i].resultVerbs[j] == verbs[j]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct SegmentInfo {
|
|
|
|
SkPath fPath;
|
|
|
|
int fPointCount;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define kCurveSegmentMask (SkPath::kQuad_SegmentMask | SkPath::kCubic_SegmentMask)
|
|
|
|
|
|
|
|
static void test_segment_masks(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p, p2;
|
|
|
|
|
|
|
|
p.moveTo(0, 0);
|
|
|
|
p.quadTo(100, 100, 200, 200);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == p.getSegmentMasks());
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
p2 = p;
|
|
|
|
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
|
|
|
|
p.cubicTo(100, 100, 200, 200, 300, 300);
|
|
|
|
REPORTER_ASSERT(reporter, kCurveSegmentMask == p.getSegmentMasks());
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
p2 = p;
|
|
|
|
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
|
|
|
|
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(0, 0);
|
|
|
|
p.cubicTo(100, 100, 200, 200, 300, 300);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == p.getSegmentMasks());
|
|
|
|
p2 = p;
|
|
|
|
REPORTER_ASSERT(reporter, p2.getSegmentMasks() == p.getSegmentMasks());
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_iter(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
SkPoint pts[4];
|
|
|
|
|
|
|
|
// Test an iterator with no path
|
|
|
|
SkPath::Iter noPathIter;
|
|
|
|
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Test that setting an empty path works
|
|
|
|
noPathIter.setPath(p, false);
|
|
|
|
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Test that close path makes no difference for an empty path
|
|
|
|
noPathIter.setPath(p, true);
|
|
|
|
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Test an iterator with an initial empty path
|
|
|
|
SkPath::Iter iter(p, false);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Test that close path makes no difference
|
|
|
|
iter.setPath(p, true);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
|
|
|
|
struct iterTestData {
|
|
|
|
const char* testPath;
|
|
|
|
const bool forceClose;
|
|
|
|
const size_t* numResultPtsPerVerb;
|
|
|
|
const SkPoint* resultPts;
|
|
|
|
const SkPath::Verb* resultVerbs;
|
|
|
|
const size_t numResultVerbs;
|
|
|
|
};
|
|
|
|
|
|
|
|
static const SkPath::Verb resultVerbs1[] = { SkPath::kDone_Verb };
|
|
|
|
static const SkPath::Verb resultVerbs2[] = {
|
|
|
|
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
|
|
|
|
};
|
2019-08-16 17:30:34 +00:00
|
|
|
static const SkPath::Verb resultVerbs3[] = {
|
2017-09-06 17:33:30 +00:00
|
|
|
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb, SkPath::kClose_Verb, SkPath::kDone_Verb
|
|
|
|
};
|
|
|
|
static const size_t resultPtsSizes1[] = { 0 };
|
2019-08-16 17:30:34 +00:00
|
|
|
static const size_t resultPtsSizes2[] = { 1, 2, 1, 1, 0 };
|
|
|
|
static const size_t resultPtsSizes3[] = { 1, 2, 1, 1, 1, 0 };
|
2017-09-06 17:33:30 +00:00
|
|
|
static const SkPoint* resultPts1 = nullptr;
|
|
|
|
static const SkPoint resultPts2[] = {
|
|
|
|
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
|
|
|
|
};
|
2019-08-16 17:30:34 +00:00
|
|
|
static const SkPoint resultPts3[] = {
|
2017-09-06 17:33:30 +00:00
|
|
|
{ SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { SK_Scalar1, 0 }, { 0, 0 }, { 0, 0 }
|
|
|
|
};
|
|
|
|
static const struct iterTestData gIterTests[] = {
|
2019-08-16 17:30:34 +00:00
|
|
|
{ "M 1 0", false, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
|
|
|
|
{ "z", false, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
|
|
|
|
{ "z", true, resultPtsSizes1, resultPts1, resultVerbs1, SK_ARRAY_COUNT(resultVerbs1) },
|
|
|
|
{ "M 1 0 L 1 0 M 0 0 z", false, resultPtsSizes2, resultPts2, resultVerbs2, SK_ARRAY_COUNT(resultVerbs2) },
|
|
|
|
{ "M 1 0 L 1 0 M 0 0 z", true, resultPtsSizes3, resultPts3, resultVerbs3, SK_ARRAY_COUNT(resultVerbs3) }
|
2017-09-06 17:33:30 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(gIterTests); ++i) {
|
|
|
|
p.reset();
|
|
|
|
bool valid = SkParsePath::FromSVGString(gIterTests[i].testPath, &p);
|
|
|
|
REPORTER_ASSERT(reporter, valid);
|
|
|
|
iter.setPath(p, gIterTests[i].forceClose);
|
|
|
|
int j = 0, l = 0;
|
|
|
|
do {
|
2019-08-16 17:30:34 +00:00
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == gIterTests[i].resultVerbs[j]);
|
2017-09-06 17:33:30 +00:00
|
|
|
for (int k = 0; k < (int)gIterTests[i].numResultPtsPerVerb[j]; ++k) {
|
|
|
|
REPORTER_ASSERT(reporter, pts[k] == gIterTests[i].resultPts[l++]);
|
|
|
|
}
|
|
|
|
} while (gIterTests[i].resultVerbs[j++] != SkPath::kDone_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, j == (int)gIterTests[i].numResultVerbs);
|
|
|
|
}
|
|
|
|
|
|
|
|
p.reset();
|
|
|
|
iter.setPath(p, false);
|
|
|
|
REPORTER_ASSERT(reporter, !iter.isClosedContour());
|
|
|
|
p.lineTo(1, 1);
|
|
|
|
p.close();
|
|
|
|
iter.setPath(p, false);
|
|
|
|
REPORTER_ASSERT(reporter, iter.isClosedContour());
|
|
|
|
p.reset();
|
|
|
|
iter.setPath(p, true);
|
|
|
|
REPORTER_ASSERT(reporter, !iter.isClosedContour());
|
|
|
|
p.lineTo(1, 1);
|
|
|
|
iter.setPath(p, true);
|
|
|
|
REPORTER_ASSERT(reporter, iter.isClosedContour());
|
|
|
|
p.moveTo(0, 0);
|
|
|
|
p.lineTo(2, 2);
|
|
|
|
iter.setPath(p, false);
|
|
|
|
REPORTER_ASSERT(reporter, !iter.isClosedContour());
|
|
|
|
|
|
|
|
// this checks to see if the NaN logic is executed in SkPath::autoClose(), but does not
|
|
|
|
// check to see if the result is correct.
|
|
|
|
for (int setNaN = 0; setNaN < 4; ++setNaN) {
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(setNaN == 0 ? SK_ScalarNaN : 0, setNaN == 1 ? SK_ScalarNaN : 0);
|
|
|
|
p.lineTo(setNaN == 2 ? SK_ScalarNaN : 1, setNaN == 3 ? SK_ScalarNaN : 1);
|
|
|
|
iter.setPath(p, true);
|
2019-08-16 17:30:34 +00:00
|
|
|
iter.next(pts);
|
|
|
|
iter.next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == iter.next(pts));
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
p.reset();
|
|
|
|
p.quadTo(0, 0, 0, 0);
|
|
|
|
iter.setPath(p, false);
|
2019-08-16 17:30:34 +00:00
|
|
|
iter.next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == iter.next(pts));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
p.reset();
|
|
|
|
p.conicTo(0, 0, 0, 0, 0.5f);
|
|
|
|
iter.setPath(p, false);
|
2019-08-16 17:30:34 +00:00
|
|
|
iter.next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
p.reset();
|
|
|
|
p.cubicTo(0, 0, 0, 0, 0, 0);
|
|
|
|
iter.setPath(p, false);
|
2019-08-16 17:30:34 +00:00
|
|
|
iter.next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
p.moveTo(1, 1); // add a trailing moveto
|
|
|
|
iter.setPath(p, false);
|
2019-08-16 17:30:34 +00:00
|
|
|
iter.next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == iter.next(pts));
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// The GM degeneratesegments.cpp test is more extensive
|
|
|
|
|
|
|
|
// Test out mixed degenerate and non-degenerate geometry with Conics
|
|
|
|
const SkVector radii[4] = { { 0, 0 }, { 0, 0 }, { 0, 0 }, { 100, 100 } };
|
|
|
|
SkRect r = SkRect::MakeWH(100, 100);
|
|
|
|
SkRRect rr;
|
|
|
|
rr.setRectRadii(r, radii);
|
|
|
|
p.reset();
|
|
|
|
p.addRRect(rr);
|
|
|
|
iter.setPath(p, false);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == iter.next(pts));
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts));
|
2019-08-16 17:30:34 +00:00
|
|
|
return;
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == iter.next(pts));
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == iter.next(pts));
|
|
|
|
REPORTER_ASSERT(reporter, SK_ScalarRoot2Over2 == iter.conicWeight());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_raw_iter(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
SkPoint pts[4];
|
|
|
|
|
|
|
|
// Test an iterator with no path
|
|
|
|
SkPath::RawIter noPathIter;
|
|
|
|
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
// Test that setting an empty path works
|
|
|
|
noPathIter.setPath(p);
|
|
|
|
REPORTER_ASSERT(reporter, noPathIter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Test an iterator with an initial empty path
|
|
|
|
SkPath::RawIter iter(p);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Test that a move-only path returns the move.
|
|
|
|
p.moveTo(SK_Scalar1, 0);
|
|
|
|
iter.setPath(p);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == 0);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// No matter how many moves we add, we should get them all back
|
|
|
|
p.moveTo(SK_Scalar1*2, SK_Scalar1);
|
|
|
|
p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
|
|
|
|
iter.setPath(p);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == 0);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Initial close is never ever stored
|
|
|
|
p.reset();
|
|
|
|
p.close();
|
|
|
|
iter.setPath(p);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Move/close sequences
|
|
|
|
p.reset();
|
|
|
|
p.close(); // Not stored, no purpose
|
|
|
|
p.moveTo(SK_Scalar1, 0);
|
|
|
|
p.close();
|
|
|
|
p.close(); // Not stored, no purpose
|
|
|
|
p.moveTo(SK_Scalar1*2, SK_Scalar1);
|
|
|
|
p.close();
|
|
|
|
p.moveTo(SK_Scalar1*3, SK_Scalar1*2);
|
|
|
|
p.moveTo(SK_Scalar1*4, SK_Scalar1*3);
|
|
|
|
p.close();
|
|
|
|
iter.setPath(p);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == 0);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*2);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*3);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*2);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == SK_Scalar1*4);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == SK_Scalar1*3);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kClose_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, iter.next(pts) == SkPath::kDone_Verb);
|
|
|
|
|
|
|
|
// Generate random paths and verify
|
|
|
|
SkPoint randomPts[25];
|
|
|
|
for (int i = 0; i < 5; ++i) {
|
|
|
|
for (int j = 0; j < 5; ++j) {
|
|
|
|
randomPts[i*5+j].set(SK_Scalar1*i, SK_Scalar1*j);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Max of 10 segments, max 3 points per segment
|
|
|
|
SkRandom rand(9876543);
|
|
|
|
SkPoint expectedPts[31]; // May have leading moveTo
|
|
|
|
SkPath::Verb expectedVerbs[22]; // May have leading moveTo
|
|
|
|
SkPath::Verb nextVerb;
|
|
|
|
|
|
|
|
for (int i = 0; i < 500; ++i) {
|
|
|
|
p.reset();
|
|
|
|
bool lastWasClose = true;
|
|
|
|
bool haveMoveTo = false;
|
|
|
|
SkPoint lastMoveToPt = { 0, 0 };
|
|
|
|
int numPoints = 0;
|
|
|
|
int numVerbs = (rand.nextU() >> 16) % 10;
|
|
|
|
int numIterVerbs = 0;
|
|
|
|
for (int j = 0; j < numVerbs; ++j) {
|
|
|
|
do {
|
|
|
|
nextVerb = static_cast<SkPath::Verb>((rand.nextU() >> 16) % SkPath::kDone_Verb);
|
|
|
|
} while (lastWasClose && nextVerb == SkPath::kClose_Verb);
|
|
|
|
switch (nextVerb) {
|
|
|
|
case SkPath::kMove_Verb:
|
|
|
|
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
p.moveTo(expectedPts[numPoints]);
|
|
|
|
lastMoveToPt = expectedPts[numPoints];
|
|
|
|
numPoints += 1;
|
|
|
|
lastWasClose = false;
|
|
|
|
haveMoveTo = true;
|
|
|
|
break;
|
|
|
|
case SkPath::kLine_Verb:
|
|
|
|
if (!haveMoveTo) {
|
|
|
|
expectedPts[numPoints++] = lastMoveToPt;
|
|
|
|
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
|
|
|
|
haveMoveTo = true;
|
|
|
|
}
|
|
|
|
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
p.lineTo(expectedPts[numPoints]);
|
|
|
|
numPoints += 1;
|
|
|
|
lastWasClose = false;
|
|
|
|
break;
|
|
|
|
case SkPath::kQuad_Verb:
|
|
|
|
if (!haveMoveTo) {
|
|
|
|
expectedPts[numPoints++] = lastMoveToPt;
|
|
|
|
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
|
|
|
|
haveMoveTo = true;
|
|
|
|
}
|
|
|
|
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
p.quadTo(expectedPts[numPoints], expectedPts[numPoints + 1]);
|
|
|
|
numPoints += 2;
|
|
|
|
lastWasClose = false;
|
|
|
|
break;
|
|
|
|
case SkPath::kConic_Verb:
|
|
|
|
if (!haveMoveTo) {
|
|
|
|
expectedPts[numPoints++] = lastMoveToPt;
|
|
|
|
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
|
|
|
|
haveMoveTo = true;
|
|
|
|
}
|
|
|
|
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
p.conicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
|
|
|
|
rand.nextUScalar1() * 4);
|
|
|
|
numPoints += 2;
|
|
|
|
lastWasClose = false;
|
|
|
|
break;
|
|
|
|
case SkPath::kCubic_Verb:
|
|
|
|
if (!haveMoveTo) {
|
|
|
|
expectedPts[numPoints++] = lastMoveToPt;
|
|
|
|
expectedVerbs[numIterVerbs++] = SkPath::kMove_Verb;
|
|
|
|
haveMoveTo = true;
|
|
|
|
}
|
|
|
|
expectedPts[numPoints] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
expectedPts[numPoints + 1] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
expectedPts[numPoints + 2] = randomPts[(rand.nextU() >> 16) % 25];
|
|
|
|
p.cubicTo(expectedPts[numPoints], expectedPts[numPoints + 1],
|
|
|
|
expectedPts[numPoints + 2]);
|
|
|
|
numPoints += 3;
|
|
|
|
lastWasClose = false;
|
|
|
|
break;
|
|
|
|
case SkPath::kClose_Verb:
|
|
|
|
p.close();
|
|
|
|
haveMoveTo = false;
|
|
|
|
lastWasClose = true;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
SkDEBUGFAIL("unexpected verb");
|
|
|
|
}
|
|
|
|
expectedVerbs[numIterVerbs++] = nextVerb;
|
|
|
|
}
|
|
|
|
|
|
|
|
iter.setPath(p);
|
|
|
|
numVerbs = numIterVerbs;
|
|
|
|
numIterVerbs = 0;
|
|
|
|
int numIterPts = 0;
|
|
|
|
SkPoint lastMoveTo;
|
|
|
|
SkPoint lastPt;
|
|
|
|
lastMoveTo.set(0, 0);
|
|
|
|
lastPt.set(0, 0);
|
|
|
|
while ((nextVerb = iter.next(pts)) != SkPath::kDone_Verb) {
|
|
|
|
REPORTER_ASSERT(reporter, nextVerb == expectedVerbs[numIterVerbs]);
|
|
|
|
numIterVerbs++;
|
|
|
|
switch (nextVerb) {
|
|
|
|
case SkPath::kMove_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, numIterPts < numPoints);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0] == expectedPts[numIterPts]);
|
|
|
|
lastPt = lastMoveTo = pts[0];
|
|
|
|
numIterPts += 1;
|
|
|
|
break;
|
|
|
|
case SkPath::kLine_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, numIterPts < numPoints + 1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0] == lastPt);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
|
|
|
|
lastPt = pts[1];
|
|
|
|
numIterPts += 1;
|
|
|
|
break;
|
|
|
|
case SkPath::kQuad_Verb:
|
|
|
|
case SkPath::kConic_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, numIterPts < numPoints + 2);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0] == lastPt);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
|
|
|
|
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
|
|
|
|
lastPt = pts[2];
|
|
|
|
numIterPts += 2;
|
|
|
|
break;
|
|
|
|
case SkPath::kCubic_Verb:
|
|
|
|
REPORTER_ASSERT(reporter, numIterPts < numPoints + 3);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0] == lastPt);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1] == expectedPts[numIterPts]);
|
|
|
|
REPORTER_ASSERT(reporter, pts[2] == expectedPts[numIterPts + 1]);
|
|
|
|
REPORTER_ASSERT(reporter, pts[3] == expectedPts[numIterPts + 2]);
|
|
|
|
lastPt = pts[3];
|
|
|
|
numIterPts += 3;
|
|
|
|
break;
|
|
|
|
case SkPath::kClose_Verb:
|
|
|
|
lastPt = lastMoveTo;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
SkDEBUGFAIL("unexpected verb");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, numIterPts == numPoints);
|
|
|
|
REPORTER_ASSERT(reporter, numIterVerbs == numVerbs);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_for_circle(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
bool expectedCircle,
|
|
|
|
SkPathPriv::FirstDirection expectedDir) {
|
|
|
|
SkRect rect = SkRect::MakeEmpty();
|
|
|
|
REPORTER_ASSERT(reporter, path.isOval(&rect) == expectedCircle);
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection isOvalDir;
|
2017-09-06 17:33:30 +00:00
|
|
|
unsigned isOvalStart;
|
2018-02-20 18:57:05 +00:00
|
|
|
if (SkPathPriv::IsOval(path, &rect, &isOvalDir, &isOvalStart)) {
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect.height() == rect.width());
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::AsFirstDirection(isOvalDir) == expectedDir);
|
|
|
|
SkPath tmpPath;
|
|
|
|
tmpPath.addOval(rect, isOvalDir, isOvalStart);
|
|
|
|
REPORTER_ASSERT(reporter, path == tmpPath);
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(path, expectedDir));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_skew(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection dir) {
|
|
|
|
SkPath tmp;
|
|
|
|
|
|
|
|
SkMatrix m;
|
|
|
|
m.setSkew(SkIntToScalar(3), SkIntToScalar(5));
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
// this matrix reverses the direction.
