skia2/gm/bleed.cpp

404 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "gm/gm.h"
#include "include/core/SkBitmap.h"
#include "include/core/SkBlurTypes.h"
#include "include/core/SkCanvas.h"
#include "include/core/SkColor.h"
#include "include/core/SkImage.h"
#include "include/core/SkImageInfo.h"
#include "include/core/SkMaskFilter.h"
#include "include/core/SkMatrix.h"
#include "include/core/SkPaint.h"
#include "include/core/SkPoint.h"
#include "include/core/SkRect.h"
#include "include/core/SkRefCnt.h"
#include "include/core/SkScalar.h"
#include "include/core/SkShader.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkSurface.h"
#include "include/core/SkTileMode.h"
#include "include/core/SkTypes.h"
#include "include/gpu/GrContextOptions.h"
#include "include/private/SkTDArray.h"
#include "src/core/SkBlurMask.h"
#include "tools/ToolUtils.h"
/** Creates an image with two one-pixel wide borders around a checkerboard. The checkerboard is 2x2
checks where each check has as many pixels as is necessary to fill the interior. It returns
the image and a src rect that bounds the checkerboard portion. */
std::tuple<sk_sp<SkImage>, SkRect> make_ringed_image(SkCanvas* canvas, int width, int height) {
// These are kRGBA_8888_SkColorType values.
static constexpr uint32_t kOuterRingColor = 0xFFFF0000,
kInnerRingColor = 0xFF0000FF,
kCheckColor1 = 0xFF000000,
kCheckColor2 = 0xFFFFFFFF;
SkASSERT(0 == width % 2 && 0 == height % 2);
SkASSERT(width >= 6 && height >= 6);
SkImageInfo info = SkImageInfo::Make(width, height, kRGBA_8888_SkColorType,
kPremul_SkAlphaType);
size_t rowBytes = SkAlign4(info.minRowBytes());
SkBitmap bitmap;
bitmap.allocPixels(info, rowBytes);
uint32_t* scanline = bitmap.getAddr32(0, 0);
for (int x = 0; x < width; ++x) {
scanline[x] = kOuterRingColor;
}
scanline = bitmap.getAddr32(0, 1);
scanline[0] = kOuterRingColor;
for (int x = 1; x < width - 1; ++x) {
scanline[x] = kInnerRingColor;
}
scanline[width - 1] = kOuterRingColor;
for (int y = 2; y < height / 2; ++y) {
scanline = bitmap.getAddr32(0, y);
scanline[0] = kOuterRingColor;
scanline[1] = kInnerRingColor;
for (int x = 2; x < width / 2; ++x) {
scanline[x] = kCheckColor1;
}
for (int x = width / 2; x < width - 2; ++x) {
scanline[x] = kCheckColor2;
}
scanline[width - 2] = kInnerRingColor;
scanline[width - 1] = kOuterRingColor;
}
for (int y = height / 2; y < height - 2; ++y) {
scanline = bitmap.getAddr32(0, y);
scanline[0] = kOuterRingColor;
scanline[1] = kInnerRingColor;
for (int x = 2; x < width / 2; ++x) {
scanline[x] = kCheckColor2;
}
for (int x = width / 2; x < width - 2; ++x) {
scanline[x] = kCheckColor1;
}
scanline[width - 2] = kInnerRingColor;
scanline[width - 1] = kOuterRingColor;
}
scanline = bitmap.getAddr32(0, height - 2);
scanline[0] = kOuterRingColor;
for (int x = 1; x < width - 1; ++x) {
scanline[x] = kInnerRingColor;
}
scanline[width - 1] = kOuterRingColor;
scanline = bitmap.getAddr32(0, height - 1);
for (int x = 0; x < width; ++x) {
scanline[x] = kOuterRingColor;
}
bitmap.setImmutable();
return { ToolUtils::MakeTextureImage(canvas, bitmap.asImage()),
SkRect::Make({2, 2, width - 2, height - 2})};
}
/**
* These GMs exercise the behavior of the drawImageRect and its SrcRectConstraint parameter. They
* tests various matrices, filter qualities, and interaction with mask filters. They also exercise
* the tiling image draws of SkGpuDevice by overriding the maximum texture size of the GrContext.
