474 lines
12 KiB
C++
474 lines
12 KiB
C++
|
/*
|
||
|
Solving the Nearest Point-on-Curve Problem
|
||
|
and
|
||
|
A Bezier Curve-Based Root-Finder
|
||
|
by Philip J. Schneider
|
||
|
from "Graphics Gems", Academic Press, 1990
|
||
|
*/
|
||
|
|
||
|
/* point_on_curve.c */
|
||
|
|
||
|
#include <stdio.h>
|
||
|
#include <malloc.h>
|
||
|
#include <math.h>
|
||
|
#include "GraphicsGems.h"
|
||
|
|
||
|
#define TESTMODE
|
||
|
|
||
|
/*
|
||
|
* Forward declarations
|
||
|
*/
|
||
|
Point2 NearestPointOnCurve();
|
||
|
static int FindRoots();
|
||
|
static Point2 *ConvertToBezierForm();
|
||
|
static double ComputeXIntercept();
|
||
|
static int ControlPolygonFlatEnough();
|
||
|
static int CrossingCount();
|
||
|
static Point2 Bezier();
|
||
|
static Vector2 V2ScaleII();
|
||
|
|
||
|
int MAXDEPTH = 64; /* Maximum depth for recursion */
|
||
|
|
||
|
#define EPSILON (ldexp(1.0,-MAXDEPTH-1)) /*Flatness control value */
|
||
|
#define DEGREE 3 /* Cubic Bezier curve */
|
||
|
#define W_DEGREE 5 /* Degree of eqn to find roots of */
|
||
|
|
||
|
#ifdef TESTMODE
|
||
|
/*
|
||
|
* main :
|
||
|
* Given a cubic Bezier curve (i.e., its control points), and some
|
||
|
* arbitrary point in the plane, find the point on the curve
|
||
|
* closest to that arbitrary point.
|
||
|
*/
|
||
|
main()
|
||
|
{
|
||
|
|
||
|
static Point2 bezCurve[4] = { /* A cubic Bezier curve */
|
||
|
{ 0.0, 0.0 },
|
||
|
{ 1.0, 2.0 },
|
||
|
{ 3.0, 3.0 },
|
||
|
{ 4.0, 2.0 },
|
||
|
};
|
||
|
static Point2 arbPoint = { 3.5, 2.0 }; /*Some arbitrary point*/
|
||
|
Point2 pointOnCurve; /* Nearest point on the curve */
|
||
|
|
||
|
/* Find the closest point */
|
||
|
pointOnCurve = NearestPointOnCurve(arbPoint, bezCurve);
|
||
|
printf("pointOnCurve : (%4.4f, %4.4f)\n", pointOnCurve.x,
|
||
|
pointOnCurve.y);
|
||
|
}
|
||
|
#endif /* TESTMODE */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* NearestPointOnCurve :
|
||
|
* Compute the parameter value of the point on a Bezier
|
||
|
* curve segment closest to some arbtitrary, user-input point.
|
||
|
* Return the point on the curve at that parameter value.