|
|
|
|
if (SkPathPriv::kCCW_FirstDirection == dir) {
|
|
|
|
dir = SkPathPriv::kCW_FirstDirection;
|
|
|
|
} else {
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::kCW_FirstDirection == dir);
|
|
|
|
dir = SkPathPriv::kCCW_FirstDirection;
|
|
|
|
}
|
|
|
|
check_for_circle(reporter, tmp, false, dir);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_translate(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection dir) {
|
|
|
|
SkPath tmp;
|
|
|
|
|
|
|
|
// translate at small offset
|
|
|
|
SkMatrix m;
|
|
|
|
m.setTranslate(SkIntToScalar(15), SkIntToScalar(15));
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
check_for_circle(reporter, tmp, true, dir);
|
|
|
|
|
|
|
|
tmp.reset();
|
|
|
|
m.reset();
|
|
|
|
|
|
|
|
// translate at a relatively big offset
|
|
|
|
m.setTranslate(SkIntToScalar(1000), SkIntToScalar(1000));
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
check_for_circle(reporter, tmp, true, dir);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_rotate(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection dir) {
|
|
|
|
for (int angle = 0; angle < 360; ++angle) {
|
|
|
|
SkPath tmp;
|
|
|
|
SkMatrix m;
|
|
|
|
m.setRotate(SkIntToScalar(angle));
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
|
|
|
|
// TODO: a rotated circle whose rotated angle is not a multiple of 90
|
|
|
|
// degrees is not an oval anymore, this can be improved. we made this
|
|
|
|
// for the simplicity of our implementation.
|
|
|
|
if (angle % 90 == 0) {
|
|
|
|
check_for_circle(reporter, tmp, true, dir);
|
|
|
|
} else {
|
|
|
|
check_for_circle(reporter, tmp, false, dir);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_mirror_x(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection dir) {
|
|
|
|
SkPath tmp;
|
|
|
|
SkMatrix m;
|
|
|
|
m.reset();
|
|
|
|
m.setScaleX(-SK_Scalar1);
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
if (SkPathPriv::kCW_FirstDirection == dir) {
|
|
|
|
dir = SkPathPriv::kCCW_FirstDirection;
|
|
|
|
} else {
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir);
|
|
|
|
dir = SkPathPriv::kCW_FirstDirection;
|
|
|
|
}
|
|
|
|
check_for_circle(reporter, tmp, true, dir);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_mirror_y(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection dir) {
|
|
|
|
SkPath tmp;
|
|
|
|
SkMatrix m;
|
|
|
|
m.reset();
|
|
|
|
m.setScaleY(-SK_Scalar1);
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
|
|
|
|
if (SkPathPriv::kCW_FirstDirection == dir) {
|
|
|
|
dir = SkPathPriv::kCCW_FirstDirection;
|
|
|
|
} else {
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::kCCW_FirstDirection == dir);
|
|
|
|
dir = SkPathPriv::kCW_FirstDirection;
|
|
|
|
}
|
|
|
|
|
|
|
|
check_for_circle(reporter, tmp, true, dir);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_mirror_xy(skiatest::Reporter* reporter,
|
|
|
|
const SkPath& path,
|
|
|
|
SkPathPriv::FirstDirection dir) {
|
|
|
|
SkPath tmp;
|
|
|
|
SkMatrix m;
|
|
|
|
m.reset();
|
|
|
|
m.setScaleX(-SK_Scalar1);
|
|
|
|
m.setScaleY(-SK_Scalar1);
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
|
|
|
|
check_for_circle(reporter, tmp, true, dir);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_with_direction(skiatest::Reporter* reporter,
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection inDir) {
|
2017-09-06 17:33:30 +00:00
|
|
|
const SkPathPriv::FirstDirection dir = SkPathPriv::AsFirstDirection(inDir);
|
|
|
|
SkPath path;
|
|
|
|
|
|
|
|
// circle at origin
|
|
|
|
path.addCircle(0, 0, SkIntToScalar(20), inDir);
|
|
|
|
|
|
|
|
check_for_circle(reporter, path, true, dir);
|
|
|
|
test_circle_rotate(reporter, path, dir);
|
|
|
|
test_circle_translate(reporter, path, dir);
|
|
|
|
test_circle_skew(reporter, path, dir);
|
|
|
|
test_circle_mirror_x(reporter, path, dir);
|
|
|
|
test_circle_mirror_y(reporter, path, dir);
|
|
|
|
test_circle_mirror_xy(reporter, path, dir);
|
|
|
|
|
|
|
|
// circle at an offset at (10, 10)
|
|
|
|
path.reset();
|
|
|
|
path.addCircle(SkIntToScalar(10), SkIntToScalar(10),
|
|
|
|
SkIntToScalar(20), inDir);
|
|
|
|
|
|
|
|
check_for_circle(reporter, path, true, dir);
|
|
|
|
test_circle_rotate(reporter, path, dir);
|
|
|
|
test_circle_translate(reporter, path, dir);
|
|
|
|
test_circle_skew(reporter, path, dir);
|
|
|
|
test_circle_mirror_x(reporter, path, dir);
|
|
|
|
test_circle_mirror_y(reporter, path, dir);
|
|
|
|
test_circle_mirror_xy(reporter, path, dir);
|
|
|
|
|
|
|
|
// Try different starting points for the contour.
|
|
|
|
for (unsigned start = 0; start < 4; ++start) {
|
|
|
|
path.reset();
|
|
|
|
path.addOval(SkRect::MakeXYWH(20, 10, 5, 5), inDir, start);
|
|
|
|
test_circle_rotate(reporter, path, dir);
|
|
|
|
test_circle_translate(reporter, path, dir);
|
|
|
|
test_circle_skew(reporter, path, dir);
|
|
|
|
test_circle_mirror_x(reporter, path, dir);
|
|
|
|
test_circle_mirror_y(reporter, path, dir);
|
|
|
|
test_circle_mirror_xy(reporter, path, dir);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle_with_add_paths(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
SkPath circle;
|
|
|
|
SkPath rect;
|
|
|
|
SkPath empty;
|
|
|
|
|
2019-11-22 18:34:02 +00:00
|
|
|
const SkPathDirection kCircleDir = SkPathDirection::kCW;
|
|
|
|
const SkPathDirection kCircleDirOpposite = SkPathDirection::kCCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
circle.addCircle(0, 0, SkIntToScalar(10), kCircleDir);
|
|
|
|
rect.addRect(SkIntToScalar(5), SkIntToScalar(5),
|
2019-11-22 18:34:02 +00:00
|
|
|
SkIntToScalar(20), SkIntToScalar(20), SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
SkMatrix translate;
|
|
|
|
translate.setTranslate(SkIntToScalar(12), SkIntToScalar(12));
|
|
|
|
|
|
|
|
// Although all the path concatenation related operations leave
|
|
|
|
// the path a circle, most mark it as a non-circle for simplicity
|
|
|
|
|
|
|
|
// empty + circle (translate)
|
|
|
|
path = empty;
|
|
|
|
path.addPath(circle, translate);
|
|
|
|
check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDir));
|
|
|
|
|
|
|
|
// circle + empty (translate)
|
|
|
|
path = circle;
|
|
|
|
path.addPath(empty, translate);
|
|
|
|
|
|
|
|
check_for_circle(reporter, path, true, SkPathPriv::AsFirstDirection(kCircleDir));
|
|
|
|
|
|
|
|
// test reverseAddPath
|
|
|
|
path = circle;
|
|
|
|
path.reverseAddPath(rect);
|
|
|
|
check_for_circle(reporter, path, false, SkPathPriv::AsFirstDirection(kCircleDirOpposite));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_circle(skiatest::Reporter* reporter) {
|
2019-11-22 18:34:02 +00:00
|
|
|
test_circle_with_direction(reporter, SkPathDirection::kCW);
|
|
|
|
test_circle_with_direction(reporter, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// multiple addCircle()
|
|
|
|
SkPath path;
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW);
|
|
|
|
path.addCircle(0, 0, SkIntToScalar(20), SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
// some extra lineTo() would make isOval() fail
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.lineTo(0, 0);
|
|
|
|
check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
// not back to the original point
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addCircle(0, 0, SkIntToScalar(10), SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
path.setLastPt(SkIntToScalar(5), SkIntToScalar(5));
|
|
|
|
check_for_circle(reporter, path, false, SkPathPriv::kCW_FirstDirection);
|
|
|
|
|
|
|
|
test_circle_with_add_paths(reporter);
|
|
|
|
|
|
|
|
// test negative radius
|
|
|
|
path.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
path.addCircle(0, 0, -1, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_oval(skiatest::Reporter* reporter) {
|
|
|
|
SkRect rect;
|
|
|
|
SkMatrix m;
|
|
|
|
SkPath path;
|
|
|
|
unsigned start = 0;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir = SkPathDirection::kCCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
rect = SkRect::MakeWH(SkIntToScalar(30), SkIntToScalar(50));
|
|
|
|
path.addOval(rect);
|
|
|
|
|
|
|
|
// Defaults to dir = CW and start = 1
|
|
|
|
REPORTER_ASSERT(reporter, path.isOval(nullptr));
|
|
|
|
|
|
|
|
m.setRotate(SkIntToScalar(90));
|
|
|
|
SkPath tmp;
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
// an oval rotated 90 degrees is still an oval. The start index changes from 1 to 2. Direction
|
|
|
|
// is unchanged.
|
2018-02-20 18:57:05 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::IsOval(tmp, nullptr, &dir, &start));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, 2 == start);
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
m.reset();
|
|
|
|
m.setRotate(SkIntToScalar(30));
|
|
|
|
tmp.reset();
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
// an oval rotated 30 degrees is not an oval anymore.
|
|
|
|
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
|
|
|
|
|
|
|
|
// since empty path being transformed.
|
|
|
|
path.reset();
|
|
|
|
tmp.reset();
|
|
|
|
m.reset();
|
|
|
|
path.transform(m, &tmp);
|
|
|
|
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
|
|
|
|
|
|
|
|
// empty path is not an oval
|
|
|
|
tmp.reset();
|
|
|
|
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
|
|
|
|
|
|
|
|
// only has moveTo()s
|
|
|
|
tmp.reset();
|
|
|
|
tmp.moveTo(0, 0);
|
|
|
|
tmp.moveTo(SkIntToScalar(10), SkIntToScalar(10));
|
|
|
|
REPORTER_ASSERT(reporter, !tmp.isOval(nullptr));
|
|
|
|
|
|
|
|
// mimic WebKit's calling convention,
|
|
|
|
// call moveTo() first and then call addOval()
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.addOval(rect);
|
|
|
|
REPORTER_ASSERT(reporter, path.isOval(nullptr));
|
|
|
|
|
|
|
|
// copy path
|
|
|
|
path.reset();
|
|
|
|
tmp.reset();
|
|
|
|
tmp.addOval(rect);
|
|
|
|
path = tmp;
|
2018-02-20 18:57:05 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::IsOval(path, nullptr, &dir, &start));
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, 1 == start);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_empty(skiatest::Reporter* reporter, const SkPath& p) {
|
|
|
|
SkPath empty;
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, p.isEmpty());
|
|
|
|
REPORTER_ASSERT(reporter, 0 == p.countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, 0 == p.countVerbs());
|
|
|
|
REPORTER_ASSERT(reporter, 0 == p.getSegmentMasks());
|
|
|
|
REPORTER_ASSERT(reporter, p.isConvex());
|
2019-12-03 21:26:15 +00:00
|
|
|
REPORTER_ASSERT(reporter, p.getFillType() == SkPathFillType::kWinding);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !p.isInverseFillType());
|
|
|
|
REPORTER_ASSERT(reporter, p == empty);
|
|
|
|
REPORTER_ASSERT(reporter, !(p != empty));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_rrect_is_convex(skiatest::Reporter* reporter, SkPath* path,
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir) {
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, path->isConvex());
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir)));
|
2019-11-22 18:34:02 +00:00
|
|
|
path->setConvexityType(SkPathConvexityType::kUnknown);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, path->isConvex());
|
|
|
|
path->reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_rrect_convexity_is_unknown(skiatest::Reporter* reporter, SkPath* path,
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir) {
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, path->isConvex());
|
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(*path, SkPathPriv::AsFirstDirection(dir)));
|
2019-11-22 18:34:02 +00:00
|
|
|
path->setConvexityType(SkPathConvexityType::kUnknown);
|
|
|
|
REPORTER_ASSERT(reporter, path->getConvexityType() == SkPathConvexityType::kConcave);
|
2017-09-06 17:33:30 +00:00
|
|
|
path->reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_rrect(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
SkRRect rr;
|
|
|
|
SkVector radii[] = {{1, 2}, {3, 4}, {5, 6}, {7, 8}};
|
|
|
|
SkRect r = {10, 20, 30, 40};
|
|
|
|
rr.setRectRadii(r, radii);
|
|
|
|
p.addRRect(rr);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
|
|
|
|
p.addRRect(rr, SkPathDirection::kCCW);
|
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.addRoundRect(r, &radii[0].fX);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
|
|
|
|
p.addRoundRect(r, &radii[0].fX, SkPathDirection::kCCW);
|
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.addRoundRect(r, radii[1].fX, radii[1].fY);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
|
|
|
|
p.addRoundRect(r, radii[1].fX, radii[1].fY, SkPathDirection::kCCW);
|
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
for (size_t i = 0; i < SK_ARRAY_COUNT(radii); ++i) {
|
|
|
|
SkVector save = radii[i];
|
|
|
|
radii[i].set(0, 0);
|
|
|
|
rr.setRectRadii(r, radii);
|
|
|
|
p.addRRect(rr);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
radii[i] = save;
|
|
|
|
}
|
|
|
|
p.addRoundRect(r, 0, 0);
|
|
|
|
SkRect returnedRect;
|
|
|
|
REPORTER_ASSERT(reporter, p.isRect(&returnedRect));
|
|
|
|
REPORTER_ASSERT(reporter, returnedRect == r);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
SkVector zeroRadii[] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}};
|
|
|
|
rr.setRectRadii(r, zeroRadii);
|
|
|
|
p.addRRect(rr);
|
|
|
|
bool closed;
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection dir;
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, p.isRect(nullptr, &closed, &dir));
|
|
|
|
REPORTER_ASSERT(reporter, closed);
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathDirection::kCW == dir);
|
|
|
|
test_rrect_is_convex(reporter, &p, SkPathDirection::kCW);
|
|
|
|
p.addRRect(rr, SkPathDirection::kCW);
|
|
|
|
p.addRRect(rr, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !p.isConvex());
|
|
|
|
p.reset();
|
2019-11-22 18:34:02 +00:00
|
|
|
p.addRRect(rr, SkPathDirection::kCCW);
|
|
|
|
p.addRRect(rr, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !p.isConvex());
|
|
|
|
p.reset();
|
|
|
|
SkRect emptyR = {10, 20, 10, 30};
|
|
|
|
rr.setRectRadii(emptyR, radii);
|
|
|
|
p.addRRect(rr);
|
2017-12-15 16:31:05 +00:00
|
|
|
// The round rect is "empty" in that it has no fill area. However,
|
|
|
|
// the path isn't "empty" in that it should have verbs and points.
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
p.reset();
|
2017-09-06 17:33:30 +00:00
|
|
|
SkRect largeR = {0, 0, SK_ScalarMax, SK_ScalarMax};
|
|
|
|
rr.setRectRadii(largeR, radii);
|
|
|
|
p.addRRect(rr);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_convexity_is_unknown(reporter, &p, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
// we check for non-finites
|
|
|
|
SkRect infR = {0, 0, SK_ScalarMax, SK_ScalarInfinity};
|
|
|
|
rr.setRectRadii(infR, radii);
|
|
|
|
REPORTER_ASSERT(reporter, rr.isEmpty());
|
|
|
|
|
2019-08-20 19:35:26 +00:00
|
|
|
// We consider any path with very small (numerically unstable) edges to be concave.
|
2017-09-06 17:33:30 +00:00
|
|
|
SkRect tinyR = {0, 0, 1e-9f, 1e-9f};
|
|
|
|
p.addRoundRect(tinyR, 5e-11f, 5e-11f);
|
2019-11-22 18:34:02 +00:00
|
|
|
test_rrect_convexity_is_unknown(reporter, &p, SkPathDirection::kCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_arc(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
SkRect emptyOval = {10, 20, 30, 20};
|
|
|
|
REPORTER_ASSERT(reporter, emptyOval.isEmpty());
|
|
|
|
p.addArc(emptyOval, 1, 2);
|
|
|
|
REPORTER_ASSERT(reporter, p.isEmpty());
|
|
|
|
p.reset();
|
|
|
|
SkRect oval = {10, 20, 30, 40};
|
|
|
|
p.addArc(oval, 1, 0);
|
|
|
|
REPORTER_ASSERT(reporter, p.isEmpty());
|
|
|
|
p.reset();
|
|
|
|
SkPath cwOval;
|
|
|
|
cwOval.addOval(oval);
|
|
|
|
p.addArc(oval, 0, 360);
|
|
|
|
REPORTER_ASSERT(reporter, p == cwOval);
|
|
|
|
p.reset();
|
|
|
|
SkPath ccwOval;
|
2019-11-22 18:34:02 +00:00
|
|
|
ccwOval.addOval(oval, SkPathDirection::kCCW);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.addArc(oval, 0, -360);
|
|
|
|
REPORTER_ASSERT(reporter, p == ccwOval);
|
|
|
|
p.reset();
|
|
|
|
p.addArc(oval, 1, 180);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
// diagonal colinear points make arc convex
|
|
|
|
// TODO: one way to keep it concave would be to introduce interpolated on curve points
|
|
|
|
// between control points and computing the on curve point at scan conversion time
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, p.getConvexityType() == SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, SkPathPriv::CheapIsFirstDirection(p, SkPathPriv::kCW_FirstDirection));
|
2019-11-22 18:34:02 +00:00
|
|
|
p.setConvexityType(SkPathConvexityType::kUnknown);
|
|
|
|
REPORTER_ASSERT(reporter, p.getConvexityType() == SkPathConvexityType::kConvex);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static inline SkScalar oval_start_index_to_angle(unsigned start) {
|
|
|
|
switch (start) {
|
|
|
|
case 0:
|
|
|
|
return 270.f;
|
|
|
|
case 1:
|
|
|
|
return 0.f;
|
|
|
|
case 2:
|
|
|
|
return 90.f;
|
|
|
|
case 3:
|
|
|
|
return 180.f;
|
|
|
|
default:
|
|
|
|
return -1.f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline SkScalar canonical_start_angle(float angle) {
|
|
|
|
while (angle < 0.f) {
|
|
|
|
angle += 360.f;
|
|
|
|
}
|
|
|
|
while (angle >= 360.f) {
|
|
|
|
angle -= 360.f;
|
|
|
|
}
|
|
|
|
return angle;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_oval_arc(skiatest::Reporter* reporter, SkScalar start, SkScalar sweep,
|
|
|
|
const SkPath& path) {
|
|
|
|
SkRect r = SkRect::MakeEmpty();
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathDirection d = SkPathDirection::kCCW;
|
2017-09-06 17:33:30 +00:00
|
|
|
unsigned s = ~0U;
|
2018-02-20 18:57:05 +00:00
|
|
|
bool isOval = SkPathPriv::IsOval(path, &r, &d, &s);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, isOval);
|
|
|
|
SkPath recreatedPath;
|
|
|
|
recreatedPath.addOval(r, d, s);
|
|
|
|
REPORTER_ASSERT(reporter, path == recreatedPath);
|
|
|
|
REPORTER_ASSERT(reporter, oval_start_index_to_angle(s) == canonical_start_angle(start));
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, (SkPathDirection::kCW == d) == (sweep > 0.f));
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_arc_ovals(skiatest::Reporter* reporter) {
|
|
|
|
SkRect oval = SkRect::MakeWH(10, 20);
|
|
|
|
for (SkScalar sweep : {-720.f, -540.f, -360.f, 360.f, 432.f, 720.f}) {
|
|
|
|
for (SkScalar start = -360.f; start <= 360.f; start += 1.f) {
|
|
|
|
SkPath path;
|
|
|
|
path.addArc(oval, start, sweep);
|
|
|
|
// SkPath's interfaces for inserting and extracting ovals only allow contours
|
|
|
|
// to start at multiples of 90 degrees.