*/
class SrcRectConstraintGM : public skiagm::GM {
public:
SrcRectConstraintGM(const char* shortName, SkCanvas::SrcRectConstraint constraint, bool batch)
: fShortName(shortName)
, fConstraint(constraint)
, fBatch(batch) {
// Make sure GPU SkSurfaces can be created for this GM.
SkASSERT(this->onISize().width() <= kMaxTextureSize &&
this->onISize().height() <= kMaxTextureSize);
}
protected:
SkString onShortName() override { return fShortName; }
SkISize onISize() override { return SkISize::Make(800, 1000); }
void drawImage(SkCanvas* canvas, sk_sp<SkImage> image, SkRect srcRect, SkRect dstRect,
const SkSamplingOptions& sampling, SkPaint* paint) {
if (fBatch) {
if (!image) {
return;
}
SkCanvas::ImageSetEntry imageSetEntry[1];
imageSetEntry[0].fImage = image;
imageSetEntry[0].fSrcRect = srcRect;
imageSetEntry[0].fDstRect = dstRect;
imageSetEntry[0].fAAFlags = paint->isAntiAlias() ? SkCanvas::kAll_QuadAAFlags
: SkCanvas::kNone_QuadAAFlags;
canvas->experimental_DrawEdgeAAImageSet(imageSetEntry, std::size(imageSetEntry),
/*dstClips=*/nullptr,
/*preViewMatrices=*/nullptr,
sampling, paint, fConstraint);
} else {
canvas->drawImageRect(image.get(), srcRect, dstRect, sampling, paint, fConstraint);
}
}
// Draw the area of interest of the small image
void drawCase1(SkCanvas* canvas, int transX, int transY, bool aa,
const SkSamplingOptions& sampling) {
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawImage(canvas, fSmallImage, fSmallSrcRect, dst, sampling, &paint);
}
// Draw the area of interest of the large image
void drawCase2(SkCanvas* canvas, int transX, int transY, bool aa,
const SkSamplingOptions& sampling) {
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawImage(canvas, fBigImage, fBigSrcRect, dst, sampling, &paint);
}
// Draw upper-left 1/4 of the area of interest of the large image
void drawCase3(SkCanvas* canvas, int transX, int transY, bool aa,
const SkSamplingOptions& sampling) {
SkRect src = SkRect::MakeXYWH(fBigSrcRect.fLeft,
fBigSrcRect.fTop,
fBigSrcRect.width()/2,
fBigSrcRect.height()/2);
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawImage(canvas, fBigImage, src, dst, sampling, &paint);
}
// Draw the area of interest of the small image with a normal blur
void drawCase4(SkCanvas* canvas, int transX, int transY, bool aa,
const SkSamplingOptions& sampling) {
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle,
SkBlurMask::ConvertRadiusToSigma(3)));
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawImage(canvas, fSmallImage, fSmallSrcRect, dst, sampling, &paint);
}
// Draw the area of interest of the small image with a outer blur
void drawCase5(SkCanvas* canvas, int transX, int transY, bool aa,
const SkSamplingOptions& sampling) {
SkRect dst = SkRect::MakeXYWH(SkIntToScalar(transX), SkIntToScalar(transY),
SkIntToScalar(kBlockSize), SkIntToScalar(kBlockSize));
SkPaint paint;
paint.setMaskFilter(SkMaskFilter::MakeBlur(kOuter_SkBlurStyle,
SkBlurMask::ConvertRadiusToSigma(7)));
paint.setColor(SK_ColorBLUE);
paint.setAntiAlias(aa);
this->drawImage(canvas, fSmallImage, fSmallSrcRect, dst, sampling, &paint);
}
void onDraw(SkCanvas* canvas) override {
if (!fSmallImage) {
std::tie(fBigImage, fBigSrcRect) = make_ringed_image(canvas,
2*kMaxTextureSize,
2*kMaxTextureSize);
std::tie(fSmallImage, fSmallSrcRect) = make_ringed_image(canvas,
kSmallSize, kSmallSize);
}
canvas->clear(SK_ColorGRAY);
std::vector<SkMatrix> matrices;
// Draw with identity
matrices.push_back(SkMatrix::I());
// Draw with rotation and scale down in x, up in y.