|
||
|
*
|
||
|
*/
|
||
|
Point2 NearestPointOnCurve(P, V)
|
||
|
Point2 P; /* The user-supplied point */
|
||
|
Point2 *V; /* Control points of cubic Bezier */
|
||
|
{
|
||
|
Point2 *w; /* Ctl pts for 5th-degree eqn */
|
||
|
double t_candidate[W_DEGREE]; /* Possible roots */
|
||
|
int n_solutions; /* Number of roots found */
|
||
|
double t; /* Parameter value of closest pt*/
|
||
|
|
||
|
/* Convert problem to 5th-degree Bezier form */
|
||
|
w = ConvertToBezierForm(P, V);
|
||
|
|
||
|
/* Find all possible roots of 5th-degree equation */
|
||
|
n_solutions = FindRoots(w, W_DEGREE, t_candidate, 0);
|
||
|
free((char *)w);
|
||
|
|
||
|
/* Compare distances of P to all candidates, and to t=0, and t=1 */
|
||
|
{
|
||
|
double dist, new_dist;
|
||
|
Point2 p;
|
||
|
Vector2 v;
|
||
|
int i;
|
||
|
|
||
|
|
||
|
/* Check distance to beginning of curve, where t = 0 */
|
||
|
dist = V2SquaredLength(V2Sub(&P, &V[0], &v));
|
||
|
t = 0.0;
|
||
|
|
||
|
/* Find distances for candidate points */
|
||
|
for (i = 0; i < n_solutions; i++) {
|
||
|
p = Bezier(V, DEGREE, t_candidate[i],
|
||
|
(Point2 *)NULL, (Point2 *)NULL);
|
||
|
new_dist = V2SquaredLength(V2Sub(&P, &p, &v));
|
||
|
if (new_dist < dist) {
|
||
|
dist = new_dist;
|
||
|
t = t_candidate[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Finally, look at distance to end point, where t = 1.0 */
|
||
|
new_dist = V2SquaredLength(V2Sub(&P, &V[DEGREE], &v));
|
||
|
if (new_dist < dist) {
|
||
|
dist = new_dist;
|
||
|
t = 1.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Return the point on the curve at parameter value t */
|
||
|
printf("t : %4.12f\n", t);
|
||
|
return (Bezier(V, DEGREE, t, (Point2 *)NULL, (Point2 *)NULL));
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* ConvertToBezierForm :
|
||
|
* Given a point and a Bezier curve, generate a 5th-degree
|
||
|
* Bezier-format equation whose solution finds the point on the
|
||
|
* curve nearest the user-defined point.
|
||
|
*/
|
||
|
static Point2 *ConvertToBezierForm(P, V)
|
||
|
Point2 P; /* The point to find t for */
|
||
|
Point2 *V; /* The control points */
|
||
|
{
|
||
|
int i, j, k, m, n, ub, lb;
|
||
|
int row, column; /* Table indices */
|
||
|
Vector2 c[DEGREE+1]; /* V(i)'s - P */
|
||
|
Vector2 d[DEGREE]; /* V(i+1) - V(i) */
|
||
|
Point2 *w; /* Ctl pts of 5th-degree curve */
|
||
|
double cdTable[3][4]; /* Dot product of c, d */
|
||
|
static double z[3][4] = { /* Precomputed "z" for cubics */
|
||
|
{1.0, 0.6, 0.3, 0.1},
|
||
|
{0.4, 0.6, 0.6, 0.4},
|
||
|
{0.1, 0.3, 0.6, 1.0},
|
||
|
};
|
||
|
|
||
|
|
||
|
/*Determine the c's -- these are vectors created by subtracting*/
|
||
|
/* point P from each of the control points */
|
||
|
for (i = 0; i <= DEGREE; i++) {
|
||
|
V2Sub(&V[i], &P, &c[i]);
|
||
|
}
|
||
|
/* Determine the d's -- these are vectors created by subtracting*/
|
||
|
/* each control point from the next */
|
||
|
for (i = 0; i <= DEGREE - 1; i++) {
|
||
|
d[i] = V2ScaleII(V2Sub(&V[i+1], &V[i], &d[i]), 3.0);
|
||
|
}
|
||
|
|
||
|
/* Create the c,d table -- this is a table of dot products of the */
|
||
|
/* c's and d's */
|
||
|
for (row = 0; row <= DEGREE - 1; row++) {
|
||
|
for (column = 0; column <= DEGREE; column++) {
|
||
|
cdTable[row][column] = V2Dot(&d[row], &c[column]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Now, apply the z's to the dot products, on the skew diagonal*/
|
||
|
/* Also, set up the x-values, making these "points" */
|
||
|
w = (Point2 *)malloc((unsigned)(W_DEGREE+1) * sizeof(Point2));
|
||
|
for (i = 0; i <= W_DEGREE; i++) {
|
||
|
w[i].y = 0.0;
|
||
|
w[i].x = (double)(i) / W_DEGREE;
|
||
|
}
|
||
|
|
||
|
n = DEGREE;
|
||
|
m = DEGREE-1;
|
||
|
for (k = 0; k <= n + m; k++) {
|
||
|
lb = MAX(0, k - m);
|
||
|
ub = MIN(k, n);
|
||
|
for (i = lb; i <= ub; i++) {
|
||
|
j = k - i;
|
||
|
w[i+j].y += cdTable[j][i] * z[j][i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (w);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* FindRoots :
|
||
|
* Given a 5th-degree equation in Bernstein-Bezier form, find
|
||
|
* all of the roots in the interval [0, 1]. Return the number
|
||
|
* of roots found.