|
|
|
|
if (std::fmod(start, 90.f) == 0) {
|
|
|
|
check_oval_arc(reporter, start, sweep, path);
|
|
|
|
} else {
|
|
|
|
REPORTER_ASSERT(reporter, !path.isOval(nullptr));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Test start angles that are nearly at valid oval start angles.
|
|
|
|
for (float start : {-180.f, -90.f, 90.f, 180.f}) {
|
|
|
|
for (float delta : {-SK_ScalarNearlyZero, SK_ScalarNearlyZero}) {
|
|
|
|
SkPath path;
|
|
|
|
path.addArc(oval, start + delta, sweep);
|
|
|
|
check_oval_arc(reporter, start, sweep, path);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_move(skiatest::Reporter* reporter, SkPath::RawIter* iter,
|
|
|
|
SkScalar x0, SkScalar y0) {
|
|
|
|
SkPoint pts[4];
|
|
|
|
SkPath::Verb v = iter->next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, v == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fX == x0);
|
|
|
|
REPORTER_ASSERT(reporter, pts[0].fY == y0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_line(skiatest::Reporter* reporter, SkPath::RawIter* iter,
|
|
|
|
SkScalar x1, SkScalar y1) {
|
|
|
|
SkPoint pts[4];
|
|
|
|
SkPath::Verb v = iter->next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, v == SkPath::kLine_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].fX == x1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].fY == y1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_quad(skiatest::Reporter* reporter, SkPath::RawIter* iter,
|
|
|
|
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
|
|
|
|
SkPoint pts[4];
|
|
|
|
SkPath::Verb v = iter->next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, v == SkPath::kQuad_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].fX == x1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[1].fY == y1);
|
|
|
|
REPORTER_ASSERT(reporter, pts[2].fX == x2);
|
|
|
|
REPORTER_ASSERT(reporter, pts[2].fY == y2);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_done(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) {
|
|
|
|
SkPoint pts[4];
|
|
|
|
SkPath::Verb v = iter->next(pts);
|
|
|
|
REPORTER_ASSERT(reporter, v == SkPath::kDone_Verb);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_done_and_reset(skiatest::Reporter* reporter, SkPath* p, SkPath::RawIter* iter) {
|
|
|
|
check_done(reporter, p, iter);
|
|
|
|
p->reset();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_path_is_move_and_reset(skiatest::Reporter* reporter, SkPath* p,
|
|
|
|
SkScalar x0, SkScalar y0) {
|
|
|
|
SkPath::RawIter iter(*p);
|
|
|
|
check_move(reporter, &iter, x0, y0);
|
|
|
|
check_done_and_reset(reporter, p, &iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_path_is_line_and_reset(skiatest::Reporter* reporter, SkPath* p,
|
|
|
|
SkScalar x1, SkScalar y1) {
|
|
|
|
SkPath::RawIter iter(*p);
|
|
|
|
check_move(reporter, &iter, 0, 0);
|
|
|
|
check_line(reporter, &iter, x1, y1);
|
|
|
|
check_done_and_reset(reporter, p, &iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_path_is_line(skiatest::Reporter* reporter, SkPath* p,
|
|
|
|
SkScalar x1, SkScalar y1) {
|
|
|
|
SkPath::RawIter iter(*p);
|
|
|
|
check_move(reporter, &iter, 0, 0);
|
|
|
|
check_line(reporter, &iter, x1, y1);
|
|
|
|
check_done(reporter, p, &iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_path_is_line_pair_and_reset(skiatest::Reporter* reporter, SkPath* p,
|
|
|
|
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
|
|
|
|
SkPath::RawIter iter(*p);
|
|
|
|
check_move(reporter, &iter, 0, 0);
|
|
|
|
check_line(reporter, &iter, x1, y1);
|
|
|
|
check_line(reporter, &iter, x2, y2);
|
|
|
|
check_done_and_reset(reporter, p, &iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void check_path_is_quad_and_reset(skiatest::Reporter* reporter, SkPath* p,
|
|
|
|
SkScalar x1, SkScalar y1, SkScalar x2, SkScalar y2) {
|
|
|
|
SkPath::RawIter iter(*p);
|
|
|
|
check_move(reporter, &iter, 0, 0);
|
|
|
|
check_quad(reporter, &iter, x1, y1, x2, y2);
|
|
|
|
check_done_and_reset(reporter, p, &iter);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool nearly_equal(const SkRect& a, const SkRect& b) {
|
|
|
|
return SkScalarNearlyEqual(a.fLeft, b.fLeft) &&
|
|
|
|
SkScalarNearlyEqual(a.fTop, b.fTop) &&
|
|
|
|
SkScalarNearlyEqual(a.fRight, b.fRight) &&
|
|
|
|
SkScalarNearlyEqual(a.fBottom, b.fBottom);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_arcTo(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
p.arcTo(0, 0, 1, 2, 1);
|
|
|
|
check_path_is_line_and_reset(reporter, &p, 0, 0);
|
|
|
|
p.arcTo(1, 2, 1, 2, 1);
|
|
|
|
check_path_is_line_and_reset(reporter, &p, 1, 2);
|
|
|
|
p.arcTo(1, 2, 3, 4, 0);
|
|
|
|
check_path_is_line_and_reset(reporter, &p, 1, 2);
|
|
|
|
p.arcTo(1, 2, 0, 0, 1);
|
|
|
|
check_path_is_line_and_reset(reporter, &p, 1, 2);
|
|
|
|
p.arcTo(1, 0, 1, 1, 1);
|
|
|
|
SkPoint pt;
|
|
|
|
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == 1);
|
|
|
|
p.reset();
|
|
|
|
p.arcTo(1, 0, 1, -1, 1);
|
|
|
|
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt.fX == 1 && pt.fY == -1);
|
|
|
|
p.reset();
|
|
|
|
SkRect oval = {1, 2, 3, 4};
|
|
|
|
p.arcTo(oval, 0, 0, true);
|
|
|
|
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
|
|
|
|
p.arcTo(oval, 0, 0, false);
|
|
|
|
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
|
|
|
|
p.arcTo(oval, 360, 0, true);
|
|
|
|
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
|
|
|
|
p.arcTo(oval, 360, 0, false);
|
|
|
|
check_path_is_move_and_reset(reporter, &p, oval.fRight, oval.centerY());
|
|
|
|
|
|
|
|
for (float sweep = 359, delta = 0.5f; sweep != (float) (sweep + delta); ) {
|
|
|
|
p.arcTo(oval, 0, sweep, false);
|
|
|
|
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
|
|
|
|
sweep += delta;
|
|
|
|
delta /= 2;
|
|
|
|
}
|
|
|
|
for (float sweep = 361, delta = 0.5f; sweep != (float) (sweep - delta);) {
|
|
|
|
p.arcTo(oval, 0, sweep, false);
|
|
|
|
REPORTER_ASSERT(reporter, nearly_equal(p.getBounds(), oval));
|
|
|
|
sweep -= delta;
|
|
|
|
delta /= 2;
|
|
|
|
}
|
|
|
|
SkRect noOvalWidth = {1, 2, 0, 3};
|
|
|
|
p.reset();
|
|
|
|
p.arcTo(noOvalWidth, 0, 360, false);
|
|
|
|
REPORTER_ASSERT(reporter, p.isEmpty());
|
|
|
|
|
|
|
|
SkRect noOvalHeight = {1, 2, 3, 1};
|
|
|
|
p.reset();
|
|
|
|
p.arcTo(noOvalHeight, 0, 360, false);
|
|
|
|
REPORTER_ASSERT(reporter, p.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_addPath(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p, q;
|
|
|
|
p.lineTo(1, 2);
|
|
|
|
q.moveTo(4, 4);
|
|
|
|
q.lineTo(7, 8);
|
|
|
|
q.conicTo(8, 7, 6, 5, 0.5f);
|
|
|
|
q.quadTo(6, 7, 8, 6);
|
|
|
|
q.cubicTo(5, 6, 7, 8, 7, 5);
|
|
|
|
q.close();
|
|
|
|
p.addPath(q, -4, -4);
|
|
|
|
SkRect expected = {0, 0, 4, 4};
|
|
|
|
REPORTER_ASSERT(reporter, p.getBounds() == expected);
|
|
|
|
p.reset();
|
|
|
|
p.reverseAddPath(q);
|
|
|
|
SkRect reverseExpected = {4, 4, 8, 8};
|
|
|
|
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_addPathMode(skiatest::Reporter* reporter, bool explicitMoveTo, bool extend) {
|
|
|
|
SkPath p, q;
|
|
|
|
if (explicitMoveTo) {
|
|
|
|
p.moveTo(1, 1);
|
|
|
|
}
|
|
|
|
p.lineTo(1, 2);
|
|
|
|
if (explicitMoveTo) {
|
|
|
|
q.moveTo(2, 1);
|
|
|
|
}
|
|
|
|
q.lineTo(2, 2);
|
|
|
|
p.addPath(q, extend ? SkPath::kExtend_AddPathMode : SkPath::kAppend_AddPathMode);
|
|
|
|
uint8_t verbs[4];
|
|
|
|
int verbcount = p.getVerbs(verbs, 4);
|
|
|
|
REPORTER_ASSERT(reporter, verbcount == 4);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[2] == (extend ? SkPath::kLine_Verb : SkPath::kMove_Verb));
|
|
|
|
REPORTER_ASSERT(reporter, verbs[3] == SkPath::kLine_Verb);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_extendClosedPath(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p, q;
|
|
|
|
p.moveTo(1, 1);
|
|
|
|
p.lineTo(1, 2);
|
|
|
|
p.lineTo(2, 2);
|
|
|
|
p.close();
|
|
|
|
q.moveTo(2, 1);
|
|
|
|
q.lineTo(2, 3);
|
|
|
|
p.addPath(q, SkPath::kExtend_AddPathMode);
|
|
|
|
uint8_t verbs[7];
|
|
|
|
int verbcount = p.getVerbs(verbs, 7);
|
|
|
|
REPORTER_ASSERT(reporter, verbcount == 7);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[0] == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[1] == SkPath::kLine_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[2] == SkPath::kLine_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[3] == SkPath::kClose_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[4] == SkPath::kMove_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[5] == SkPath::kLine_Verb);
|
|
|
|
REPORTER_ASSERT(reporter, verbs[6] == SkPath::kLine_Verb);
|
|
|
|
|
|
|
|
SkPoint pt;
|
|
|
|
REPORTER_ASSERT(reporter, p.getLastPt(&pt));
|
|
|
|
REPORTER_ASSERT(reporter, pt == SkPoint::Make(2, 3));
|
|
|
|
REPORTER_ASSERT(reporter, p.getPoint(3) == SkPoint::Make(1, 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_addEmptyPath(skiatest::Reporter* reporter, SkPath::AddPathMode mode) {
|
|
|
|
SkPath p, q, r;
|
|
|
|
// case 1: dst is empty
|
|
|
|
p.moveTo(2, 1);
|
|
|
|
p.lineTo(2, 3);
|
|
|
|
q.addPath(p, mode);
|
|
|
|
REPORTER_ASSERT(reporter, q == p);
|
|
|
|
// case 2: src is empty
|
|
|
|
p.addPath(r, mode);
|
|
|
|
REPORTER_ASSERT(reporter, q == p);
|
|
|
|
// case 3: src and dst are empty
|
|
|
|
q.reset();
|
|
|
|
q.addPath(r, mode);
|
|
|
|
REPORTER_ASSERT(reporter, q.isEmpty());
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_conicTo_special_case(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
p.conicTo(1, 2, 3, 4, -1);
|
|
|
|
check_path_is_line_and_reset(reporter, &p, 3, 4);
|
|
|
|
p.conicTo(1, 2, 3, 4, SK_ScalarInfinity);
|
|
|
|
check_path_is_line_pair_and_reset(reporter, &p, 1, 2, 3, 4);
|
|
|
|
p.conicTo(1, 2, 3, 4, 1);
|
|
|
|
check_path_is_quad_and_reset(reporter, &p, 1, 2, 3, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_get_point(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
SkPoint pt = p.getPoint(0);
|
|
|
|
REPORTER_ASSERT(reporter, pt == SkPoint::Make(0, 0));
|
|
|
|
REPORTER_ASSERT(reporter, !p.getLastPt(nullptr));
|
|
|
|
REPORTER_ASSERT(reporter, !p.getLastPt(&pt) && pt == SkPoint::Make(0, 0));
|
|
|
|
p.setLastPt(10, 10);
|
|
|
|
pt = p.getPoint(0);
|
|
|
|
REPORTER_ASSERT(reporter, pt == SkPoint::Make(10, 10));
|
|
|
|
REPORTER_ASSERT(reporter, p.getLastPt(nullptr));
|
|
|
|
p.rMoveTo(10, 10);
|
|
|
|
REPORTER_ASSERT(reporter, p.getLastPt(&pt) && pt == SkPoint::Make(20, 20));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_contains(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
p.moveTo(SkBits2Float(0xe085e7b1), SkBits2Float(0x5f512c00)); // -7.7191e+19f, 1.50724e+19f
|
|
|
|
p.conicTo(SkBits2Float(0xdfdaa221), SkBits2Float(0x5eaac338), SkBits2Float(0x60342f13), SkBits2Float(0xdf0cbb58), SkBits2Float(0x3f3504f3)); // -3.15084e+19f, 6.15237e+18f, 5.19345e+19f, -1.01408e+19f, 0.707107f
|
|
|
|
p.conicTo(SkBits2Float(0x60ead799), SkBits2Float(0xdfb76c24), SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8), SkBits2Float(0x3f3504f4)); // 1.35377e+20f, -2.6434e+19f, 8.96947e+19f, -1.75139e+19f, 0.707107f
|
|
|
|
p.lineTo(SkBits2Float(0x609b9872), SkBits2Float(0xdf730de8)); // 8.96947e+19f, -1.75139e+19f
|
|
|
|
p.conicTo(SkBits2Float(0x6018b296), SkBits2Float(0xdeee870d), SkBits2Float(0xe008cd8e), SkBits2Float(0x5ed5b2db), SkBits2Float(0x3f3504f3)); // 4.40121e+19f, -8.59386e+18f, -3.94308e+19f, 7.69931e+18f, 0.707107f
|
|
|
|
p.conicTo(SkBits2Float(0xe0d526d9), SkBits2Float(0x5fa67b31), SkBits2Float(0xe085e7b2), SkBits2Float(0x5f512c01), SkBits2Float(0x3f3504f3)); // -1.22874e+20f, 2.39925e+19f, -7.7191e+19f, 1.50724e+19f, 0.707107f
|
|
|
|
// this may return true or false, depending on the platform's numerics, but it should not crash
|
|
|
|
(void) p.contains(-77.2027664f, 15.3066053f);
|
|
|
|
|
|
|
|
p.reset();
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kInverseWinding);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, p.contains(0, 0));
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kWinding);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !p.contains(0, 0));
|
|
|
|
p.moveTo(4, 4);
|
|
|
|
p.lineTo(6, 8);
|
|
|
|
p.lineTo(8, 4);
|
|
|
|
// test on edge
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(6, 4));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 6));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(7, 6));
|
|
|
|
// test quick reject
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(4, 0));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(0, 4));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(4, 10));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(10, 4));
|
|
|
|
// test various crossings in x
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(5, 7));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(6, 7));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(7, 7));
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(4, 4);
|
|
|
|
p.lineTo(8, 6);
|
|
|
|
p.lineTo(4, 8);
|
|
|
|
// test on edge
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 6));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(6, 5));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(6, 7));
|
|
|
|
// test various crossings in y
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(7, 5));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(7, 6));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(7, 7));
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(4, 4);
|
|
|
|
p.lineTo(8, 4);
|
|
|
|
p.lineTo(8, 8);
|
|
|
|
p.lineTo(4, 8);
|
|
|
|
// test on vertices
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 4));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(8, 4));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(8, 8));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 8));
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(4, 4);
|
|
|
|
p.lineTo(6, 8);
|
|
|
|
p.lineTo(2, 8);
|
|
|
|
// test on edge
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 6));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 8));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(3, 6));
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(4, 4);
|
|
|
|
p.lineTo(0, 6);
|
|
|
|
p.lineTo(4, 8);
|
|
|
|
// test on edge
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(2, 5));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(2, 7));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 6));
|
|
|
|
