2012-02-03 22:07:47 +00:00
|
|
|
#include "CurveIntersection.h"
|
2012-07-02 20:27:02 +00:00
|
|
|
#include "CurveUtilities.h"
|
2012-01-10 21:46:10 +00:00
|
|
|
#include "LineParameters.h"
|
|
|
|
#include <algorithm> // used for std::swap
|
|
|
|
|
|
|
|
// return false if unable to clip (e.g., unable to create implicit line)
|
|
|
|
// caller should subdivide, or create degenerate if the values are too small
|
|
|
|
bool bezier_clip(const Cubic& cubic1, const Cubic& cubic2, double& minT, double& maxT) {
|
|
|
|
minT = 1;
|
|
|
|
maxT = 0;
|
|
|
|
// determine normalized implicit line equation for pt[0] to pt[3]
|
|
|
|
// of the form ax + by + c = 0, where a*a + b*b == 1
|
|
|
|
|
|
|
|
// find the implicit line equation parameters
|
|
|
|
LineParameters endLine;
|
|
|
|
endLine.cubicEndPoints(cubic1);
|
|
|
|
if (!endLine.normalize()) {
|
|
|
|
printf("line cannot be normalized: need more code here\n");
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
double distance[2];
|
|
|
|
endLine.controlPtDistance(cubic1, distance);
|
|
|
|
|
|
|
|
// find fat line
|
|
|
|
double top = distance[0];
|
|
|
|
double bottom = distance[1];
|
|
|
|
if (top > bottom) {
|
|
|
|
std::swap(top, bottom);
|
|
|
|
}
|
|
|
|
if (top * bottom >= 0) {
|
|
|
|
const double scale = 3/4.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (13)
|
|
|
|
if (top < 0) {
|
|
|
|
top *= scale;
|
|
|
|
bottom = 0;
|
|
|
|
} else {
|
|
|
|
top = 0;
|
|
|
|
bottom *= scale;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
const double scale = 4/9.0; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf (15)
|
|
|
|
top *= scale;
|
|
|
|
bottom *= scale;
|
|
|
|
}
|
|
|
|
|
|
|
|
// compute intersecting candidate distance
|
|
|
|
Cubic distance2y; // points with X of (0, 1/3, 2/3, 1)
|
|
|
|
endLine.cubicDistanceY(cubic2, distance2y);
|
|
|
|
|
|
|
|
int flags = 0;
|
|
|
|
if (approximately_lesser(distance2y[0].y, top)) {
|
|
|
|
flags |= kFindTopMin;
|
|
|
|
} else if (approximately_greater(distance2y[0].y, bottom)) {
|
|
|
|
flags |= kFindBottomMin;
|
|
|
|
} else {
|
|
|
|
minT = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (approximately_lesser(distance2y[3].y, top)) {
|
|
|
|
flags |= kFindTopMax;
|
|
|
|
} else if (approximately_greater(distance2y[3].y, bottom)) {
|
|
|
|
flags |= kFindBottomMax;
|
|
|
|
} else {
|
|
|
|
maxT = 1;
|
|
|
|
}
|
|
|
|
// Find the intersection of distance convex hull and fat line.
|
|
|
|
char to_0[2];
|
|
|
|
char to_3[2];
|
|
|
|
bool do_1_2_edge = convex_x_hull(distance2y, to_0, to_3);
|
|
|
|
x_at(distance2y[0], distance2y[to_0[0]], top, bottom, flags, minT, maxT);
|
|
|
|
if (to_0[0] != to_0[1]) {
|
|
|
|
x_at(distance2y[0], distance2y[to_0[1]], top, bottom, flags, minT, maxT);
|
|
|
|
}
|
|
|
|
x_at(distance2y[to_3[0]], distance2y[3], top, bottom, flags, minT, maxT);
|
|
|
|
if (to_3[0] != to_3[1]) {
|
|
|
|
x_at(distance2y[to_3[1]], distance2y[3], top, bottom, flags, minT, maxT);
|
|
|
|
}
|
|
|
|
if (do_1_2_edge) {
|
|
|
|
x_at(distance2y[1], distance2y[2], top, bottom, flags, minT, maxT);
|
|
|
|
}
|
|
|
|
|
|
|
|
return minT < maxT; // returns false if distance shows no intersection
|
|
|
|
}
|
|
|
|
|