|
||
|
*/
|
||
|
static int FindRoots(w, degree, t, depth)
|
||
|
Point2 *w; /* The control points */
|
||
|
int degree; /* The degree of the polynomial */
|
||
|
double *t; /* RETURN candidate t-values */
|
||
|
int depth; /* The depth of the recursion */
|
||
|
{
|
||
|
int i;
|
||
|
Point2 Left[W_DEGREE+1], /* New left and right */
|
||
|
Right[W_DEGREE+1]; /* control polygons */
|
||
|
int left_count, /* Solution count from */
|
||
|
right_count; /* children */
|
||
|
double left_t[W_DEGREE+1], /* Solutions from kids */
|
||
|
right_t[W_DEGREE+1];
|
||
|
|
||
|
switch (CrossingCount(w, degree)) {
|
||
|
case 0 : { /* No solutions here */
|
||
|
return 0;
|
||
|
}
|
||
|
case 1 : { /* Unique solution */
|
||
|
/* Stop recursion when the tree is deep enough */
|
||
|
/* if deep enough, return 1 solution at midpoint */
|
||
|
if (depth >= MAXDEPTH) {
|
||
|
t[0] = (w[0].x + w[W_DEGREE].x) / 2.0;
|
||
|
return 1;
|
||
|
}
|
||
|
if (ControlPolygonFlatEnough(w, degree)) {
|
||
|
t[0] = ComputeXIntercept(w, degree);
|
||
|
return 1;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Otherwise, solve recursively after */
|
||
|
/* subdividing control polygon */
|
||
|
Bezier(w, degree, 0.5, Left, Right);
|
||
|
left_count = FindRoots(Left, degree, left_t, depth+1);
|
||
|
right_count = FindRoots(Right, degree, right_t, depth+1);
|
||
|
|
||
|
|
||
|
/* Gather solutions together */
|
||
|
for (i = 0; i < left_count; i++) {
|
||
|
t[i] = left_t[i];
|
||
|
}
|
||
|
for (i = 0; i < right_count; i++) {
|
||
|
t[i+left_count] = right_t[i];
|
||
|
}
|
||
|
|
||
|
/* Send back total number of solutions */
|
||
|
return (left_count+right_count);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* CrossingCount :
|
||
|
* Count the number of times a Bezier control polygon
|
||
|
* crosses the 0-axis. This number is >= the number of roots.
|
||
|
*
|
||
|
*/
|
||
|
static int CrossingCount(V, degree)
|
||
|
Point2 *V; /* Control pts of Bezier curve */
|
||
|
int degree; /* Degreee of Bezier curve */
|
||
|
{
|
||
|
int i;
|
||
|
int n_crossings = 0; /* Number of zero-crossings */
|
||
|
int sign, old_sign; /* Sign of coefficients */
|
||
|
|
||
|
sign = old_sign = SGN(V[0].y);
|
||
|
for (i = 1; i <= degree; i++) {
|
||
|
sign = SGN(V[i].y);
|
||
|
if (sign != old_sign) n_crossings++;
|
||
|
old_sign = sign;
|
||
|
}
|
||
|
return n_crossings;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
* ControlPolygonFlatEnough :
|
||
|
* Check if the control polygon of a Bezier curve is flat enough
|
||
|
* for recursive subdivision to bottom out.