// test canceling coincident edge (a smaller triangle is coincident with a larger one)
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(4, 0);
|
|
|
|
p.lineTo(6, 4);
|
|
|
|
p.lineTo(2, 4);
|
|
|
|
p.moveTo(4, 0);
|
|
|
|
p.lineTo(0, 8);
|
|
|
|
p.lineTo(8, 8);
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(1, 2));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(3, 2));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(4, 0));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 4));
|
|
|
|
|
|
|
|
// test quads
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(4, 4);
|
|
|
|
p.quadTo(6, 6, 8, 8);
|
|
|
|
p.quadTo(6, 8, 4, 8);
|
|
|
|
p.quadTo(4, 6, 4, 4);
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 6));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(6, 5));
|
|
|
|
// test quad edge
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 5));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 8));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 5));
|
|
|
|
// test quad endpoints
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 4));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(8, 8));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 8));
|
|
|
|
|
|
|
|
p.reset();
|
|
|
|
const SkPoint qPts[] = {{6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}, {6, 6}};
|
|
|
|
p.moveTo(qPts[0]);
|
|
|
|
for (int index = 1; index < (int) SK_ARRAY_COUNT(qPts); index += 2) {
|
|
|
|
p.quadTo(qPts[index], qPts[index + 1]);
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 6));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(6, 5));
|
|
|
|
// test quad edge
|
|
|
|
SkPoint halfway;
|
|
|
|
for (int index = 0; index < (int) SK_ARRAY_COUNT(qPts) - 2; index += 2) {
|
|
|
|
SkEvalQuadAt(&qPts[index], 0.5f, &halfway, nullptr);
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
|
|
|
|
}
|
|
|
|
|
|
|
|
// test conics
|
|
|
|
p.reset();
|
|
|
|
const SkPoint kPts[] = {{4, 4}, {6, 6}, {8, 8}, {6, 8}, {4, 8}, {4, 6}, {4, 4}};
|
|
|
|
p.moveTo(kPts[0]);
|
|
|
|
for (int index = 1; index < (int) SK_ARRAY_COUNT(kPts); index += 2) {
|
|
|
|
p.conicTo(kPts[index], kPts[index + 1], 0.5f);
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5, 6));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(6, 5));
|
|
|
|
// test conic edge
|
|
|
|
for (int index = 0; index < (int) SK_ARRAY_COUNT(kPts) - 2; index += 2) {
|
|
|
|
SkConic conic(&kPts[index], 0.5f);
|
|
|
|
halfway = conic.evalAt(0.5f);
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
|
|
|
|
}
|
|
|
|
// test conic end points
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 4));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(8, 8));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(4, 8));
|
|
|
|
|
|
|
|
// test cubics
|
|
|
|
SkPoint pts[] = {{5, 4}, {6, 5}, {7, 6}, {6, 6}, {4, 6}, {5, 7}, {5, 5}, {5, 4}, {6, 5}, {7, 6}};
|
|
|
|
for (int i = 0; i < 3; ++i) {
|
|
|
|
p.reset();
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kEvenOdd);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.moveTo(pts[i].fX, pts[i].fY);
|
|
|
|
p.cubicTo(pts[i + 1].fX, pts[i + 1].fY, pts[i + 2].fX, pts[i + 2].fY, pts[i + 3].fX, pts[i + 3].fY);
|
|
|
|
p.cubicTo(pts[i + 4].fX, pts[i + 4].fY, pts[i + 5].fX, pts[i + 5].fY, pts[i + 6].fX, pts[i + 6].fY);
|
|
|
|
p.close();
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(5.5f, 5.5f));
|
|
|
|
REPORTER_ASSERT(reporter, !p.contains(4.5f, 5.5f));
|
|
|
|
// test cubic edge
|
|
|
|
SkEvalCubicAt(&pts[i], 0.5f, &halfway, nullptr, nullptr);
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
|
|
|
|
SkEvalCubicAt(&pts[i + 3], 0.5f, &halfway, nullptr, nullptr);
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(halfway.fX, halfway.fY));
|
|
|
|
// test cubic end points
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(pts[i].fX, pts[i].fY));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(pts[i + 3].fX, pts[i + 3].fY));
|
|
|
|
REPORTER_ASSERT(reporter, p.contains(pts[i + 6].fX, pts[i + 6].fY));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class PathRefTest_Private {
|
|
|
|
public:
|
2018-09-11 20:16:19 +00:00
|
|
|
static size_t GetFreeSpace(const SkPathRef& ref) {
|
2019-09-05 18:14:38 +00:00
|
|
|
return (ref.fPoints.reserved() - ref.fPoints.count()) * sizeof(SkPoint)
|
|
|
|
+ (ref.fVerbs.reserved() - ref.fVerbs.count()) * sizeof(uint8_t);
|
2018-09-11 20:16:19 +00:00
|
|
|
}
|
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
static void TestPathRef(skiatest::Reporter* reporter) {
|
|
|
|
static const int kRepeatCnt = 10;
|
|
|
|
|
|
|
|
sk_sp<SkPathRef> pathRef(new SkPathRef);
|
|
|
|
|
|
|
|
SkPathRef::Editor ed(&pathRef);
|
|
|
|
|
|
|
|
{
|
|
|
|
ed.growForRepeatedVerb(SkPath::kMove_Verb, kRepeatCnt);
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, 0 == pathRef->getSegmentMasks());
|
|
|
|
for (int i = 0; i < kRepeatCnt; ++i) {
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == pathRef->atVerb(i));
|
|
|
|
}
|
|
|
|
ed.resetToSize(0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ed.growForRepeatedVerb(SkPath::kLine_Verb, kRepeatCnt);
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == pathRef->getSegmentMasks());
|
|
|
|
for (int i = 0; i < kRepeatCnt; ++i) {
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == pathRef->atVerb(i));
|
|
|
|
}
|
|
|
|
ed.resetToSize(0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ed.growForRepeatedVerb(SkPath::kQuad_Verb, kRepeatCnt);
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
|
|
|
|
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kQuad_SegmentMask == pathRef->getSegmentMasks());
|
|
|
|
for (int i = 0; i < kRepeatCnt; ++i) {
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kQuad_Verb == pathRef->atVerb(i));
|
|
|
|
}
|
|
|
|
ed.resetToSize(0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
SkScalar* weights = nullptr;
|
|
|
|
ed.growForRepeatedVerb(SkPath::kConic_Verb, kRepeatCnt, &weights);
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
|
|
|
|
REPORTER_ASSERT(reporter, 2*kRepeatCnt == pathRef->countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countWeights());
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kConic_SegmentMask == pathRef->getSegmentMasks());
|
|
|
|
REPORTER_ASSERT(reporter, weights);
|
|
|
|
for (int i = 0; i < kRepeatCnt; ++i) {
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kConic_Verb == pathRef->atVerb(i));
|
|
|
|
}
|
|
|
|
ed.resetToSize(0, 0, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
ed.growForRepeatedVerb(SkPath::kCubic_Verb, kRepeatCnt);
|
|
|
|
REPORTER_ASSERT(reporter, kRepeatCnt == pathRef->countVerbs());
|
|
|
|
REPORTER_ASSERT(reporter, 3*kRepeatCnt == pathRef->countPoints());
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kCubic_SegmentMask == pathRef->getSegmentMasks());
|
|
|
|
for (int i = 0; i < kRepeatCnt; ++i) {
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kCubic_Verb == pathRef->atVerb(i));
|
|
|
|
}
|
|
|
|
ed.resetToSize(0, 0, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static void test_operatorEqual(skiatest::Reporter* reporter) {
|
|
|
|
SkPath a;
|
|
|
|
SkPath b;
|
|
|
|
REPORTER_ASSERT(reporter, a == a);
|
|
|
|
REPORTER_ASSERT(reporter, a == b);
|
2019-11-26 17:17:17 +00:00
|
|
|
a.setFillType(SkPathFillType::kInverseWinding);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, a != b);
|
|
|
|
a.reset();
|
|
|
|
REPORTER_ASSERT(reporter, a == b);
|
|
|
|
a.lineTo(1, 1);
|
|
|
|
REPORTER_ASSERT(reporter, a != b);
|
|
|
|
a.reset();
|
|
|
|
REPORTER_ASSERT(reporter, a == b);
|
|
|
|
a.lineTo(1, 1);
|
|
|
|
b.lineTo(1, 2);
|
|
|
|
REPORTER_ASSERT(reporter, a != b);
|
|
|
|
a.reset();
|
|
|
|
a.lineTo(1, 2);
|
|
|
|
REPORTER_ASSERT(reporter, a == b);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void compare_dump(skiatest::Reporter* reporter, const SkPath& path, bool force,
|
|
|
|
bool dumpAsHex, const char* str) {
|
|
|
|
SkDynamicMemoryWStream wStream;
|
|
|
|
path.dump(&wStream, force, dumpAsHex);
|
|
|
|
sk_sp<SkData> data = wStream.detachAsData();
|
|
|
|
REPORTER_ASSERT(reporter, data->size() == strlen(str));
|
|
|
|
if (strlen(str) > 0) {
|
|
|
|
REPORTER_ASSERT(reporter, !memcmp(data->data(), str, strlen(str)));
|
|
|
|
} else {
|
|
|
|
REPORTER_ASSERT(reporter, data->data() == nullptr || !memcmp(data->data(), str, strlen(str)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_dump(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kWinding);\n");
|
|
|
|
compare_dump(reporter, p, true, false, "path.setFillType(SkPathFillType::kWinding);\n");
|
2017-09-06 17:33:30 +00:00
|
|
|
p.moveTo(1, 2);
|
|
|
|
p.lineTo(3, 4);
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kWinding);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(1, 2);\n"
|
|
|
|
"path.lineTo(3, 4);\n");
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, true, false, "path.setFillType(SkPathFillType::kWinding);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(1, 2);\n"
|
|
|
|
"path.lineTo(3, 4);\n"
|
|
|
|
"path.lineTo(1, 2);\n"
|
|
|
|
"path.close();\n");
|
|
|
|
p.reset();
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kEvenOdd);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.moveTo(1, 2);
|
|
|
|
p.quadTo(3, 4, 5, 6);
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kEvenOdd);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(1, 2);\n"
|
|
|
|
"path.quadTo(3, 4, 5, 6);\n");
|
|
|
|
p.reset();
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kInverseWinding);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.moveTo(1, 2);
|
|
|
|
p.conicTo(3, 4, 5, 6, 0.5f);
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kInverseWinding);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(1, 2);\n"
|
|
|
|
"path.conicTo(3, 4, 5, 6, 0.5f);\n");
|
|
|
|
p.reset();
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kInverseEvenOdd);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.moveTo(1, 2);
|
|
|
|
p.cubicTo(3, 4, 5, 6, 7, 8);
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kInverseEvenOdd);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(1, 2);\n"
|
|
|
|
"path.cubicTo(3, 4, 5, 6, 7, 8);\n");
|
|
|
|
p.reset();
|
2019-11-26 17:17:17 +00:00
|
|
|
p.setFillType(SkPathFillType::kWinding);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.moveTo(1, 2);
|
|
|
|
p.lineTo(3, 4);
|
|
|
|
compare_dump(reporter, p, false, true,
|
2019-11-26 17:17:17 +00:00
|
|
|
"path.setFillType(SkPathFillType::kWinding);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000)); // 1, 2\n"
|
|
|
|
"path.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000)); // 3, 4\n");
|
|
|
|
p.reset();
|
|
|
|
p.moveTo(SkBits2Float(0x3f800000), SkBits2Float(0x40000000));
|
|
|
|
p.lineTo(SkBits2Float(0x40400000), SkBits2Float(0x40800000));
|
2019-11-26 17:17:17 +00:00
|
|
|
compare_dump(reporter, p, false, false, "path.setFillType(SkPathFillType::kWinding);\n"
|
2017-09-06 17:33:30 +00:00
|
|
|
"path.moveTo(1, 2);\n"
|
|
|
|
"path.lineTo(3, 4);\n");
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
class ChangeListener : public SkPathRef::GenIDChangeListener {
|
|
|
|
public:
|
|
|
|
ChangeListener(bool *changed) : fChanged(changed) { *fChanged = false; }
|
|
|
|
~ChangeListener() override {}
|
|
|
|
void onChange() override {
|
|
|
|
*fChanged = true;
|
|
|
|
}
|
|
|
|
private:
|
|
|
|
bool* fChanged;
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
class PathTest_Private {
|
|
|
|
public:
|
2018-09-11 20:16:19 +00:00
|
|
|
static size_t GetFreeSpace(const SkPath& path) {
|
|
|
|
return PathRefTest_Private::GetFreeSpace(*path.fPathRef);
|
|
|
|
}
|
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
static void TestPathTo(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p, q;
|
|
|
|
p.lineTo(4, 4);
|
|
|
|
p.reversePathTo(q);
|
|
|
|
check_path_is_line(reporter, &p, 4, 4);
|
|
|
|
q.moveTo(-4, -4);
|
|
|
|
p.reversePathTo(q);
|
|
|
|
check_path_is_line(reporter, &p, 4, 4);
|
|
|
|
q.lineTo(7, 8);
|
|
|
|
q.conicTo(8, 7, 6, 5, 0.5f);
|
|
|
|
q.quadTo(6, 7, 8, 6);
|
|
|
|
q.cubicTo(5, 6, 7, 8, 7, 5);
|
|
|
|
q.close();
|
|
|
|
p.reversePathTo(q);
|
|
|
|
SkRect reverseExpected = {-4, -4, 8, 8};
|
|
|
|
REPORTER_ASSERT(reporter, p.getBounds() == reverseExpected);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void TestPathrefListeners(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p;
|
|
|
|
|
|
|
|
bool changed = false;
|
|
|
|
p.moveTo(0, 0);
|
|
|
|
|
|
|
|
// Check that listener is notified on moveTo().
|
|
|
|
|
2018-06-08 18:00:44 +00:00
|
|
|
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !changed);
|
|
|
|
p.moveTo(10, 0);
|
|
|
|
REPORTER_ASSERT(reporter, changed);
|
|
|
|
|
|
|
|
// Check that listener is notified on lineTo().
|
2018-06-08 18:00:44 +00:00
|
|
|
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !changed);
|
|
|
|
p.lineTo(20, 0);
|
|
|
|
REPORTER_ASSERT(reporter, changed);
|
|
|
|
|
|
|
|
// Check that listener is notified on reset().
|
2018-06-08 18:00:44 +00:00
|
|
|
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !changed);
|
|
|
|
p.reset();
|
|
|
|
REPORTER_ASSERT(reporter, changed);
|
|
|
|
|
|
|
|
p.moveTo(0, 0);
|
|
|
|
|
|
|
|
// Check that listener is notified on rewind().
|
2018-06-08 18:00:44 +00:00
|
|
|
SkPathPriv::AddGenIDChangeListener(p, sk_make_sp<ChangeListener>(&changed));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !changed);
|
|
|
|
p.rewind();
|
|
|
|
REPORTER_ASSERT(reporter, changed);
|
|
|
|
|
2019-03-07 21:50:30 +00:00
|
|
|
// Check that listener is notified on transform().
|
|
|
|
{
|
|
|
|
SkPath q;
|
|
|
|
q.moveTo(10, 10);
|
|
|
|
SkPathPriv::AddGenIDChangeListener(q, sk_make_sp<ChangeListener>(&changed));
|
|
|
|
REPORTER_ASSERT(reporter, !changed);
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setScale(2, 2);
|
|
|
|
p.transform(matrix, &q);
|
|
|
|
REPORTER_ASSERT(reporter, changed);
|
|
|
|
}
|
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
// Check that listener is notified when pathref is deleted.
|
|
|
|
{
|
|
|
|
SkPath q;
|
|
|
|
q.moveTo(10, 10);
|
2018-06-08 18:00:44 +00:00
|
|
|
SkPathPriv::AddGenIDChangeListener(q, sk_make_sp<ChangeListener>(&changed));
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, !changed);
|
|
|
|
}
|
|
|
|
// q went out of scope.