SkMatrix m;
constexpr SkScalar kBottom = SkIntToScalar(kRow4Y + kBlockSize + kBlockSpacing);
m.setTranslate(0, kBottom);
m.preRotate(15.f, 0, kBottom + kBlockSpacing);
m.preScale(0.71f, 1.22f);
matrices.push_back(m);
// Align the next set with the middle of the previous in y, translated to the right in x.
SkPoint corners[] = {{0, 0}, {0, kBottom}, {kWidth, kBottom}, {kWidth, 0}};
matrices.back().mapPoints(corners, 4);
m.setTranslate(std::max({corners[0].fX, corners[1].fX, corners[2].fX, corners[3].fX}),
(corners[0].fY + corners[1].fY + corners[2].fY + corners[3].fY) / 4);
m.preScale(0.2f, 0.2f);
matrices.push_back(m);
const SkSamplingOptions none(SkFilterMode::kNearest);
const SkSamplingOptions low(SkFilterMode::kLinear);
const SkSamplingOptions high(SkCubicResampler::Mitchell());
SkScalar maxX = 0;
for (bool antiAlias : {false, true}) {
canvas->save();
canvas->translate(maxX, 0);
for (const SkMatrix& matrix : matrices) {
canvas->save();
canvas->concat(matrix);
// First draw a column with no filtering
this->drawCase1(canvas, kCol0X, kRow0Y, antiAlias, none);
this->drawCase2(canvas, kCol0X, kRow1Y, antiAlias, none);
this->drawCase3(canvas, kCol0X, kRow2Y, antiAlias, none);
this->drawCase4(canvas, kCol0X, kRow3Y, antiAlias, none);
this->drawCase5(canvas, kCol0X, kRow4Y, antiAlias, none);
// Then draw a column with low filtering
this->drawCase1(canvas, kCol1X, kRow0Y, antiAlias, low);
this->drawCase2(canvas, kCol1X, kRow1Y, antiAlias, low);
this->drawCase3(canvas, kCol1X, kRow2Y, antiAlias, low);
this->drawCase4(canvas, kCol1X, kRow3Y, antiAlias, low);
this->drawCase5(canvas, kCol1X, kRow4Y, antiAlias, low);
// Then draw a column with high filtering. Skip it if in kStrict mode and MIP
// mapping will be used. On GPU we allow bleeding at non-base levels because
// building a new MIP chain for the subset is expensive.
SkScalar scales[2];
SkAssertResult(matrix.getMinMaxScales(scales));
if (fConstraint != SkCanvas::kStrict_SrcRectConstraint || scales[0] >= 1.f) {
this->drawCase1(canvas, kCol2X, kRow0Y, antiAlias, high);
this->drawCase2(canvas, kCol2X, kRow1Y, antiAlias, high);
this->drawCase3(canvas, kCol2X, kRow2Y, antiAlias, high);
this->drawCase4(canvas, kCol2X, kRow3Y, antiAlias, high);
this->drawCase5(canvas, kCol2X, kRow4Y, antiAlias, high);
}
SkPoint innerCorners[] = {{0, 0}, {0, kBottom}, {kWidth, kBottom}, {kWidth, 0}};
matrix.mapPoints(innerCorners, 4);
SkScalar x = kBlockSize + std::max({innerCorners[0].fX, innerCorners[1].fX,
innerCorners[2].fX, innerCorners[3].fX});
maxX = std::max(maxX, x);
canvas->restore();
}
canvas->restore();
}
}
void modifyGrContextOptions(GrContextOptions* options) override {
options->fMaxTextureSizeOverride = kMaxTextureSize;
}
private:
inline static constexpr int kBlockSize = 70;
inline static constexpr int kBlockSpacing = 12;
inline static constexpr int kCol0X = kBlockSpacing;
inline static constexpr int kCol1X = 2*kBlockSpacing + kBlockSize;
inline static constexpr int kCol2X = 3*kBlockSpacing + 2*kBlockSize;
inline static constexpr int kWidth = 4*kBlockSpacing + 3*kBlockSize;
inline static constexpr int kRow0Y = kBlockSpacing;
inline static constexpr int kRow1Y = 2*kBlockSpacing + kBlockSize;
inline static constexpr int kRow2Y = 3*kBlockSpacing + 2*kBlockSize;
inline static constexpr int kRow3Y = 4*kBlockSpacing + 3*kBlockSize;
inline static constexpr int kRow4Y = 5*kBlockSpacing + 4*kBlockSize;
inline static constexpr int kSmallSize = 6;
// This must be at least as large as the GM width and height so that a surface can be made.