|
||
|
*
|
||
|
*/
|
||
|
static int ControlPolygonFlatEnough(V, degree)
|
||
|
Point2 *V; /* Control points */
|
||
|
int degree; /* Degree of polynomial */
|
||
|
{
|
||
|
int i; /* Index variable */
|
||
|
double *distance; /* Distances from pts to line */
|
||
|
double max_distance_above; /* maximum of these */
|
||
|
double max_distance_below;
|
||
|
double error; /* Precision of root */
|
||
|
double intercept_1,
|
||
|
intercept_2,
|
||
|
left_intercept,
|
||
|
right_intercept;
|
||
|
double a, b, c; /* Coefficients of implicit */
|
||
|
/* eqn for line from V[0]-V[deg]*/
|
||
|
|
||
|
/* Find the perpendicular distance */
|
||
|
/* from each interior control point to */
|
||
|
/* line connecting V[0] and V[degree] */
|
||
|
distance = (double *)malloc((unsigned)(degree + 1) * sizeof(double));
|
||
|
{
|
||
|
double abSquared;
|
||
|
|
||
|
/* Derive the implicit equation for line connecting first *'
|
||
|
/* and last control points */
|
||
|
a = V[0].y - V[degree].y;
|
||
|
b = V[degree].x - V[0].x;
|
||
|
c = V[0].x * V[degree].y - V[degree].x * V[0].y;
|
||
|
|
||
|
abSquared = (a * a) + (b * b);
|
||
|
|
||
|
for (i = 1; i < degree; i++) {
|
||
|
/* Compute distance from each of the points to that line */
|
||
|
distance[i] = a * V[i].x + b * V[i].y + c;
|
||
|
if (distance[i] > 0.0) {
|
||
|
distance[i] = (distance[i] * distance[i]) / abSquared;
|
||
|
}
|
||
|
if (distance[i] < 0.0) {
|
||
|
distance[i] = -((distance[i] * distance[i]) / abSquared);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
/* Find the largest distance */
|
||
|
max_distance_above = 0.0;
|
||
|
max_distance_below = 0.0;
|
||
|
for (i = 1; i < degree; i++) {
|
||
|
if (distance[i] < 0.0) {
|
||
|
max_distance_below = MIN(max_distance_below, distance[i]);
|
||
|
};
|
||
|
if (distance[i] > 0.0) {
|
||
|
max_distance_above = MAX(max_distance_above, distance[i]);
|
||
|
}
|
||
|
}
|
||
|
free((char *)distance);
|
||
|
|
||
|
{
|
||
|
double det, dInv;
|
||
|
double a1, b1, c1, a2, b2, c2;
|
||
|
|
||
|
/* Implicit equation for zero line */
|
||
|
a1 = 0.0;
|
||
|
b1 = 1.0;
|
||
|
c1 = 0.0;
|
||
|
|
||
|
/* Implicit equation for "above" line */
|
||
|
a2 = a;
|
||
|
b2 = b;
|
||
|
c2 = c + max_distance_above;
|
||
|
|
||
|
det = a1 * b2 - a2 * b1;
|
||
|
dInv = 1.0/det;
|
||
|
|
||
|
intercept_1 = (b1 * c2 - b2 * c1) * dInv;
|
||
|
|
||
|
/* Implicit equation for "below" line */
|
||
|
a2 = a;
|
||
|
b2 = b;
|
||
|
c2 = c + max_distance_below;
|
||
|
|
||
|
det = a1 * b2 - a2 * b1;
|
||
|
dInv = 1.0/det;
|
||
|
|
||
|
intercept_2 = (b1 * c2 - b2 * c1) * dInv;
|
||
|
}
|
||
|
|
||
|
/* Compute intercepts of bounding box */
|
||
|
left_intercept = MIN(intercept_1, intercept_2);
|
||
|
right_intercept = MAX(intercept_1, intercept_2);
|
||
|
|
||
|
error = 0.5 * (right_intercept-left_intercept);
|
||
|
if (error < EPSILON) {
|
||
|
return 1;
|
||
|
}
|
||
|
else {
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*
|
||
|
* ComputeXIntercept :
|
||
|
* Compute intersection of chord from first control point to last
|
||
|
* with 0-axis.