|
|
|
|
REPORTER_ASSERT(reporter, changed);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static void test_crbug_629455(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
path.cubicTo(SkBits2Float(0xcdcdcd00), SkBits2Float(0xcdcdcdcd),
|
|
|
|
SkBits2Float(0xcdcdcdcd), SkBits2Float(0xcdcdcdcd),
|
|
|
|
SkBits2Float(0x423fcdcd), SkBits2Float(0x40ed9341));
|
|
|
|
// AKA: cubicTo(-4.31596e+08f, -4.31602e+08f, -4.31602e+08f, -4.31602e+08f, 47.951f, 7.42423f);
|
|
|
|
path.lineTo(0, 0);
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(100, 100, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_fuzz_crbug_662952(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f
|
|
|
|
path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411c0000)); // 8.65f, 9.75f
|
|
|
|
path.lineTo(SkBits2Float(0x410a6666), SkBits2Float(0x411e6666)); // 8.65f, 9.9f
|
|
|
|
path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411e6666)); // 8.6f, 9.9f
|
|
|
|
path.lineTo(SkBits2Float(0x4109999a), SkBits2Float(0x411c0000)); // 8.6f, 9.75f
|
|
|
|
path.close();
|
|
|
|
|
|
|
|
auto surface = SkSurface::MakeRasterN32Premul(100, 100);
|
|
|
|
SkPaint paint;
|
|
|
|
paint.setAntiAlias(true);
|
|
|
|
surface->getCanvas()->clipPath(path, true);
|
|
|
|
surface->getCanvas()->drawRect(SkRect::MakeWH(100, 100), paint);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_path_crbugskia6003() {
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(500, 500));
|
|
|
|
SkCanvas* canvas = surface->getCanvas();
|
|
|
|
SkPaint paint;
|
|
|
|
paint.setAntiAlias(true);
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f
|
|
|
|
path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a2999a)); // 165.9f, 81.3f
|
|
|
|
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a2999a)); // 165.7f, 81.3f
|
|
|
|
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x42a16666)); // 165.7f, 80.7f
|
|
|
|
path.lineTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666)); // 165.7f, 79.7f
|
|
|
|
// 165.7f, 79.7f, 165.8f, 79.7f, 165.8f, 79.7f
|
|
|
|
path.cubicTo(SkBits2Float(0x4325b333), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc),
|
|
|
|
SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666));
|
|
|
|
// 165.8f, 79.7f, 165.8f, 79.7f, 165.9f, 79.7f
|
|
|
|
path.cubicTo(SkBits2Float(0x4325cccc), SkBits2Float(0x429f6666), SkBits2Float(0x4325cccc),
|
|
|
|
SkBits2Float(0x429f6666), SkBits2Float(0x4325e666), SkBits2Float(0x429f6666));
|
|
|
|
path.lineTo(SkBits2Float(0x4325e666), SkBits2Float(0x42a1999a)); // 165.9f, 80.8f
|
|
|
|
path.close();
|
|
|
|
canvas->clipPath(path, true);
|
|
|
|
canvas->drawRect(SkRect::MakeWH(500, 500), paint);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void test_fuzz_crbug_662730(skiatest::Reporter* reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
|
|
|
path.lineTo(SkBits2Float(0xd5394437), SkBits2Float(0x37373737)); // -1.2731e+13f, 1.09205e-05f
|
|
|
|
path.lineTo(SkBits2Float(0x37373737), SkBits2Float(0x37373737)); // 1.09205e-05f, 1.09205e-05f
|
|
|
|
path.lineTo(SkBits2Float(0x37373745), SkBits2Float(0x0001b800)); // 1.09205e-05f, 1.57842e-40f
|
|
|
|
path.close();
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(100, 100, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
static void test_skbug_6947() {
|
|
|
|
SkPath path;
|
|
|
|
SkPoint points[] =
|
|
|
|
{{125.126022f, -0.499872506f}, {125.288895f, -0.499338806f},
|
|
|
|
{125.299316f, -0.499290764f}, {126.294594f, 0.505449712f},
|
|
|
|
{125.999992f, 62.5047531f}, {124.0f, 62.4980202f},
|
|
|
|
{124.122749f, 0.498142242f}, {125.126022f, -0.499872506f},
|
|
|
|
{125.119476f, 1.50011659f}, {125.122749f, 0.50012207f},
|
|
|
|
{126.122749f, 0.502101898f}, {126.0f, 62.5019798f},
|
|
|
|
{125.0f, 62.5f}, {124.000008f, 62.4952469f},
|
|
|
|
{124.294609f, 0.495946467f}, {125.294601f, 0.50069809f},
|
|
|
|
{125.289886f, 1.50068688f}, {125.282349f, 1.50065041f},
|
|
|
|
{125.119476f, 1.50011659f}};
|
|
|
|
constexpr SkPath::Verb kMove = SkPath::kMove_Verb;
|
|
|
|
constexpr SkPath::Verb kLine = SkPath::kLine_Verb;
|
|
|
|
constexpr SkPath::Verb kClose = SkPath::kClose_Verb;
|
|
|
|
SkPath::Verb verbs[] = {kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose,
|
|
|
|
kMove, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kLine, kClose};
|
|
|
|
int pointIndex = 0;
|
|
|
|
for(auto verb : verbs) {
|
|
|
|
switch (verb) {
|
|
|
|
case kMove:
|
|
|
|
path.moveTo(points[pointIndex++]);
|
|
|
|
break;
|
|
|
|
case kLine:
|
|
|
|
path.lineTo(points[pointIndex++]);
|
|
|
|
break;
|
|
|
|
case kClose:
|
|
|
|
default:
|
|
|
|
path.close();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(250, 125, path);
|
2017-09-06 17:33:30 +00:00
|
|
|
}
|
2017-09-06 21:10:05 +00:00
|
|
|
|
|
|
|
static void test_skbug_7015() {
|
|
|
|
SkPath path;
|
2019-11-26 17:17:17 +00:00
|
|
|
path.setFillType(SkPathFillType::kWinding);
|
2017-09-06 21:10:05 +00:00
|
|
|
path.moveTo(SkBits2Float(0x4388c000), SkBits2Float(0x43947c08)); // 273.5f, 296.969f
|
|
|
|
path.lineTo(SkBits2Float(0x4386c000), SkBits2Float(0x43947c08)); // 269.5f, 296.969f
|
|
|
|
// 269.297f, 292.172f, 273.695f, 292.172f, 273.5f, 296.969f
|
|
|
|
path.cubicTo(SkBits2Float(0x4386a604), SkBits2Float(0x43921604),
|
|
|
|
SkBits2Float(0x4388d8f6), SkBits2Float(0x43921604),
|
|
|
|
SkBits2Float(0x4388c000), SkBits2Float(0x43947c08));
|
|
|
|
path.close();
|
2017-09-14 21:15:04 +00:00
|
|
|
test_draw_AA_path(500, 500, path);
|
2017-09-06 21:10:05 +00:00
|
|
|
}
|
|
|
|
|
2017-09-18 18:38:43 +00:00
|
|
|
static void test_skbug_7051() {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(10, 10);
|
|
|
|
path.cubicTo(10, 20, 10, 30, 30, 30);
|
|
|
|
path.lineTo(50, 20);
|
|
|
|
path.lineTo(50, 10);
|
|
|
|
path.close();
|
|
|
|
test_draw_AA_path(100, 100, path);
|
|
|
|
}
|
|
|
|
|
2019-08-14 19:45:37 +00:00
|
|
|
static void test_skbug_7435() {
|
|
|
|
SkPaint paint;
|
|
|
|
SkPath path;
|
2019-11-26 17:17:17 +00:00
|
|
|
path.setFillType(SkPathFillType::kWinding);
|
2019-08-14 19:45:37 +00:00
|
|
|
path.moveTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef348e9), SkBits2Float(0xfef403c6)); // 1.6169e+38f, -1.62176e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef74c4e), SkBits2Float(0xfef803cb)); // 1.64358e+38f, -1.64834e+38f
|
|
|
|
path.conicTo(SkBits2Float(0x7ef74f23), SkBits2Float(0xfef8069e), SkBits2Float(0x7ef751f6), SkBits2Float(0xfef803c9), SkBits2Float(0x3f3504f3)); // 1.64365e+38f, -1.64841e+38f, 1.64372e+38f, -1.64834e+38f, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0x7ef754c8), SkBits2Float(0xfef800f5), SkBits2Float(0x7ef751f5), SkBits2Float(0xfef7fe22), SkBits2Float(0x3f353472)); // 1.6438e+38f, -1.64827e+38f, 1.64372e+38f, -1.64819e+38f, 0.707832f
|
|
|
|
path.lineTo(SkBits2Float(0x7edb57a9), SkBits2Float(0xfedbfe06)); // 1.45778e+38f, -1.4621e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7e875976), SkBits2Float(0xfe87fdb3)); // 8.99551e+37f, -9.03815e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ded5c2b), SkBits2Float(0xfdeff59e)); // 3.94382e+37f, -3.98701e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a78a7), SkBits2Float(0xfd7fda0f)); // 2.08083e+37f, -2.12553e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a6403), SkBits2Float(0xfd7fe461)); // 2.08016e+37f, -2.12587e+37f
|
|
|
|
path.conicTo(SkBits2Float(0x7d7a4764), SkBits2Float(0xfd7ff2b0), SkBits2Float(0x7d7a55b4), SkBits2Float(0xfd8007a8), SkBits2Float(0x3f3504f3)); // 2.07924e+37f, -2.12633e+37f, 2.0797e+37f, -2.12726e+37f, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0x7d7a5803), SkBits2Float(0xfd8009f7), SkBits2Float(0x7d7a5ba9), SkBits2Float(0xfd800bcc), SkBits2Float(0x3f7cba66)); // 2.07977e+37f, -2.12741e+37f, 2.07989e+37f, -2.12753e+37f, 0.987219f
|
|
|
|
path.lineTo(SkBits2Float(0x7d8d2067), SkBits2Float(0xfd900bdb)); // 2.34487e+37f, -2.39338e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ddd137a), SkBits2Float(0xfde00c2d)); // 3.67326e+37f, -3.72263e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ddd2a1b), SkBits2Float(0xfddff58e)); // 3.67473e+37f, -3.72116e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7c694ae5), SkBits2Float(0xfc7fa67c)); // 4.8453e+36f, -5.30965e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc164a8b), SkBits2Float(0x7c005af5)); // -3.12143e+36f, 2.66584e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8ae983), SkBits2Float(0x7c802da7)); // -5.77019e+36f, 5.32432e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b16d9), SkBits2Float(0x7c80007b)); // -5.77754e+36f, 5.31699e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b029c), SkBits2Float(0x7c7f8788)); // -5.77426e+36f, 5.30714e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b0290), SkBits2Float(0x7c7f8790)); // -5.77425e+36f, 5.30714e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.77753e+36f, 5.31699e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b4409), SkBits2Float(0x7c7fa672)); // -5.78487e+36f, 5.30965e+36f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7aa2ba), SkBits2Float(0xfd800bd1)); // 2.0822e+37f, -2.12753e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7e8757ee), SkBits2Float(0xfe88035b)); // 8.99512e+37f, -9.03962e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef7552d), SkBits2Float(0xfef803ca)); // 1.64381e+38f, -1.64834e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0fa653), SkBits2Float(0xff1001f9)); // 1.90943e+38f, -1.91419e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0fa926), SkBits2Float(0xff0fff24)); // 1.90958e+38f, -1.91404e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0da75c), SkBits2Float(0xff0dff22)); // 1.8829e+38f, -1.88746e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f07a5af), SkBits2Float(0xff07ff1d)); // 1.80306e+38f, -1.8077e+38f
|
|
|
|
path.close();
|
|
|
|
path.moveTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0da48a), SkBits2Float(0xff0e01f8)); // 1.88275e+38f, -1.88761e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0fa654), SkBits2Float(0xff1001fa)); // 1.90943e+38f, -1.91419e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90951e+38f, -1.91412e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f0fa927), SkBits2Float(0xff0fff25)); // 1.90958e+38f, -1.91404e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef75ad5), SkBits2Float(0xfef7fe22)); // 1.64395e+38f, -1.64819e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7e875d96), SkBits2Float(0xfe87fdb3)); // 8.99659e+37f, -9.03815e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7acff6), SkBits2Float(0xfd7fea5b)); // 2.08367e+37f, -2.12606e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b0588), SkBits2Float(0x7c8049b7)); // -5.77473e+36f, 5.32887e+36f
|
|
|
|
path.lineTo(SkBits2Float(0xfc8b2b16), SkBits2Float(0x7c803d32)); // -5.78083e+36f, 5.32684e+36f
|
|
|
|
path.conicTo(SkBits2Float(0xfc8b395c), SkBits2Float(0x7c803870), SkBits2Float(0xfc8b4405), SkBits2Float(0x7c802dd1), SkBits2Float(0x3f79349d)); // -5.78314e+36f, 5.32607e+36f, -5.78487e+36f, 5.32435e+36f, 0.973459f
|
|
|
|
path.conicTo(SkBits2Float(0xfc8b715b), SkBits2Float(0x7c8000a5), SkBits2Float(0xfc8b442f), SkBits2Float(0x7c7fa69e), SkBits2Float(0x3f3504f3)); // -5.79223e+36f, 5.31702e+36f, -5.7849e+36f, 5.30966e+36f, 0.707107f
|
|
|
|
path.lineTo(SkBits2Float(0xfc16ffaa), SkBits2Float(0x7bff4c12)); // -3.13612e+36f, 2.65116e+36f
|
|
|
|
path.lineTo(SkBits2Float(0x7c6895e0), SkBits2Float(0xfc802dc0)); // 4.83061e+36f, -5.32434e+36f
|
|
|
|
path.lineTo(SkBits2Float(0x7ddd137b), SkBits2Float(0xfde00c2e)); // 3.67326e+37f, -3.72263e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ddd2a1c), SkBits2Float(0xfddff58f)); // 3.67473e+37f, -3.72116e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d8d3711), SkBits2Float(0xfd8ff543)); // 2.34634e+37f, -2.39191e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a88fe), SkBits2Float(0xfd7fea69)); // 2.08136e+37f, -2.12606e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a7254), SkBits2Float(0xfd800080)); // 2.08063e+37f, -2.1268e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a80a4), SkBits2Float(0xfd800ed0)); // 2.08109e+37f, -2.12773e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a80a8), SkBits2Float(0xfd800ecf)); // 2.08109e+37f, -2.12773e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08063e+37f, -2.1268e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7d7a5bb9), SkBits2Float(0xfd800bd0)); // 2.0799e+37f, -2.12753e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7ded458b), SkBits2Float(0xfdf00c3e)); // 3.94235e+37f, -3.98848e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7e8753ce), SkBits2Float(0xfe88035b)); // 8.99405e+37f, -9.03962e+37f
|
|
|
|
path.lineTo(SkBits2Float(0x7edb5201), SkBits2Float(0xfedc03ae)); // 1.45763e+38f, -1.46225e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef74c4d), SkBits2Float(0xfef803ca)); // 1.64358e+38f, -1.64834e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64365e+38f, -1.64827e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef751f4), SkBits2Float(0xfef7fe21)); // 1.64372e+38f, -1.64819e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7ef34e91), SkBits2Float(0xfef3fe1e)); // 1.61705e+38f, -1.62161e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7edf4b2d), SkBits2Float(0xfedffe0a)); // 1.48404e+38f, -1.48868e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.48397e+38f, -1.48876e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7edf4585), SkBits2Float(0xfee003b2)); // 1.48389e+38f, -1.48883e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f07a2db), SkBits2Float(0xff0801f1)); // 1.80291e+38f, -1.80785e+38f
|
|
|
|
path.close();
|
|
|
|
path.moveTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f
|
|
|
|
path.lineTo(SkBits2Float(0xfd6597e5), SkBits2Float(0x7d60177f)); // -1.90739e+37f, 1.86168e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfde2cea1), SkBits2Float(0x7de00c2e)); // -3.76848e+37f, 3.72263e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe316511), SkBits2Float(0x7e300657)); // -5.89495e+37f, 5.84943e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415da1), SkBits2Float(0x7e400666)); // -6.42568e+37f, 6.38112e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4000be)); // -6.42641e+37f, 6.38039e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e3ff8be)); // -6.42641e+37f, 6.37935e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e3ff8be)); // -6.42591e+37f, 6.37935e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e3ff8be)); // -6.42544e+37f, 6.37935e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe416171), SkBits2Float(0x7e3ffb16)); // -6.42617e+37f, 6.37966e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe016131), SkBits2Float(0x7dfff5ae)); // -4.29938e+37f, 4.25286e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe0155e2), SkBits2Float(0x7e000628)); // -4.29791e+37f, 4.25433e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe0958ea), SkBits2Float(0x7e080630)); // -4.56415e+37f, 4.52018e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe115c92), SkBits2Float(0x7e100638)); // -4.83047e+37f, 4.78603e+37f
|
|
|
|
path.conicTo(SkBits2Float(0xfe11623c), SkBits2Float(0x7e100bdf), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e100636), SkBits2Float(0x3f3504f3)); // -4.8312e+37f, 4.78676e+37f, -4.83194e+37f, 4.78603e+37f, 0.707107f
|
|
|
|
path.conicTo(SkBits2Float(0xfe116d87), SkBits2Float(0x7e10008e), SkBits2Float(0xfe1167e2), SkBits2Float(0x7e0ffae8), SkBits2Float(0x3f35240a)); // -4.83267e+37f, 4.78529e+37f, -4.83194e+37f, 4.78456e+37f, 0.707581f
|
|
|
|
path.lineTo(SkBits2Float(0xfe016b92), SkBits2Float(0x7dfff5af)); // -4.30072e+37f, 4.25286e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfdc2d963), SkBits2Float(0x7dbff56e)); // -3.23749e+37f, 3.18946e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfd65ae25), SkBits2Float(0x7d5fea3d)); // -1.90811e+37f, 1.86021e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfab448de), SkBits2Float(0xf7b50a19)); // -4.68046e+35f, -7.34383e+33f
|
|
|
|
path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200
|
|
|
|
path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x7800007f)); // -4.60703e+35f, 1.03848e+34f
|
|
|
|
path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x7800007f)); // -4.67194e+35f, 1.03848e+34f
|
|
|
|
path.lineTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200
|
|
|
|
path.lineTo(SkBits2Float(0xfab120db), SkBits2Float(0x77b50b4f)); // -4.59851e+35f, 7.34402e+33f
|
|
|
|
path.close();
|
|
|
|
path.moveTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f
|
|
|
|
path.lineTo(SkBits2Float(0xfaa7cc52), SkBits2Float(0xf800007f)); // -4.35629e+35f, -1.03848e+34f
|
|
|
|
