713 lines
28 KiB
C++
713 lines
28 KiB
C++
|
/*
|
||
|
* Copyright 2012 The Android Open Source Project
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license that can be
|
||
|
* found in the LICENSE file.
|
||
|
*/
|
||
|
|
||
|
#define LOG_TAG "PathRenderer"
|
||
|
#define LOG_NDEBUG 1
|
||
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
||
|
|
||
|
#define VERTEX_DEBUG 0
|
||
|
|
||
|
#include <SkPath.h>
|
||
|
#include <SkPaint.h>
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <stdint.h>
|
||
|
#include <sys/types.h>
|
||
|
|
||
|
#include <utils/Log.h>
|
||
|
#include <utils/Trace.h>
|
||
|
|
||
|
#include "PathRenderer.h"
|
||
|
#include "Matrix.h"
|
||
|
#include "Vector.h"
|
||
|
#include "Vertex.h"
|
||
|
|
||
|
namespace android {
|
||
|
namespace uirenderer {
|
||
|
|
||
|
#define THRESHOLD 0.5f
|
||
|
|
||
|
SkRect PathRenderer::computePathBounds(const SkPath& path, const SkPaint* paint) {
|
||
|
SkRect bounds = path.getBounds();
|
||
|
if (paint->getStyle() != SkPaint::kFill_Style) {
|
||
|
float outset = paint->getStrokeWidth() * 0.5f;
|
||
|
bounds.outset(outset, outset);
|
||
|
}
|
||
|
return bounds;
|
||
|
}
|
||
|
|
||
|
void computeInverseScales(const mat4 *transform, float &inverseScaleX, float& inverseScaleY) {
|
||
|
if (CC_UNLIKELY(!transform->isPureTranslate())) {
|
||
|
float m00 = transform->data[Matrix4::kScaleX];
|
||
|
float m01 = transform->data[Matrix4::kSkewY];
|
||
|
float m10 = transform->data[Matrix4::kSkewX];
|
||
|
float m11 = transform->data[Matrix4::kScaleY];
|
||
|
float scaleX = sqrt(m00 * m00 + m01 * m01);
|
||
|
float scaleY = sqrt(m10 * m10 + m11 * m11);
|
||
|
inverseScaleX = (scaleX != 0) ? (1.0f / scaleX) : 1.0f;
|
||
|
inverseScaleY = (scaleY != 0) ? (1.0f / scaleY) : 1.0f;
|
||
|
} else {
|
||
|
inverseScaleX = 1.0f;
|
||
|
inverseScaleY = 1.0f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline void copyVertex(Vertex* destPtr, const Vertex* srcPtr) {
|
||
|
Vertex::set(destPtr, srcPtr->position[0], srcPtr->position[1]);
|
||
|
}
|
||
|
|
||
|
inline void copyAlphaVertex(AlphaVertex* destPtr, const AlphaVertex* srcPtr) {
|
||
|
AlphaVertex::set(destPtr, srcPtr->position[0], srcPtr->position[1], srcPtr->alpha);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Produces a pseudo-normal for a vertex, given the normals of the two incoming lines. If the offset
|
||
|
* from each vertex in a perimeter is calculated, the resultant lines connecting the offset vertices
|
||
|
* will be offset by 1.0
|
||
|
*
|
||
|
* Note that we can't add and normalize the two vectors, that would result in a rectangle having an
|
||
|
* offset of (sqrt(2)/2, sqrt(2)/2) at each corner, instead of (1, 1)
|
||
|
*
|
||
|
* NOTE: assumes angles between normals 90 degrees or less
|
||
|
*/
|
||
|
inline vec2 totalOffsetFromNormals(const vec2& normalA, const vec2& normalB) {
|
||
|
return (normalA + normalB) / (1 + fabs(normalA.dot(normalB)));
|
||
|
}
|
||
|
|
||
|
inline void scaleOffsetForStrokeWidth(vec2& offset, float halfStrokeWidth,
|
||
|
float inverseScaleX, float inverseScaleY) {
|
||
|
if (halfStrokeWidth == 0.0f) {
|
||
|
// hairline - compensate for scale
|
||
|
offset.x *= 0.5f * inverseScaleX;
|
||
|
offset.y *= 0.5f * inverseScaleY;
|
||
|
} else {
|
||
|
offset *= halfStrokeWidth;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void getFillVerticesFromPerimeter(const Vector<Vertex>& perimeter, VertexBuffer& vertexBuffer) {
|
||
|
Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size());
|
||
|
|
||
|
int currentIndex = 0;
|
||
|
// zig zag between all previous points on the inside of the hull to create a
|
||
|
// triangle strip that fills the hull
|
||
|
int srcAindex = 0;
|
||
|
int srcBindex = perimeter.size() - 1;
|
||
|
while (srcAindex <= srcBindex) {
|
||
|
copyVertex(&buffer[currentIndex++], &perimeter[srcAindex]);
|
||
|
if (srcAindex == srcBindex) break;
|
||
|
copyVertex(&buffer[currentIndex++], &perimeter[srcBindex]);
|
||
|
srcAindex++;
|
||
|
srcBindex--;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void getStrokeVerticesFromPerimeter(const Vector<Vertex>& perimeter, float halfStrokeWidth,
|
||
|
VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) {
|
||
|
Vertex* buffer = vertexBuffer.alloc<Vertex>(perimeter.size() * 2 + 2);
|
||
|
|
||
|
int currentIndex = 0;
|
||
|
const Vertex* last = &(perimeter[perimeter.size() - 1]);
|
||
|
const Vertex* current = &(perimeter[0]);
|
||
|
vec2 lastNormal(current->position[1] - last->position[1],
|
||
|
last->position[0] - current->position[0]);
|
||
|
lastNormal.normalize();
|
||
|
for (unsigned int i = 0; i < perimeter.size(); i++) {
|
||
|
const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