|
||
|
*
|
||
|
*/
|
||
|
/* NOTE: "T" and "Y" do not have to be computed, and there are many useless
|
||
|
* operations in the following (e.g. "0.0 - 0.0").
|
||
|
*/
|
||
|
static double ComputeXIntercept(V, degree)
|
||
|
Point2 *V; /* Control points */
|
||
|
int degree; /* Degree of curve */
|
||
|
{
|
||
|
double XLK, YLK, XNM, YNM, XMK, YMK;
|
||
|
double det, detInv;
|
||
|
double S, T;
|
||
|
double X, Y;
|
||
|
|
||
|
XLK = 1.0 - 0.0;
|
||
|
YLK = 0.0 - 0.0;
|
||
|
XNM = V[degree].x - V[0].x;
|
||
|
YNM = V[degree].y - V[0].y;
|
||
|
XMK = V[0].x - 0.0;
|
||
|
YMK = V[0].y - 0.0;
|
||
|
|
||
|
det = XNM*YLK - YNM*XLK;
|
||
|
detInv = 1.0/det;
|
||
|
|
||
|
S = (XNM*YMK - YNM*XMK) * detInv;
|
||
|
/* T = (XLK*YMK - YLK*XMK) * detInv; */
|
||
|
|
||
|
X = 0.0 + XLK * S;
|
||
|
/* Y = 0.0 + YLK * S; */
|
||
|
|
||
|
return X;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Bezier :
|
||
|
* Evaluate a Bezier curve at a particular parameter value
|
||
|
* Fill in control points for resulting sub-curves if "Left" and
|
||
|
* "Right" are non-null.
|
||
|
*
|
||
|
*/
|
||
|
static Point2 Bezier(V, degree, t, Left, Right)
|
||
|
int degree; /* Degree of bezier curve */
|
||
|
Point2 *V; /* Control pts */
|
||
|
double t; /* Parameter value */
|
||
|
Point2 *Left; /* RETURN left half ctl pts */
|
||
|
Point2 *Right; /* RETURN right half ctl pts */
|
||
|
{
|
||
|
int i, j; /* Index variables */
|
||
|
Point2 Vtemp[W_DEGREE+1][W_DEGREE+1];
|
||
|
|
||
|
|
||
|
/* Copy control points */
|
||
|
for (j =0; j <= degree; j++) {
|
||
|
Vtemp[0][j] = V[j];
|
||
|
}
|
||
|
|
||
|
/* Triangle computation */
|
||
|
for (i = 1; i <= degree; i++) {
|
||
|
for (j =0 ; j <= degree - i; j++) {
|
||
|
Vtemp[i][j].x =
|
||
|
(1.0 - t) * Vtemp[i-1][j].x + t * Vtemp[i-1][j+1].x;
|
||
|
Vtemp[i][j].y =
|
||
|
(1.0 - t) * Vtemp[i-1][j].y + t * Vtemp[i-1][j+1].y;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (Left != NULL) {
|
||
|
for (j = 0; j <= degree; j++) {
|
||
|
Left[j] = Vtemp[j][0];
|
||
|
}
|
||
|
}
|
||
|
if (Right != NULL) {
|
||
|
for (j = 0; j <= degree; j++) {
|
||
|
Right[j] = Vtemp[degree-j][j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return (Vtemp[degree][0]);
|
||
|
}
|
||
|
|
||
|
static Vector2 V2ScaleII(v, s)
|
||
|
Vector2 *v;
|
||
|
double s;
|
||
|
{
|
||
|
Vector2 result;
|
||
|
|
||
|
result.x = v->x * s; result.y = v->y * s;
|
||
|
return (result);
|
||
|
}
|