path.lineTo(SkBits2Float(0xfd6580e5), SkBits2Float(0x7d60177f)); // -1.90664e+37f, 1.86168e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfdc2c2c1), SkBits2Float(0x7dc00c0f)); // -3.23602e+37f, 3.19093e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe016040), SkBits2Float(0x7e000626)); // -4.29925e+37f, 4.25433e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe115c90), SkBits2Float(0x7e100636)); // -4.83047e+37f, 4.78603e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.8312e+37f, 4.78529e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe1167e0), SkBits2Float(0x7e0ffae6)); // -4.83194e+37f, 4.78456e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe096438), SkBits2Float(0x7e07fade)); // -4.56562e+37f, 4.51871e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe016130), SkBits2Float(0x7dfff5ac)); // -4.29938e+37f, 4.25286e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29864e+37f, 4.25359e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe0155e1), SkBits2Float(0x7e000627)); // -4.29791e+37f, 4.25433e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415879), SkBits2Float(0x7e4008bf)); // -6.42501e+37f, 6.38143e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415f69), SkBits2Float(0x7e4008bf)); // -6.42591e+37f, 6.38143e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe416349), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe41634a), SkBits2Float(0x7e4008bf)); // -6.42641e+37f, 6.38143e+37f
|
|
|
|
path.conicTo(SkBits2Float(0xfe416699), SkBits2Float(0x7e4008bf), SkBits2Float(0xfe4168f1), SkBits2Float(0x7e400668), SkBits2Float(0x3f6c8ed9)); // -6.42684e+37f, 6.38143e+37f, -6.42715e+37f, 6.38113e+37f, 0.924055f
|
|
|
|
path.conicTo(SkBits2Float(0xfe416e9a), SkBits2Float(0x7e4000c2), SkBits2Float(0xfe4168f3), SkBits2Float(0x7e3ffb17), SkBits2Float(0x3f3504f3)); // -6.42788e+37f, 6.38039e+37f, -6.42715e+37f, 6.37966e+37f, 0.707107f
|
|
|
|
path.lineTo(SkBits2Float(0xfe317061), SkBits2Float(0x7e2ffb07)); // -5.89642e+37f, 5.84796e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfde2e542), SkBits2Float(0x7ddff58e)); // -3.76995e+37f, 3.72116e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfd65c525), SkBits2Float(0x7d5fea3d)); // -1.90886e+37f, 1.86021e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfab6c8db), SkBits2Float(0xf7b50b4f)); // -4.74536e+35f, -7.34402e+33f
|
|
|
|
path.lineTo(SkBits2Float(0xfab59cf2), SkBits2Float(0xf800007e)); // -4.71494e+35f, -1.03847e+34f
|
|
|
|
path.close();
|
|
|
|
path.moveTo(SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -4.67194e+35f, 200
|
|
|
|
path.lineTo(SkBits2Float(0xfab174d9), SkBits2Float(0x43480000)); // -4.60703e+35f, 200
|
|
|
|
path.quadTo(SkBits2Float(0xfd0593a5), SkBits2Float(0x7d00007f), SkBits2Float(0xfd659785), SkBits2Float(0x7d6000de)); // -1.10971e+37f, 1.0634e+37f, -1.90737e+37f, 1.86095e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfda2cdf2), SkBits2Float(0x7da0009f), SkBits2Float(0xfdc2ce12), SkBits2Float(0x7dc000be)); // -2.70505e+37f, 2.6585e+37f, -3.23675e+37f, 3.1902e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfde2ce31), SkBits2Float(0x7de000de), SkBits2Float(0xfe0165e9), SkBits2Float(0x7e00007f)); // -3.76845e+37f, 3.72189e+37f, -4.29999e+37f, 4.25359e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe1164b9), SkBits2Float(0x7e10008f), SkBits2Float(0xfe116239), SkBits2Float(0x7e10008f)); // -4.83153e+37f, 4.78529e+37f, -4.8312e+37f, 4.78529e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe116039), SkBits2Float(0x7e10008f), SkBits2Float(0xfe095e91), SkBits2Float(0x7e080087)); // -4.83094e+37f, 4.78529e+37f, -4.56488e+37f, 4.51944e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe015d09), SkBits2Float(0x7e00007f), SkBits2Float(0xfe015b89), SkBits2Float(0x7e00007f)); // -4.29884e+37f, 4.25359e+37f, -4.29864e+37f, 4.25359e+37f
|
|
|
|
path.lineTo(SkBits2Float(0xfe415bc9), SkBits2Float(0x7e4000be)); // -6.42544e+37f, 6.38039e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe415da9), SkBits2Float(0x7e4000be), SkBits2Float(0xfe415f69), SkBits2Float(0x7e4000be)); // -6.42568e+37f, 6.38039e+37f, -6.42591e+37f, 6.38039e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe416149), SkBits2Float(0x7e4000be), SkBits2Float(0xfe416349), SkBits2Float(0x7e4000be)); // -6.42615e+37f, 6.38039e+37f, -6.42641e+37f, 6.38039e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe416849), SkBits2Float(0x7e4000be), SkBits2Float(0xfe316ab9), SkBits2Float(0x7e3000af)); // -6.42706e+37f, 6.38039e+37f, -5.89569e+37f, 5.84869e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfe216d29), SkBits2Float(0x7e20009f), SkBits2Float(0xfde2d9f2), SkBits2Float(0x7de000de)); // -5.36431e+37f, 5.31699e+37f, -3.76921e+37f, 3.72189e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfda2d9b2), SkBits2Float(0x7da0009f), SkBits2Float(0xfd65ae85), SkBits2Float(0x7d6000de)); // -2.70582e+37f, 2.6585e+37f, -1.90812e+37f, 1.86095e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfd05a9a6), SkBits2Float(0x7d00007f), SkBits2Float(0xfab3f4db), SkBits2Float(0x43480000)); // -1.11043e+37f, 1.0634e+37f, -4.67194e+35f, 200
|
|
|
|
path.close();
|
|
|
|
path.moveTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7f0ba519), SkBits2Float(0xff0c008b), SkBits2Float(0x7f0da5f3), SkBits2Float(0xff0e008d)); // 1.8562e+38f, -1.86095e+38f, 1.88283e+38f, -1.88753e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7f0fa6d5), SkBits2Float(0xff10008f), SkBits2Float(0x7f0fa7bd), SkBits2Float(0xff10008f)); // 1.90946e+38f, -1.91412e+38f, 1.90951e+38f, -1.91412e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7f0faa7d), SkBits2Float(0xff10008f), SkBits2Float(0x7ef75801), SkBits2Float(0xfef800f6)); // 1.90965e+38f, -1.91412e+38f, 1.64388e+38f, -1.64827e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7ecf5b09), SkBits2Float(0xfed000ce), SkBits2Float(0x7e875ac2), SkBits2Float(0xfe880087)); // 1.37811e+38f, -1.38242e+38f, 8.99585e+37f, -9.03889e+37f
|
|
|
|
path.quadTo(SkBits2Float(0x7e0eb505), SkBits2Float(0xfe10008f), SkBits2Float(0x7d7ab958), SkBits2Float(0xfd80007f)); // 4.74226e+37f, -4.78529e+37f, 2.08293e+37f, -2.1268e+37f
|
|
|
|
path.quadTo(SkBits2Float(0xfc8ac1cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc8b16cd), SkBits2Float(0x7c80007f)); // -5.76374e+36f, 5.31699e+36f, -5.77753e+36f, 5.31699e+36f
|
|
|
|
path.quadTo(SkBits2Float(0xfc8b36cd), SkBits2Float(0x7c80007f), SkBits2Float(0xfc16a51a), SkBits2Float(0x7c00007f)); // -5.78273e+36f, 5.31699e+36f, -3.12877e+36f, 2.6585e+36f
|
|
|
|
path.quadTo(SkBits2Float(0xfab6e4de), SkBits2Float(0x43480000), SkBits2Float(0x7c68f062), SkBits2Float(0xfc80007f)); // -4.7482e+35f, 200, 4.83795e+36f, -5.31699e+36f
|
|
|
|
path.lineTo(SkBits2Float(0x7ddd1ecb), SkBits2Float(0xfde000de)); // 3.67399e+37f, -3.72189e+37f
|
|
|
|
path.quadTo(SkBits2Float(0x7d9d254b), SkBits2Float(0xfda0009f), SkBits2Float(0x7d8d2bbc), SkBits2Float(0xfd90008f)); // 2.61103e+37f, -2.6585e+37f, 2.3456e+37f, -2.39265e+37f
|
|
|
|
path.quadTo(SkBits2Float(0x7d7a64d8), SkBits2Float(0xfd80007f), SkBits2Float(0x7d7a7258), SkBits2Float(0xfd80007f)); // 2.08019e+37f, -2.1268e+37f, 2.08063e+37f, -2.1268e+37f
|
|
|
|
path.quadTo(SkBits2Float(0x7d7a9058), SkBits2Float(0xfd80007f), SkBits2Float(0x7ded50db), SkBits2Float(0xfdf000ee)); // 2.0816e+37f, -2.1268e+37f, 3.94309e+37f, -3.98774e+37f
|
|
|
|
path.quadTo(SkBits2Float(0x7e2eace5), SkBits2Float(0xfe3000af), SkBits2Float(0x7e8756a2), SkBits2Float(0xfe880087)); // 5.80458e+37f, -5.84869e+37f, 8.99478e+37f, -9.03889e+37f
|
|
|
|
path.quadTo(SkBits2Float(0x7ebf56d9), SkBits2Float(0xfec000be), SkBits2Float(0x7edb54d5), SkBits2Float(0xfedc00da)); // 1.27167e+38f, -1.27608e+38f, 1.45771e+38f, -1.46217e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7ef752e1), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef74f21), SkBits2Float(0xfef800f6)); // 1.64375e+38f, -1.64827e+38f, 1.64365e+38f, -1.64827e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7ef74d71), SkBits2Float(0xfef800f6), SkBits2Float(0x7ef34bbd), SkBits2Float(0xfef400f2)); // 1.64361e+38f, -1.64827e+38f, 1.61698e+38f, -1.62168e+38f
|
|
|
|
path.quadTo(SkBits2Float(0x7eef4a19), SkBits2Float(0xfef000ee), SkBits2Float(0x7edf4859), SkBits2Float(0xfee000de)); // 1.59035e+38f, -1.5951e+38f, 1.48397e+38f, -1.48876e+38f
|
|
|
|
path.lineTo(SkBits2Float(0x7f07a445), SkBits2Float(0xff080087)); // 1.80299e+38f, -1.80778e+38f
|
|
|
|
path.close();
|
|
|
|
SkSurface::MakeRasterN32Premul(250, 250, nullptr)->getCanvas()->drawPath(path, paint);
|
|
|
|
}
|
|
|
|
|
2017-09-06 17:33:30 +00:00
|
|
|
static void test_interp(skiatest::Reporter* reporter) {
|
|
|
|
SkPath p1, p2, out;
|
|
|
|
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2));
|
|
|
|
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out));
|
|
|
|
REPORTER_ASSERT(reporter, p1 == out);
|
|
|
|
REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out));
|
|
|
|
REPORTER_ASSERT(reporter, p1 == out);
|
|
|
|
p1.moveTo(0, 2);
|
|
|
|
p1.lineTo(0, 4);
|
|
|
|
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2));
|
|
|
|
REPORTER_ASSERT(reporter, !p1.interpolate(p2, 1, &out));
|
|
|
|
p2.moveTo(6, 0);
|
|
|
|
p2.lineTo(8, 0);
|
|
|
|
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2));
|
|
|
|
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0, &out));
|
|
|
|
REPORTER_ASSERT(reporter, p2 == out);
|
|
|
|
REPORTER_ASSERT(reporter, p1.interpolate(p2, 1, &out));
|
|
|
|
REPORTER_ASSERT(reporter, p1 == out);
|
|
|
|
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out));
|
|
|
|
REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(3, 1, 4, 2));
|
|
|
|
p1.reset();
|
|
|
|
p1.moveTo(4, 4);
|
|
|
|
p1.conicTo(5, 4, 5, 5, 1 / SkScalarSqrt(2));
|
|
|
|
p2.reset();
|
|
|
|
p2.moveTo(4, 2);
|
|
|
|
p2.conicTo(7, 2, 7, 5, 1 / SkScalarSqrt(2));
|
|
|
|
REPORTER_ASSERT(reporter, p1.isInterpolatable(p2));
|
|
|
|
REPORTER_ASSERT(reporter, p1.interpolate(p2, 0.5f, &out));
|
|
|
|
REPORTER_ASSERT(reporter, out.getBounds() == SkRect::MakeLTRB(4, 3, 6, 5));
|
|
|
|
p2.reset();
|
|
|
|
p2.moveTo(4, 2);
|
|
|
|
p2.conicTo(6, 3, 6, 5, 1);
|
|
|
|
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2));
|
|
|
|
p2.reset();
|
|
|
|
p2.moveTo(4, 4);
|
|
|
|
p2.conicTo(5, 4, 5, 5, 0.5f);
|
|
|
|
REPORTER_ASSERT(reporter, !p1.isInterpolatable(p2));
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(PathInterp, reporter) {
|
|
|
|
test_interp(reporter);
|
|
|
|
}
|
|
|
|
|
2019-04-23 17:05:21 +00:00
|
|
|
#include "include/core/SkSurface.h"
|
2017-09-06 17:33:30 +00:00
|
|
|
DEF_TEST(PathBigCubic, reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SkBits2Float(0x00000000), SkBits2Float(0x00000000)); // 0, 0
|
|
|
|
path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f
|
|
|
|
path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052), SkBits2Float(0x00000100), SkBits2Float(0x00000000), SkBits2Float(0x00000100), SkBits2Float(0x00000000)); // 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0
|
|
|
|
path.moveTo(0, 512);
|
|
|
|
|
|
|
|
// this call should not assert
|
|
|
|
SkSurface::MakeRasterN32Premul(255, 255, nullptr)->getCanvas()->drawPath(path, SkPaint());
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(PathContains, reporter) {
|
|
|
|
test_contains(reporter);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(Paths, reporter) {
|
|
|
|
test_fuzz_crbug_647922();
|
|
|
|
test_fuzz_crbug_643933();
|
|
|
|
test_sect_with_horizontal_needs_pinning();
|
|
|
|
test_crbug_629455(reporter);
|
|
|
|
test_fuzz_crbug_627414(reporter);
|
|
|
|
test_path_crbug364224();
|
|
|
|
test_fuzz_crbug_662952(reporter);
|
|
|
|
test_fuzz_crbug_662730(reporter);
|
|
|
|
test_fuzz_crbug_662780();
|
|
|
|
test_mask_overflow();
|
|
|
|
test_path_crbugskia6003();
|
|
|
|
test_fuzz_crbug_668907();
|
|
|
|
test_skbug_6947();
|
2017-09-06 21:10:05 +00:00
|
|
|
test_skbug_7015();
|
2017-09-18 18:38:43 +00:00
|
|
|
test_skbug_7051();
|
2019-08-14 19:45:37 +00:00
|
|
|
test_skbug_7435();
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
SkSize::Make(3, 4);
|
|
|
|
|
|
|
|
SkPath p, empty;
|
|
|
|
SkRect bounds, bounds2;
|
|
|
|
test_empty(reporter, p);
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, p.getBounds().isEmpty());
|
|
|
|
|
|
|
|
// this triggers a code path in SkPath::operator= which is otherwise unexercised
|
|
|
|
SkPath& self = p;
|
|
|
|
p = self;
|
|
|
|
|
|
|
|
// this triggers a code path in SkPath::swap which is otherwise unexercised
|
|
|
|
p.swap(self);
|
|
|
|
|
2019-08-24 23:39:13 +00:00
|
|
|
bounds.setLTRB(0, 0, SK_Scalar1, SK_Scalar1);
|
2017-09-06 17:33:30 +00:00
|
|
|
|
|
|
|
p.addRoundRect(bounds, SK_Scalar1, SK_Scalar1);
|
|
|
|
check_convex_bounds(reporter, p, bounds);
|
|
|
|
// we have quads or cubics
|
|
|
|
REPORTER_ASSERT(reporter,
|
|
|
|
p.getSegmentMasks() & (kCurveSegmentMask | SkPath::kConic_SegmentMask));
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
|
|
|
|
p.reset();
|
|
|
|
test_empty(reporter, p);
|
|
|
|
|
|
|
|
p.addOval(bounds);
|
|
|
|
check_convex_bounds(reporter, p, bounds);
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
|
|
|
|
p.rewind();
|
|
|
|
test_empty(reporter, p);
|
|
|
|
|
|
|
|
p.addRect(bounds);
|
|
|
|
check_convex_bounds(reporter, p, bounds);
|
|
|
|
// we have only lines
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_SegmentMask == p.getSegmentMasks());
|
|
|
|
REPORTER_ASSERT(reporter, !p.isEmpty());
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, p != empty);
|
|
|
|
REPORTER_ASSERT(reporter, !(p == empty));
|
|
|
|
|
|
|
|
// do getPoints and getVerbs return the right result
|
|
|
|
REPORTER_ASSERT(reporter, p.getPoints(nullptr, 0) == 4);
|
|
|
|
REPORTER_ASSERT(reporter, p.getVerbs(nullptr, 0) == 5);
|
|
|
|
SkPoint pts[4];
|
|
|
|
int count = p.getPoints(pts, 4);
|
|
|
|
REPORTER_ASSERT(reporter, count == 4);
|
|
|
|
uint8_t verbs[6];
|
|
|
|
verbs[5] = 0xff;
|
|
|
|
p.getVerbs(verbs, 5);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kMove_Verb == verbs[0]);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[1]);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[2]);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kLine_Verb == verbs[3]);
|
|
|
|
REPORTER_ASSERT(reporter, SkPath::kClose_Verb == verbs[4]);
|
|
|
|
REPORTER_ASSERT(reporter, 0xff == verbs[5]);
|
2019-08-24 23:39:13 +00:00
|
|
|
bounds2.setBounds(pts, 4);
|
2017-09-06 17:33:30 +00:00
|
|
|
REPORTER_ASSERT(reporter, bounds == bounds2);
|
|
|
|
|
|
|
|
bounds.offset(SK_Scalar1*3, SK_Scalar1*4);
|
|
|
|
p.offset(SK_Scalar1*3, SK_Scalar1*4);
|
|
|
|
REPORTER_ASSERT(reporter, bounds == p.getBounds());
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, p.isRect(nullptr));
|
|
|
|
bounds2.setEmpty();
|
|
|
|
REPORTER_ASSERT(reporter, p.isRect(&bounds2));
|
|
|
|
REPORTER_ASSERT(reporter, bounds == bounds2);
|
|
|
|
|
|
|
|
// now force p to not be a rect
|
2019-08-24 23:39:13 +00:00
|
|
|
bounds.setWH(SK_Scalar1/2, SK_Scalar1/2);
|
2017-09-06 17:33:30 +00:00
|
|
|
p.addRect(bounds);
|
|
|
|
REPORTER_ASSERT(reporter, !p.isRect(nullptr));
|
|
|
|
|
|
|
|
// Test an edge case w.r.t. the bound returned by isRect (i.e., the
|
|
|
|
// path has a trailing moveTo. Please see crbug.com\445368)
|
|
|
|
{
|
|
|
|
SkRect r;
|
|
|
|
p.reset();
|
|
|
|
p.addRect(bounds);
|
|
|
|
REPORTER_ASSERT(reporter, p.isRect(&r));
|
|
|
|
REPORTER_ASSERT(reporter, r == bounds);
|
|
|
|
// add a moveTo outside of our bounds
|
|
|
|
p.moveTo(bounds.fLeft + 10, bounds.fBottom + 10);
|
|
|
|
REPORTER_ASSERT(reporter, p.isRect(&r));
|
|
|
|
REPORTER_ASSERT(reporter, r == bounds);
|
|
|
|
}
|
|
|
|
|
|
|
|
test_operatorEqual(reporter);
|
|
|
|
test_isLine(reporter);
|
|
|
|
test_isRect(reporter);
|
|
|
|
test_is_simple_closed_rect(reporter);
|
|
|
|
test_isNestedFillRects(reporter);
|
|
|
|
test_zero_length_paths(reporter);
|
|
|
|
test_direction(reporter);
|
|
|
|
test_convexity(reporter);
|
|
|
|
test_convexity2(reporter);
|
two pass convexity
This separates the existing convexity logic into
two passes. The first pass detects concavity by
counting the changes in direction.
The second pass computes the cross product to
see that all angles bend in the same direction, and
computes the dot product to see if the angle
doubles back on itself.
The second pass treats axis-aligned vectors
separately, and computes the dot and cross products
by comparing point values; it does not use arithmetic
to determine convexity, so it works with all finite
values.
A compile time switch enables returning concave
for co-linear diagonal points:
If successive points are not axis-aligned, and
those points are co-linear along a diagonal;
the path is treated as concave. This is conservative
but avoids paths that change convexity when the
are translated or scaled, since transforming the
path may cause the midpoint to shift to either
side of a line formed by the endpoints.
The compile time switch is set so that co-linear
diagonal points do not affect convexity. Note that
this permits shapes formerly considered concave, such
as stroked lines with round caps, to become convex;
this accounts for many of the GM differences.
A path may double back on itself and be convex;
for instance, a path containing a single line.
Path may have multiple initial moveTo verbs, or
trailing moveTo verbs, and still evaluate as convex.
A separate entry point, SkPathPriv::IsConvex()
allows passing an array of points instead of a path.
A legacy define has been checked into Chrome to
use the old code until layout tests have been
rebaselined.