inline static constexpr int kMaxTextureSize = 1000;
SkString fShortName;
sk_sp<SkImage> fBigImage;
sk_sp<SkImage> fSmallImage;
SkRect fBigSrcRect;
SkRect fSmallSrcRect;
SkCanvas::SrcRectConstraint fConstraint;
bool fBatch = false;
using INHERITED = GM;
};
DEF_GM(return new SrcRectConstraintGM("strict_constraint_no_red_allowed",
SkCanvas::kStrict_SrcRectConstraint,
/*batch=*/false););
DEF_GM(return new SrcRectConstraintGM("strict_constraint_batch_no_red_allowed",
SkCanvas::kStrict_SrcRectConstraint,
/*batch=*/true););
DEF_GM(return new SrcRectConstraintGM("fast_constraint_red_is_allowed",
SkCanvas::kFast_SrcRectConstraint,
/*batch=*/false););
///////////////////////////////////////////////////////////////////////////////////////////////////
// Construct an image and return the inner "src" rect. Build the image such that the interior is
// blue, with a margin of blue (2px) but then an outer margin of red.
//
// Show that kFast_SrcRectConstraint sees even the red margin (due to mipmapping) when the image
// is scaled down far enough.
//
static sk_sp<SkImage> make_image(SkCanvas* canvas, SkRect* srcR) {
// Intentially making the size a power of 2 to avoid the noise from how different GPUs will
// produce different mipmap filtering when we have an odd sized texture.
const int N = 10 + 2 + 8 + 2 + 10;
SkImageInfo info = SkImageInfo::MakeN32Premul(N, N);
auto surface = ToolUtils::makeSurface(canvas, info);
SkCanvas* c = surface->getCanvas();
SkRect r = SkRect::MakeIWH(info.width(), info.height());
SkPaint paint;
paint.setColor(SK_ColorRED);
c->drawRect(r, paint);
r.inset(10, 10);
paint.setColor(SK_ColorBLUE);
c->drawRect(r, paint);
*srcR = r.makeInset(2, 2);
return surface->makeImageSnapshot();
}
DEF_SIMPLE_GM(bleed_downscale, canvas, 360, 240) {
SkRect src;
sk_sp<SkImage> img = make_image(canvas, &src);
SkPaint paint;
canvas->translate(10, 10);
const SkCanvas::SrcRectConstraint constraints[] = {
SkCanvas::kStrict_SrcRectConstraint, SkCanvas::kFast_SrcRectConstraint
};
const SkSamplingOptions samplings[] = {
SkSamplingOptions(SkFilterMode::kNearest),
SkSamplingOptions(SkFilterMode::kLinear),
SkSamplingOptions(SkFilterMode::kLinear, SkMipmapMode::kLinear),
};
for (auto constraint : constraints) {
canvas->save();
for (auto sampling : samplings) {
auto surf = ToolUtils::makeSurface(canvas, SkImageInfo::MakeN32Premul(1, 1));
surf->getCanvas()->drawImageRect(img, src, SkRect::MakeWH(1, 1), sampling,
nullptr, constraint);
// now blow up the 1 pixel result
canvas->drawImageRect(surf->makeImageSnapshot(), SkRect::MakeWH(100, 100),
SkSamplingOptions());
canvas->translate(120, 0);
}
canvas->restore();
canvas->translate(0, 120);
}
}