164 lines
6.4 KiB
C
164 lines
6.4 KiB
C
|
/* libs/graphics/sgl/SkGeometry.h
|
||
|
**
|
||
|
** Copyright 2006, The Android Open Source Project
|
||
|
**
|
||
|
** Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
** you may not use this file except in compliance with the License.
|
||
|
** You may obtain a copy of the License at
|
||
|
**
|
||
|
** http://www.apache.org/licenses/LICENSE-2.0
|
||
|
**
|
||
|
** Unless required by applicable law or agreed to in writing, software
|
||
|
** distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
** See the License for the specific language governing permissions and
|
||
|
** limitations under the License.
|
||
|
*/
|
||
|
|
||
|
#ifndef SkGeometry_DEFINED
|
||
|
#define SkGeometry_DEFINED
|
||
|
|
||
|
#include "SkMatrix.h"
|
||
|
|
||
|
/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
|
||
|
equation.
|
||
|
*/
|
||
|
int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
/** Set pt to the point on the src quadratic specified by t. t must be
|
||
|
0 <= t <= 1.0
|
||
|
*/
|
||
|
void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
|
||
|
void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL);
|
||
|
|
||
|
/** Given a src quadratic bezier, chop it at the specified t value,
|
||
|
where 0 < t < 1, and return the two new quadratics in dst:
|
||
|
dst[0..2] and dst[2..4]
|
||
|
*/
|
||
|
void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
|
||
|
|
||
|
/** Given a src quadratic bezier, chop it at the specified t == 1/2,
|
||
|
The new quads are returned in dst[0..2] and dst[2..4]
|
||
|
*/
|
||
|
void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
|
||
|
|
||
|
/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
|
||
|
for extrema, and return the number of t-values that are found that represent
|
||
|
these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
|
||
|
function returns 0.
|
||
|
Returned count tValues[]
|
||
|
0 ignored
|
||
|
1 0 < tValues[0] < 1
|
||
|
*/
|
||
|
int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
|
||
|
|
||
|
/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
|
||
|
the resulting beziers are monotonic in Y. This is called by the scan converter.
|
||
|
Depending on what is returned, dst[] is treated as follows
|
||
|
1 dst[0..2] is the original quad
|
||
|
2 dst[0..2] and dst[2..4] are the two new quads
|
||
|
If dst == null, it is ignored and only the count is returned.
|
||
|
*/
|
||
|
int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
|
||
|
|
||
|
/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
|
||
|
if the point of maximum curvature exists on the quad segment.
|
||
|
Depending on what is returned, dst[] is treated as follows
|
||
|
1 dst[0..2] is the original quad
|
||
|
2 dst[0..2] and dst[2..4] are the two new quads
|
||
|
If dst == null, it is ignored and only the count is returned.
|
||
|
*/
|
||
|
int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
/** Convert from parametric from (pts) to polynomial coefficients
|
||
|
coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
|
||
|
*/
|
||
|
void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
|
||
|
|
||
|
/** Set pt to the point on the src cubic specified by t. t must be
|
||
|
0 <= t <= 1.0
|
||
|
*/
|
||
|
void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull);
|
||
|
|
||
|
/** Given a src cubic bezier, chop it at the specified t value,
|
||
|
where 0 < t < 1, and return the two new cubics in dst:
|
||
|
dst[0..3] and dst[3..6]
|
||
|
*/
|
||
|
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
|
||
|
void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count);
|
||
|
|
||
|
/** Given a src cubic bezier, chop it at the specified t == 1/2,
|
||
|
The new cubics are returned in dst[0..3] and dst[3..6]
|
||
|
*/
|
||
|
void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
|
||
|
|
||
|
/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
|
||
|
for extrema, and return the number of t-values that are found that represent
|
||
|
these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
|
||
|
function returns 0.
|
||
|
Returned count tValues[]
|
||
|
0 ignored
|
||
|
1 0 < tValues[0] < 1
|
||
|
2 0 < tValues[0] < tValues[1] < 1
|
||
|
*/
|
||
|
int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]);
|
||
|
|
||
|
/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
|
||
|
the resulting beziers are monotonic in Y. This is called by the scan converter.
|
||
|
Depending on what is returned, dst[] is treated as follows
|
||
|
1 dst[0..3] is the original cubic
|
||
|
2 dst[0..3] and dst[3..6] are the two new cubics
|
||
|
3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
|
||
|
If dst == null, it is ignored and only the count is returned.
|
||
|
*/
|
||
|
int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
|
||
|
|
||
|
/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
|
||
|
inflection points.
|
||
|
*/
|
||
|
int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
|
||
|
|
||
|
/** Return 1 for no chop, or 2 for having chopped the cubic at its
|
||
|
inflection point.
|
||
|
*/
|
||
|
int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
|
||
|
|
||
|
int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
|
||
|
int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL);
|
||
|
|
||
|
///////////////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
enum SkRotationDirection {
|
||
|
kCW_SkRotationDirection,
|
||
|
kCCW_SkRotationDirection
|
||
|
};
|
||
|
|
||
|
/** Maximum number of points needed in the quadPoints[] parameter for
|
||
|
SkBuildQuadArc()
|
||
|
*/
|
||
|
#define kSkBuildQuadArcStorage 17
|
||
|
|
||
|
/** Given 2 unit vectors and a rotation direction, fill out the specified
|
||
|
array of points with quadratic segments. Return is the number of points
|
||
|
written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
|
||
|
|
||
|
matrix, if not null, is appled to the points before they are returned.
|
||
|
*/
|
||
|
int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection,
|
||
|
const SkMatrix* matrix, SkPoint quadPoints[]);
|
||
|
|
||
|
//////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
#ifdef SK_DEBUG
|
||
|
class SkGeometry {
|
||
|
public:
|
||
|
static void UnitTest();
|
||
|
};
|
||
|
#endif
|
||
|
|
||
|
#endif
|