R=reed@google.com,bsalomon@google.com
Bug:899689
Change-Id: I392bbe04836ffb19666ad92ab2a2404c56543019
Reviewed-on: https://skia-review.googlesource.com/c/173427
Reviewed-by: Mike Reed <reed@google.com>
Reviewed-by: Cary Clark <caryclark@google.com>
Commit-Queue: Cary Clark <caryclark@skia.org>
2018-12-12 19:50:23 +00:00
|
|
|
test_convexity_doubleback(reporter);
|
2017-09-06 17:33:30 +00:00
|
|
|
test_conservativelyContains(reporter);
|
|
|
|
test_close(reporter);
|
|
|
|
test_segment_masks(reporter);
|
|
|
|
test_flattening(reporter);
|
|
|
|
test_transform(reporter);
|
|
|
|
test_bounds(reporter);
|
|
|
|
test_iter(reporter);
|
|
|
|
test_raw_iter(reporter);
|
|
|
|
test_circle(reporter);
|
|
|
|
test_oval(reporter);
|
|
|
|
test_strokerec(reporter);
|
|
|
|
test_addPoly(reporter);
|
|
|
|
test_isfinite(reporter);
|
|
|
|
test_isfinite_after_transform(reporter);
|
|
|
|
test_islastcontourclosed(reporter);
|
|
|
|
test_arb_round_rect_is_convex(reporter);
|
|
|
|
test_arb_zero_rad_round_rect_is_rect(reporter);
|
|
|
|
test_addrect(reporter);
|
|
|
|
test_addrect_isfinite(reporter);
|
|
|
|
test_tricky_cubic();
|
|
|
|
test_clipped_cubic();
|
|
|
|
test_crbug_170666();
|
|
|
|
test_crbug_493450(reporter);
|
|
|
|
test_crbug_495894(reporter);
|
|
|
|
test_crbug_613918();
|
|
|
|
test_bad_cubic_crbug229478();
|
|
|
|
test_bad_cubic_crbug234190();
|
|
|
|
test_gen_id(reporter);
|
|
|
|
test_path_close_issue1474(reporter);
|
|
|
|
test_path_to_region(reporter);
|
|
|
|
test_rrect(reporter);
|
|
|
|
test_arc(reporter);
|
|
|
|
test_arc_ovals(reporter);
|
|
|
|
test_arcTo(reporter);
|
|
|
|
test_addPath(reporter);
|
|
|
|
test_addPathMode(reporter, false, false);
|
|
|
|
test_addPathMode(reporter, true, false);
|
|
|
|
test_addPathMode(reporter, false, true);
|
|
|
|
test_addPathMode(reporter, true, true);
|
|
|
|
test_extendClosedPath(reporter);
|
|
|
|
test_addEmptyPath(reporter, SkPath::kExtend_AddPathMode);
|
|
|
|
test_addEmptyPath(reporter, SkPath::kAppend_AddPathMode);
|
|
|
|
test_conicTo_special_case(reporter);
|
|
|
|
test_get_point(reporter);
|
|
|
|
test_contains(reporter);
|
|
|
|
PathTest_Private::TestPathTo(reporter);
|
|
|
|
PathRefTest_Private::TestPathRef(reporter);
|
|
|
|
PathTest_Private::TestPathrefListeners(reporter);
|
|
|
|
test_dump(reporter);
|
|
|
|
test_path_crbug389050(reporter);
|
|
|
|
test_path_crbugskia2820(reporter);
|
|
|
|
test_path_crbugskia5995();
|
|
|
|
test_skbug_3469(reporter);
|
|
|
|
test_skbug_3239(reporter);
|
|
|
|
test_bounds_crbug_513799(reporter);
|
|
|
|
test_fuzz_crbug_638223();
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(conservatively_contains_rect, reporter) {
|
|
|
|
SkPath path;
|
|
|
|
|
|
|
|
path.moveTo(SkBits2Float(0x44000000), SkBits2Float(0x373938b8)); // 512, 1.10401e-05f
|
|
|
|
// 1.4013e-45f, -9.22346e+18f, 3.58732e-43f, 0, 3.58732e-43f, 0
|
|
|
|
path.cubicTo(SkBits2Float(0x00000001), SkBits2Float(0xdf000052),
|
|
|
|
SkBits2Float(0x00000100), SkBits2Float(0x00000000),
|
|
|
|
SkBits2Float(0x00000100), SkBits2Float(0x00000000));
|
|
|
|
path.moveTo(0, 0);
|
|
|
|
|
|
|
|
// this guy should not assert
|
|
|
|
path.conservativelyContainsRect({ -211747, 12.1115f, -197893, 25.0321f });
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
static void rand_path(SkPath* path, SkRandom& rand, SkPath::Verb verb, int n) {
|
|
|
|
for (int i = 0; i < n; ++i) {
|
|
|
|
switch (verb) {
|
|
|
|
case SkPath::kLine_Verb:
|
|
|
|
path->lineTo(rand.nextF()*100, rand.nextF()*100);
|
|
|
|
break;
|
|
|
|
case SkPath::kQuad_Verb:
|
|
|
|
path->quadTo(rand.nextF()*100, rand.nextF()*100,
|
|
|
|
rand.nextF()*100, rand.nextF()*100);
|
|
|
|
break;
|
|
|
|
case SkPath::kConic_Verb:
|
|
|
|
path->conicTo(rand.nextF()*100, rand.nextF()*100,
|
|
|
|
rand.nextF()*100, rand.nextF()*100, rand.nextF()*10);
|
|
|
|
break;
|
|
|
|
case SkPath::kCubic_Verb:
|
|
|
|
path->cubicTo(rand.nextF()*100, rand.nextF()*100,
|
|
|
|
rand.nextF()*100, rand.nextF()*100,
|
|
|
|
rand.nextF()*100, rand.nextF()*100);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
SkASSERT(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-04-23 17:05:21 +00:00
|
|
|
#include "include/pathops/SkPathOps.h"
|
2017-09-06 17:33:30 +00:00
|
|
|
DEF_TEST(path_tight_bounds, reporter) {
|
|
|
|
SkRandom rand;
|
|
|
|
|
|
|
|
const SkPath::Verb verbs[] = {
|
|
|
|
SkPath::kLine_Verb, SkPath::kQuad_Verb, SkPath::kConic_Verb, SkPath::kCubic_Verb,
|
|
|
|
};
|
|
|
|
for (int i = 0; i < 1000; ++i) {
|
|
|
|
for (int n = 1; n <= 10; n += 9) {
|
|
|
|
for (SkPath::Verb verb : verbs) {
|
|
|
|
SkPath path;
|
|
|
|
rand_path(&path, rand, verb, n);
|
|
|
|
SkRect bounds = path.getBounds();
|
|
|
|
SkRect tight = path.computeTightBounds();
|
|
|
|
REPORTER_ASSERT(reporter, bounds.contains(tight));
|
|
|
|
|
|
|
|
SkRect tight2;
|
|
|
|
TightBounds(path, &tight2);
|
|
|
|
REPORTER_ASSERT(reporter, nearly_equal(tight, tight2));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(skbug_6450, r) {
|
|
|
|
SkRect ri = { 0.18554693f, 195.26283f, 0.185784385f, 752.644409f };
|
|
|
|
SkVector rdi[4] = {
|
|
|
|
{ 1.81159976e-09f, 7.58768801e-05f },
|
|
|
|
{ 0.000118725002f, 0.000118725002f },
|
|
|
|
{ 0.000118725002f, 0.000118725002f },
|
|
|
|
{ 0.000118725002f, 0.486297607f }
|
|
|
|
};
|
|
|
|
SkRRect irr;
|
|
|
|
irr.setRectRadii(ri, rdi);
|
|
|
|
SkRect ro = { 9.18354821e-39f, 2.1710848e+9f, 2.16945843e+9f, 3.47808128e+9f };
|
|
|
|
SkVector rdo[4] = {
|
|
|
|
{ 0, 0 },
|
|
|
|
{ 0.0103298295f, 0.185887396f },
|
|
|
|
{ 2.52999727e-29f, 169.001938f },
|
|
|
|
{ 195.262741f, 195.161255f }
|
|
|
|
};
|
|
|
|
SkRRect orr;
|
|
|
|
orr.setRectRadii(ro, rdo);
|
|
|
|
SkMakeNullCanvas()->drawDRRect(orr, irr, SkPaint());
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(PathRefSerialization, reporter) {
|
|
|
|
SkPath path;
|
|
|
|
const size_t numMoves = 5;
|
|
|
|
const size_t numConics = 7;
|
|
|
|
const size_t numPoints = numMoves + 2 * numConics;
|
|
|
|
const size_t numVerbs = numMoves + numConics;
|
|
|
|
for (size_t i = 0; i < numMoves; ++i) path.moveTo(1, 2);
|
|
|
|
for (size_t i = 0; i < numConics; ++i) path.conicTo(1, 2, 3, 4, 5);
|
|
|
|
REPORTER_ASSERT(reporter, path.countPoints() == numPoints);
|
|
|
|
REPORTER_ASSERT(reporter, path.countVerbs() == numVerbs);
|
|
|
|
|
|
|
|
// Verify that path serializes/deserializes properly.
|
|
|
|
sk_sp<SkData> data = path.serialize();
|
|
|
|
size_t bytesWritten = data->size();
|
|
|
|
|
|
|
|
{
|
|
|
|
SkPath readBack;
|
|
|
|
REPORTER_ASSERT(reporter, readBack != path);
|
|
|
|
size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten);
|
|
|
|
REPORTER_ASSERT(reporter, bytesRead == bytesWritten);
|
|
|
|
REPORTER_ASSERT(reporter, readBack == path);
|
|
|
|
}
|
|
|
|
|
|
|
|
// One less byte (rounded down to alignment) than was written will also
|
|
|
|
// fail to be deserialized.
|
|
|
|
{
|
|
|
|
SkPath readBack;
|
|
|
|
size_t bytesRead = readBack.readFromMemory(data->data(), bytesWritten - 4);
|
|
|
|
REPORTER_ASSERT(reporter, !bytesRead);
|
|
|
|
}
|
|
|
|
}
|
2017-09-08 19:00:25 +00:00
|
|
|
|
|
|
|
DEF_TEST(NonFinitePathIteration, reporter) {
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(SK_ScalarInfinity, SK_ScalarInfinity);
|
|
|
|
|
|
|
|
int verbs = 0;
|
|
|
|
|
|
|
|
SkPath::RawIter iter(path);
|
|
|
|
SkPoint pts[4];
|
|
|
|
while (iter.next(pts) != SkPath::kDone_Verb) {
|
|
|
|
verbs++;
|
|
|
|
}
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, verbs == 0);
|
|
|
|
}
|
2017-12-08 16:37:01 +00:00
|
|
|
|
|
|
|
DEF_TEST(AndroidArc, reporter) {
|
|
|
|
const char* tests[] = {
|
|
|
|
"M50,0A50,50,0,0 1 100,50 L100,85 A15,15,0,0 1 85,100 L50,100 A50,50,0,0 1 50,0z",
|
|
|
|
"M50,0L92,0 A8,8,0,0 1 100,8 L100,92 A8,8,0,0 1 92,100 L8,100"
|
|
|
|
" A8,8,0,0 1 0,92 L 0,8 A8,8,0,0 1 8,0z",
|
|
|
|
"M50 0A50 50,0,1,1,50 100A50 50,0,1,1,50 0"
|
|
|
|
};
|
|
|
|
for (auto test : tests) {
|
|
|
|
SkPath aPath;
|
|
|
|
SkAssertResult(SkParsePath::FromSVGString(test, &aPath));
|
|
|
|
SkASSERT(aPath.isConvex());
|
|
|
|
for (SkScalar scale = 1; scale < 1000; scale *= 1.1f) {
|
|
|
|
SkPath scalePath = aPath;
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setScale(scale, scale);
|
|
|
|
scalePath.transform(matrix);
|
|
|
|
SkASSERT(scalePath.isConvex());
|
|
|
|
}
|
|
|
|
for (SkScalar scale = 1; scale < .001; scale /= 1.1f) {
|
|
|
|
SkPath scalePath = aPath;
|
|
|
|
SkMatrix matrix;
|
|
|
|
matrix.setScale(scale, scale);
|
|
|
|
scalePath.transform(matrix);
|
|
|
|
SkASSERT(scalePath.isConvex());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2018-01-22 21:49:49 +00:00
|
|
|
|
|
|
|
/*
|
|
|
|
* Try a range of crazy values, just to ensure that we don't assert/crash.
|
|
|
|
*/
|
|
|
|
DEF_TEST(HugeGeometry, reporter) {
|
|
|
|
auto surf = SkSurface::MakeRasterN32Premul(100, 100);
|
|
|
|
auto canvas = surf->getCanvas();
|
|
|
|
|
|
|
|
const bool aas[] = { false, true };
|
|
|
|
const SkPaint::Style styles[] = {
|
|
|
|
SkPaint::kFill_Style, SkPaint::kStroke_Style, SkPaint::kStrokeAndFill_Style
|
|
|
|
};
|
|
|
|
const SkScalar values[] = {
|
|
|
|
0, 1, 1000, 1000 * 1000, 1000.f * 1000 * 10000, SK_ScalarMax / 2, SK_ScalarMax,
|
|
|
|
SK_ScalarInfinity
|
|
|
|
};
|
|
|
|
|
|
|
|
SkPaint paint;
|
|
|
|
for (auto x : values) {
|
|
|
|
SkRect r = { -x, -x, x, x };
|
|
|
|
for (auto width : values) {
|
|
|
|
paint.setStrokeWidth(width);
|
|
|
|
for (auto aa : aas) {
|
|
|
|
paint.setAntiAlias(aa);
|
|
|
|
for (auto style : styles) {
|
|
|
|
paint.setStyle(style);
|
|
|
|
canvas->drawRect(r, paint);
|
|
|
|
canvas->drawOval(r, paint);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2018-01-30 16:29:36 +00:00
|
|
|
// Treat nonfinite paths as "empty" or "full", depending on inverse-filltype
|
|
|
|
DEF_TEST(ClipPath_nonfinite, reporter) {
|
|
|
|
auto surf = SkSurface::MakeRasterN32Premul(10, 10);
|
|
|
|
SkCanvas* canvas = surf->getCanvas();
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, !canvas->isClipEmpty());
|
|
|
|
for (bool aa : {false, true}) {
|
2019-11-26 17:17:17 +00:00
|
|
|
for (auto ft : {SkPathFillType::kWinding, SkPathFillType::kInverseWinding}) {
|
2018-01-30 16:29:36 +00:00
|
|
|
for (SkScalar bad : {SK_ScalarInfinity, SK_ScalarNaN}) {
|
|
|
|
for (int bits = 1; bits <= 15; ++bits) {
|
|
|
|
SkPoint p0 = { 0, 0 };
|
|
|
|
SkPoint p1 = { 0, 0 };
|
|
|
|
if (bits & 1) p0.fX = -bad;
|
|
|
|
if (bits & 2) p0.fY = -bad;
|
|
|
|
if (bits & 4) p1.fX = bad;
|
|
|
|
if (bits & 8) p1.fY = bad;
|
|
|
|
|
|
|
|
SkPath path;
|
|
|
|
path.moveTo(p0);
|
|
|
|
path.lineTo(p1);
|
|
|
|
path.setFillType(ft);
|
|
|
|
canvas->save();
|
|
|
|
canvas->clipPath(path, aa);
|
|
|
|
REPORTER_ASSERT(reporter, canvas->isClipEmpty() == !path.isInverseFillType());
|
|
|
|
canvas->restore();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, !canvas->isClipEmpty());
|
|
|
|
}
|
|
|
|
|
2018-04-09 20:07:11 +00:00
|
|
|
// skbug.com/7792
|
|
|
|
DEF_TEST(Path_isRect, reporter) {
|
2018-04-11 18:30:27 +00:00
|
|
|
auto makePath = [](const SkPoint* points, size_t count, bool close) -> SkPath {
|
|
|
|
SkPath path;
|
|
|
|
for (size_t index = 0; index < count; ++index) {
|
|
|
|
index < 2 ? path.moveTo(points[index]) : path.lineTo(points[index]);
|
|
|
|
}
|
2018-04-12 14:29:46 +00:00
|
|
|
if (close) {
|
|
|
|
path.close();
|
|
|
|
}
|
2018-04-11 18:30:27 +00:00
|
|
|
return path;
|
|
|
|
};
|
|
|
|
auto makePath2 = [](const SkPoint* points, const SkPath::Verb* verbs, size_t count) -> SkPath {
|
|
|
|
SkPath path;
|
|
|
|
for (size_t index = 0; index < count; ++index) {
|
|
|
|
switch (verbs[index]) {
|
|
|
|
case SkPath::kMove_Verb:
|
|
|
|
path.moveTo(*points++);
|
|
|
|
break;
|
|
|
|
case SkPath::kLine_Verb:
|
|
|
|
path.lineTo(*points++);
|
|
|
|
break;
|
|
|
|
case SkPath::kClose_Verb:
|
|
|
|
path.close();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
SkASSERT(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return path;
|
|
|
|
};
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792 (bug description)
|
2018-04-09 20:07:11 +00:00
|
|
|
SkRect rect;
|
2018-04-11 18:30:27 +00:00
|
|
|
SkPoint points[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} };
|
|
|
|
SkPath path = makePath(points, SK_ARRAY_COUNT(points), false);
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2018-04-09 20:07:11 +00:00
|
|
|
SkRect compare;
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points[1], SK_ARRAY_COUNT(points) - 1);
|
2018-04-09 20:07:11 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c3
|
2018-04-11 18:30:27 +00:00
|
|
|
SkPoint points3[] = { {75, 50}, {100, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 50} };
|
|
|
|
path = makePath(points3, SK_ARRAY_COUNT(points3), true);
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c9
|
2018-04-11 18:30:27 +00:00
|
|
|
SkPoint points9[] = { {10, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150} };
|
|
|
|
path = makePath(points9, SK_ARRAY_COUNT(points9), true);
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points9[1], SK_ARRAY_COUNT(points9) - 1);
|
2018-04-11 18:30:27 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c11
|
2018-04-11 18:30:27 +00:00
|
|
|
SkPath::Verb verbs11[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb };
|
|
|
|
SkPoint points11[] = { {75, 150}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 150} };
|
|
|
|
path = makePath2(points11, verbs11, SK_ARRAY_COUNT(verbs11));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points11[0], SK_ARRAY_COUNT(points11));
|
2018-04-11 18:30:27 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c14
|
2018-04-11 18:30:27 +00:00
|
|
|
SkPath::Verb verbs14[] = { SkPath::kMove_Verb, SkPath::kMove_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kClose_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kClose_Verb };
|
|
|
|
SkPoint points14[] = { {250, 75}, {250, 75}, {250, 75}, {100, 75},
|
|
|
|
{150, 75}, {150, 150}, {75, 150}, {75, 75}, {0, 0} };
|
|
|
|
path = makePath2(points14, verbs14, SK_ARRAY_COUNT(verbs14));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c15
|
2018-04-11 18:30:27 +00:00
|
|
|
SkPath::Verb verbs15[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kMove_Verb };
|
|
|
|
SkPoint points15[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {250, 75} };
|
|
|
|
path = makePath2(points15, verbs15, SK_ARRAY_COUNT(verbs15));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points15[0], SK_ARRAY_COUNT(points15) - 1);
|
2018-04-11 18:30:27 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c17
|
2018-04-12 14:29:46 +00:00
|
|
|
SkPoint points17[] = { {75, 10}, {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10} };
|
|
|
|
path = makePath(points17, SK_ARRAY_COUNT(points17), true);
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c19
|
2018-04-12 18:00:24 +00:00
|
|
|
SkPath::Verb verbs19[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kClose_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb };
|
|
|
|
SkPoint points19[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150},
|
|
|
|
{75, 150}, {10, 10}, {30, 10}, {10, 30} };
|
|
|
|
path = makePath2(points19, verbs19, SK_ARRAY_COUNT(verbs19));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-13 11:07:04 +00:00
|
|
|
// isolated from skbug.com/7792#c23
|
|
|
|
SkPath::Verb verbs23[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kClose_Verb };
|
|
|
|
SkPoint points23[] = { {75, 75}, {75, 75}, {75, 75}, {75, 75}, {150, 75}, {150, 150},
|
|
|
|
{75, 150} };
|
|
|
|
path = makePath2(points23, verbs23, SK_ARRAY_COUNT(verbs23));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points23[0], SK_ARRAY_COUNT(points23));
|
2018-04-13 11:07:04 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-16 16:06:07 +00:00
|
|
|
// isolated from skbug.com/7792#c29
|
|
|
|
SkPath::Verb verbs29[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kClose_Verb };
|
|
|
|
SkPoint points29[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 250}, {75, 75} };
|
|
|
|
path = makePath2(points29, verbs29, SK_ARRAY_COUNT(verbs29));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-17 13:30:14 +00:00
|
|
|
// isolated from skbug.com/7792#c31
|
|
|
|
SkPath::Verb verbs31[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kClose_Verb };
|
|
|
|
SkPoint points31[] = { {75, 75}, {150, 75}, {150, 150}, {75, 150}, {75, 10}, {75, 75} };
|
|
|
|
path = makePath2(points31, verbs31, SK_ARRAY_COUNT(verbs31));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points31[0], 4);
|
2018-04-17 13:30:14 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-17 15:53:34 +00:00
|
|
|
// isolated from skbug.com/7792#c36
|
|
|
|
SkPath::Verb verbs36[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kMove_Verb, SkPath::kLine_Verb };
|
|
|
|
SkPoint points36[] = { {75, 75}, {150, 75}, {150, 150}, {10, 150}, {75, 75}, {75, 75} };
|
|
|
|
path = makePath2(points36, verbs36, SK_ARRAY_COUNT(verbs36));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-17 17:34:37 +00:00
|
|
|
// isolated from skbug.com/7792#c39
|
|
|
|
SkPath::Verb verbs39[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
2018-04-19 11:37:29 +00:00
|
|
|
SkPath::kLine_Verb };
|
2018-04-17 17:34:37 +00:00
|
|
|
SkPoint points39[] = { {150, 75}, {150, 150}, {75, 150}, {75, 100} };
|
|
|
|
path = makePath2(points39, verbs39, SK_ARRAY_COUNT(verbs39));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, !path.isRect(&rect));
|
2018-04-19 11:37:29 +00:00
|
|
|
// isolated from zero_length_paths_aa
|
2018-04-18 16:25:08 +00:00
|
|
|
SkPath::Verb verbsAA[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kClose_Verb };
|
|
|
|
SkPoint pointsAA[] = { {32, 9.5f}, {32, 9.5f}, {32, 17}, {17, 17}, {17, 9.5f}, {17, 2},
|
|
|
|
{32, 2} };
|
|
|
|
path = makePath2(pointsAA, verbsAA, SK_ARRAY_COUNT(verbsAA));
|
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&pointsAA[0], SK_ARRAY_COUNT(pointsAA));
|
2018-04-18 16:25:08 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-19 11:37:29 +00:00
|
|
|
// isolated from skbug.com/7792#c41
|
|
|
|
SkPath::Verb verbs41[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kClose_Verb };
|
|
|
|
SkPoint points41[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} };
|
|
|
|
path = makePath2(points41, verbs41, SK_ARRAY_COUNT(verbs41));
|
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points41[1], 4);
|
2018-04-19 11:37:29 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
|
|
|
// isolated from skbug.com/7792#c53
|
|
|
|
SkPath::Verb verbs53[] = { SkPath::kMove_Verb, SkPath::kLine_Verb, SkPath::kLine_Verb,
|
|
|
|
SkPath::kLine_Verb, SkPath::kLine_Verb, SkPath::kMove_Verb,
|
|
|
|
SkPath::kClose_Verb };
|
|
|
|
SkPoint points53[] = { {75, 75}, {150, 75}, {150, 150}, {140, 150}, {140, 75}, {75, 75} };
|
|
|
|
path = makePath2(points53, verbs53, SK_ARRAY_COUNT(verbs53));
|
|
|
|
REPORTER_ASSERT(reporter, path.isRect(&rect));
|
2019-08-24 23:39:13 +00:00
|
|
|
compare.setBounds(&points53[1], 4);
|
2018-04-19 11:37:29 +00:00
|
|
|
REPORTER_ASSERT(reporter, rect == compare);
|
2018-04-09 20:07:11 +00:00
|
|
|
}
|
2018-05-23 16:12:21 +00:00
|
|
|
|
2018-09-12 14:08:40 +00:00
|
|
|
// Be sure we can safely add ourselves
|
|
|
|
DEF_TEST(Path_self_add, reporter) {
|
|
|
|
// The possible problem is that during path.add() we may have to grow the dst buffers as
|
|
|
|
// we append the src pts/verbs, but all the while we are iterating over the src. If src == dst
|
|
|
|
// we could realloc the buffer's (on behalf of dst) leaving the src iterator pointing at
|
|
|
|
// garbage.
|
|
|
|
//
|
|
|
|
// The test runs though verious sized src paths, since its not defined publicly what the
|
|
|
|
// reserve allocation strategy is for SkPath, therefore we can't know when an append operation
|
|
|
|
// will trigger a realloc. At the time of this writing, these loops were sufficient to trigger
|
|
|
|
// an ASAN error w/o the fix to SkPath::addPath().
|
|
|
|
//
|
|
|
|
for (int count = 0; count < 10; ++count) {
|
|
|
|
SkPath path;
|
|
|
|
for (int add = 0; add < count; ++add) {
|
|
|
|
// just add some stuff, so we have something to copy/append in addPath()
|
|
|
|
path.moveTo(1, 2).lineTo(3, 4).cubicTo(1,2,3,4,5,6).conicTo(1,2,3,4,5);
|
|
|
|
}
|
|
|
|
path.addPath(path, 1, 2);
|
|
|
|
path.addPath(path, 3, 4);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-04-23 17:05:21 +00:00
|
|
|
#include "include/core/SkVertices.h"
|
2018-05-30 20:32:33 +00:00
|
|
|
static void draw_triangle(SkCanvas* canvas, const SkPoint pts[]) {
|
|
|
|
// draw in different ways, looking for an assert
|
|
|
|
|
|
|
|
{
|
|
|
|
SkPath path;
|
|
|
|
path.addPoly(pts, 3, false);
|
|
|
|
canvas->drawPath(path, SkPaint());
|
|
|
|
}
|
|
|
|
|
|
|
|
const SkColor colors[] = { SK_ColorBLACK, SK_ColorBLACK, SK_ColorBLACK };
|
|
|
|
auto v = SkVertices::MakeCopy(SkVertices::kTriangles_VertexMode, 3, pts, nullptr, colors);
|
|
|
|
canvas->drawVertices(v, SkBlendMode::kSrcOver, SkPaint());
|
|
|
|
}
|
|
|
|
|
2018-05-23 16:12:21 +00:00
|
|
|
DEF_TEST(triangle_onehalf, reporter) {
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(100, 100));
|
|
|
|
|
|
|
|
const SkPoint pts[] = {
|
|
|
|
{ 0.499069244f, 9.63295173f },
|
|
|
|
{ 0.499402374f, 7.88207579f },
|
|
|
|
{ 10.2363272f, 0.49999997f }
|
|
|
|
};
|
2018-05-30 20:32:33 +00:00
|
|
|
draw_triangle(surface->getCanvas(), pts);
|
|
|
|
}
|
2018-05-23 16:12:21 +00:00
|
|
|
|
2018-05-30 20:32:33 +00:00
|
|
|
DEF_TEST(triangle_big, reporter) {
|
|
|
|
auto surface(SkSurface::MakeRasterN32Premul(4, 4304));
|
|
|
|
|
|
|
|
// The first two points, when sent through our fixed-point SkEdge, can walk negative beyond
|
|
|
|
// -0.5 due to accumulated += error of the slope. We have since make the bounds calculation
|
|
|
|
// be conservative, so we invoke clipping if we get in this situation.
|
|
|
|
// This test was added to demonstrate the need for this conservative bounds calc.
|
|
|
|
// (found by a fuzzer)
|
|
|
|
const SkPoint pts[] = {
|
|
|
|
{ 0.327190518f, -114.945152f },
|
|
|
|
{ -0.5f, 1.00003874f },
|
|
|
|
{ 0.666425824f, 4304.26172f },
|
|
|
|
};
|
|
|
|
draw_triangle(surface->getCanvas(), pts);
|
2018-05-23 16:12:21 +00:00
|
|
|
}
|
2018-05-30 20:32:33 +00:00
|
|
|
|
2018-09-11 18:01:42 +00:00
|
|
|
static void add_verbs(SkPath* path, int count) {
|
|
|
|
path->moveTo(0, 0);
|
|
|
|
for (int i = 0; i < count; ++i) {
|
|
|
|
switch (i & 3) {
|
|
|
|
case 0: path->lineTo(10, 20); break;
|
|
|
|
case 1: path->quadTo(5, 6, 7, 8); break;
|
|
|
|
case 2: path->conicTo(1, 2, 3, 4, 0.5f); break;
|
|
|
|
case 3: path->cubicTo(2, 4, 6, 8, 10, 12); break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Make sure when we call shrinkToFit() that we always shrink (or stay the same)
|
|
|
|
// and that if we call twice, we stay the same.
|
|
|
|
DEF_TEST(Path_shrinkToFit, reporter) {
|
|
|
|
size_t max_free = 0;
|
|
|
|
for (int verbs = 0; verbs < 100; ++verbs) {
|
|
|
|
SkPath unique_path, shared_path;
|
|
|
|
add_verbs(&unique_path, verbs);
|
|
|
|
add_verbs(&shared_path, verbs);
|
|
|
|
|
|
|
|
const SkPath copy = shared_path;
|
|
|
|
REPORTER_ASSERT(reporter, shared_path == unique_path);
|
|
|
|
REPORTER_ASSERT(reporter, shared_path == copy);
|
|
|
|
|
|
|
|
#ifdef SK_DEBUG
|
2018-09-11 20:16:19 +00:00
|
|
|
size_t before = PathTest_Private::GetFreeSpace(unique_path);
|
2018-09-11 18:01:42 +00:00
|
|
|
#endif
|
|
|
|
unique_path.shrinkToFit();
|
|
|
|
shared_path.shrinkToFit();
|
|
|
|
REPORTER_ASSERT(reporter, shared_path == unique_path);
|
|
|
|
REPORTER_ASSERT(reporter, shared_path == copy);
|
|
|
|
|
|
|
|
#ifdef SK_DEBUG
|
2018-09-11 20:16:19 +00:00
|
|
|
size_t after = PathTest_Private::GetFreeSpace(unique_path);
|
2018-09-11 18:01:42 +00:00
|
|
|
REPORTER_ASSERT(reporter, before >= after);
|
|
|
|
max_free = std::max(max_free, before - after);
|
|
|
|
|
2018-09-11 20:16:19 +00:00
|
|
|
size_t after2 = PathTest_Private::GetFreeSpace(unique_path);
|
2018-09-11 18:01:42 +00:00
|
|
|
REPORTER_ASSERT(reporter, after == after2);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
if (false) {
|
|
|
|
SkDebugf("max_free %zu\n", max_free);
|
|
|
|
}
|
|
|
|
}
|
2018-09-25 00:30:28 +00:00
|
|
|
|
|
|
|
DEF_TEST(Path_setLastPt, r) {
|
|
|
|
// There was a time where SkPath::setLastPoint() didn't invalidate cached path bounds.
|
|
|
|
SkPath p;
|
|
|
|
p.moveTo(0,0);
|
|
|
|
p.moveTo(20,01);
|
|
|
|
p.moveTo(20,10);
|
|
|
|
p.moveTo(20,61);
|
|
|
|
REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 20,61));
|
|
|
|
|
|
|
|
p.setLastPt(30,01);
|
|
|
|
REPORTER_ASSERT(r, p.getBounds() == SkRect::MakeLTRB(0,0, 30,10)); // was {0,0, 20,61}
|
|
|
|
|
|
|
|
REPORTER_ASSERT(r, p.isValid());
|
|
|
|
}
|
2018-10-16 17:13:09 +00:00
|
|
|
|
|
|
|
DEF_TEST(Path_increserve_handle_neg_crbug_883666, r) {
|
|
|
|
SkPath path;
|
|
|
|
|
|
|
|
path.conicTo({0, 0}, {1, 1}, SK_FloatNegativeInfinity);
|
|
|
|
|
|
|
|
// <== use a copy path object to force SkPathRef::copy() and SkPathRef::resetToSize()
|
|
|
|
SkPath shallowPath = path;
|
|
|
|
|
|
|
|
// make sure we don't assert/crash on this.
|
|
|
|
shallowPath.incReserve(0xffffffff);
|
|
|
|
}
|
|
|
|
|
2018-12-01 19:07:49 +00:00
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
/*
|
|
|
|
* For speed, we tried to preserve useful/expensive attributes about paths,
|
|
|
|
* - convexity, isrect, isoval, ...
|
|
|
|
* Axis-aligned shapes (rect, oval, rrect) should survive, including convexity if the matrix
|
|
|
|
* is axis-aligned (e.g. scale+translate)
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct Xforms {
|
|
|
|
SkMatrix fIM, fTM, fSM, fRM;
|
|
|
|
|
|
|
|
Xforms() {
|
|
|
|
fIM.reset();
|
|
|
|
fTM.setTranslate(10, 20);
|
|
|
|
fSM.setScale(2, 3);
|
|
|
|
fRM.setRotate(30);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static bool conditional_convex(const SkPath& path, bool is_convex) {
|
2019-11-22 18:34:02 +00:00
|
|
|
SkPathConvexityType c = path.getConvexityTypeOrUnknown();
|
|
|
|
return is_convex ? (c == SkPathConvexityType::kConvex) : (c != SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// expect axis-aligned shape to survive assignment, identity and scale/translate matrices
|
|
|
|
template <typename ISA>
|
|
|
|
void survive(SkPath* path, const Xforms& x, bool isAxisAligned, skiatest::Reporter* reporter,
|
|
|
|
ISA isa_proc) {
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(*path));
|
|
|
|
// force the issue (computing convexity) the first time.
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, path->getConvexityType() == SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
|
|
|
|
SkPath path2;
|
|
|
|
|
|
|
|
// a path's isa and convexity should survive assignment
|
|
|
|
path2 = *path;
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(path2));
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, path2.getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
|
|
|
|
// a path's isa and convexity should identity transform
|
|
|
|
path->transform(x.fIM, &path2);
|
|
|
|
path->transform(x.fIM);
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(path2));
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, path2.getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
REPORTER_ASSERT(reporter, isa_proc(*path));
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, path->getConvexityTypeOrUnknown() == SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
|
|
|
|
// a path's isa should survive translation, convexity depends on axis alignment
|
|
|
|
path->transform(x.fTM, &path2);
|
|
|
|
path->transform(x.fTM);
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(path2));
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(*path));
|
|
|
|
REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned));
|
|
|
|
REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned));
|
|
|
|
|
|
|
|
// a path's isa should survive scaling, convexity depends on axis alignment
|
|
|
|
path->transform(x.fSM, &path2);
|
|
|
|
path->transform(x.fSM);
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(path2));
|
|
|
|
REPORTER_ASSERT(reporter, isa_proc(*path));
|
|
|
|
REPORTER_ASSERT(reporter, conditional_convex(path2, isAxisAligned));
|
|
|
|
REPORTER_ASSERT(reporter, conditional_convex(*path, isAxisAligned));
|
|
|
|
|
|
|
|
// For security, post-rotation, we can't assume we're still convex. It might prove to be,
|
|
|
|
// in fact, still be convex, be we can't have cached that setting, hence the call to
|
2019-11-22 18:34:02 +00:00
|
|
|
// getConvexityTypeOrUnknown() instead of getConvexityType().
|
2018-12-01 19:07:49 +00:00
|
|
|
path->transform(x.fRM, &path2);
|
|
|
|
path->transform(x.fRM);
|
|
|
|
if (isAxisAligned) {
|
|
|
|
REPORTER_ASSERT(reporter, !isa_proc(path2));
|
|
|
|
REPORTER_ASSERT(reporter, !isa_proc(*path));
|
|
|
|
}
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(reporter, path2.getConvexityTypeOrUnknown() != SkPathConvexityType::kConvex);
|
|
|
|
REPORTER_ASSERT(reporter, path->getConvexityTypeOrUnknown() != SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(Path_survive_transform, r) {
|
|
|
|
const Xforms x;
|
|
|
|
|
|
|
|
SkPath path;
|
|
|
|
path.addRect({10, 10, 40, 50});
|
|
|
|
survive(&path, x, true, r, [](const SkPath& p) { return p.isRect(nullptr); });
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.addOval({10, 10, 40, 50});
|
|
|
|
survive(&path, x, true, r, [](const SkPath& p) { return p.isOval(nullptr); });
|
|
|
|
|
|
|
|
path.reset();
|
|
|
|
path.addRRect(SkRRect::MakeRectXY({10, 10, 40, 50}, 5, 5));
|
|
|
|
survive(&path, x, true, r, [](const SkPath& p) { return p.isRRect(nullptr); });
|
|
|
|
|
|
|
|
// make a trapazoid; definitely convex, but not marked as axis-aligned (e.g. oval, rrect)
|
|
|
|
path.reset();
|
|
|
|
path.moveTo(0, 0).lineTo(100, 0).lineTo(70, 100).lineTo(30, 100);
|
2019-11-22 18:34:02 +00:00
|
|
|
REPORTER_ASSERT(r, path.getConvexityType() == SkPathConvexityType::kConvex);
|
2018-12-01 19:07:49 +00:00
|
|
|
survive(&path, x, false, r, [](const SkPath& p) { return true; });
|
|
|
|
}
|
2018-12-18 17:17:57 +00:00
|
|
|
|
|
|
|
DEF_TEST(path_last_move_to_index, r) {
|
|
|
|
// Make sure that copyPath is safe after the call to path.offset().
|
|
|
|
// Previously, we would leave its fLastMoveToIndex alone after the copy, but now we should
|
|
|
|
// set it to path's value inside SkPath::transform()
|
|
|
|
|
2018-12-20 22:10:27 +00:00
|
|
|
const char text[] = "hello";
|
|
|
|
constexpr size_t len = sizeof(text) - 1;
|
|
|
|
SkGlyphID glyphs[len];
|
2018-12-18 17:17:57 +00:00
|
|
|
|
2018-12-20 22:10:27 +00:00
|
|
|
SkFont font;
|
2019-05-07 19:38:46 +00:00
|
|
|
font.textToGlyphs(text, len, SkTextEncoding::kUTF8, glyphs, len);
|
2018-12-20 22:10:27 +00:00
|
|
|
|
|
|
|
SkPath copyPath;
|
|
|
|
SkFont().getPaths(glyphs, len, [](const SkPath* src, const SkMatrix& mx, void* ctx) {
|
|
|
|
if (src) {
|
|
|
|
((SkPath*)ctx)->addPath(*src, mx);
|
|
|
|
}
|
|
|
|
}, ©Path);
|
2018-12-18 17:17:57 +00:00
|
|
|
|
2019-01-04 14:49:47 +00:00
|
|
|
SkScalar radii[] = { 80, 100, 0, 0, 40, 60, 0, 0 };
|
2018-12-20 22:10:27 +00:00
|
|
|
SkPath path;
|
2018-12-18 17:17:57 +00:00
|
|
|
path.addRoundRect({10, 10, 110, 110}, radii);
|
|
|
|
path.offset(0, 5, &(copyPath)); // <== change buffer copyPath.fPathRef->fPoints but not reset copyPath.fLastMoveToIndex lead to out of bound
|
|
|
|
|
|
|
|
copyPath.rConicTo(1, 1, 3, 3, 0.707107f);
|
|
|
|
}
|
2019-08-19 18:40:16 +00:00
|
|
|
|
|
|
|
static void test_edger(skiatest::Reporter* r,
|
|
|
|
const std::initializer_list<SkPath::Verb>& in,
|
|
|
|
const std::initializer_list<SkPath::Verb>& expected) {
|
|
|
|
SkPath path;
|
|
|
|
SkScalar x = 0, y = 0;
|
|
|
|
for (auto v : in) {
|
|
|
|
switch (v) {
|
|
|
|
case SkPath::kMove_Verb: path.moveTo(x++, y++); break;
|
|
|
|
case SkPath::kLine_Verb: path.lineTo(x++, y++); break;
|
|
|
|
case SkPath::kClose_Verb: path.close(); break;
|
|
|
|
default: SkASSERT(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
SkPathEdgeIter iter(path);
|
|
|
|
for (auto v : expected) {
|
|
|
|
auto e = iter.next();
|
|
|
|
REPORTER_ASSERT(r, e);
|
|
|
|
REPORTER_ASSERT(r, SkPathEdgeIter::EdgeToVerb(e.fEdge) == v);
|
|
|
|
}
|
|
|
|
auto e = iter.next();
|
|
|
|
REPORTER_ASSERT(r, !e);
|
|
|
|
}
|
|
|
|
|
|
|
|
DEF_TEST(pathedger, r) {
|
|
|
|
auto M = SkPath::kMove_Verb;
|
|
|
|
auto L = SkPath::kLine_Verb;
|
|
|
|
auto C = SkPath::kClose_Verb;
|
|
|
|
|
|
|
|
test_edger(r, { M }, {});
|
|
|
|
test_edger(r, { M, M }, {});
|
|
|
|
test_edger(r, { M, C }, {});
|
|
|
|
test_edger(r, { M, M, C }, {});
|
|
|
|
test_edger(r, { M, L }, { L, L });
|
|
|
|
test_edger(r, { M, L, C }, { L, L });
|
|
|
|
test_edger(r, { M, L, L }, { L, L, L });
|
|
|
|
test_edger(r, { M, L, L, C }, { L, L, L });
|
|
|
|
|
|
|
|
test_edger(r, { M, L, L, M, L, L }, { L, L, L, L, L, L });
|
|
|
|
}
|