|
||
|
vec2 nextNormal(next->position[1] - current->position[1],
|
||
|
current->position[0] - next->position[0]);
|
||
|
nextNormal.normalize();
|
||
|
|
||
|
vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
|
||
|
scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
|
||
|
Vertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] + totalOffset.x,
|
||
|
current->position[1] + totalOffset.y);
|
||
|
|
||
|
Vertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] - totalOffset.x,
|
||
|
current->position[1] - totalOffset.y);
|
||
|
|
||
|
last = current;
|
||
|
current = next;
|
||
|
lastNormal = nextNormal;
|
||
|
}
|
||
|
|
||
|
// wrap around to beginning
|
||
|
copyVertex(&buffer[currentIndex++], &buffer[0]);
|
||
|
copyVertex(&buffer[currentIndex++], &buffer[1]);
|
||
|
}
|
||
|
|
||
|
void getStrokeVerticesFromUnclosedVertices(const Vector<Vertex>& vertices, float halfStrokeWidth,
|
||
|
VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) {
|
||
|
Vertex* buffer = vertexBuffer.alloc<Vertex>(vertices.size() * 2);
|
||
|
|
||
|
int currentIndex = 0;
|
||
|
const Vertex* current = &(vertices[0]);
|
||
|
vec2 lastNormal;
|
||
|
for (unsigned int i = 0; i < vertices.size() - 1; i++) {
|
||
|
const Vertex* next = &(vertices[i + 1]);
|
||
|
vec2 nextNormal(next->position[1] - current->position[1],
|
||
|
current->position[0] - next->position[0]);
|
||
|
nextNormal.normalize();
|
||
|
|
||
|
vec2 totalOffset;
|
||
|
if (i == 0) {
|
||
|
totalOffset = nextNormal;
|
||
|
} else {
|
||
|
totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
|
||
|
}
|
||
|
scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
|
||
|
Vertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] + totalOffset.x,
|
||
|
current->position[1] + totalOffset.y);
|
||
|
|
||
|
Vertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] - totalOffset.x,
|
||
|
current->position[1] - totalOffset.y);
|
||
|
|
||
|
current = next;
|
||
|
lastNormal = nextNormal;
|
||
|
}
|
||
|
|
||
|
vec2 totalOffset = lastNormal;
|
||
|
scaleOffsetForStrokeWidth(totalOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
|
||
|
Vertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] + totalOffset.x,
|
||
|
current->position[1] + totalOffset.y);
|
||
|
Vertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] - totalOffset.x,
|
||
|
current->position[1] - totalOffset.y);
|
||
|
#if VERTEX_DEBUG
|
||
|
for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) {
|
||
|
ALOGD("point at %f %f", buffer[i].position[0], buffer[i].position[1]);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void getFillVerticesFromPerimeterAA(const Vector<Vertex>& perimeter, VertexBuffer& vertexBuffer,
|
||
|
float inverseScaleX, float inverseScaleY) {
|
||
|
AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(perimeter.size() * 3 + 2);
|
||
|
|
||
|
// generate alpha points - fill Alpha vertex gaps in between each point with
|
||
|
// alpha 0 vertex, offset by a scaled normal.
|
||
|
int currentIndex = 0;
|
||
|
const Vertex* last = &(perimeter[perimeter.size() - 1]);
|
||
|
const Vertex* current = &(perimeter[0]);
|
||
|
vec2 lastNormal(current->position[1] - last->position[1],
|
||
|
last->position[0] - current->position[0]);
|
||
|
lastNormal.normalize();
|
||
|
for (unsigned int i = 0; i < perimeter.size(); i++) {
|
||
|
const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
|
||
|
vec2 nextNormal(next->position[1] - current->position[1],
|
||
|
current->position[0] - next->position[0]);
|
||
|
nextNormal.normalize();
|
||
|
|
||
|
// AA point offset from original point is that point's normal, such that each side is offset
|
||
|
// by .5 pixels
|
||
|
vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
|
||
|
totalOffset.x *= 0.5f * inverseScaleX;
|
||
|
totalOffset.y *= 0.5f * inverseScaleY;
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] + totalOffset.x,
|
||
|
current->position[1] + totalOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[currentIndex++],
|
||
|
current->position[0] - totalOffset.x,
|
||
|
current->position[1] - totalOffset.y,
|
||
|
1.0f);
|
||
|
|
||
|
last = current;
|
||
|
current = next;
|
||
|
lastNormal = nextNormal;
|
||
|
}
|
||
|
|
||
|
// wrap around to beginning
|
||
|
copyAlphaVertex(&buffer[currentIndex++], &buffer[0]);
|
||
|
copyAlphaVertex(&buffer[currentIndex++], &buffer[1]);
|
||
|
|
||
|
// zig zag between all previous points on the inside of the hull to create a
|
||
|
// triangle strip that fills the hull, repeating the first inner point to
|
||
|
// create degenerate tris to start inside path
|
||
|
int srcAindex = 0;
|
||
|
int srcBindex = perimeter.size() - 1;
|
||
|
while (srcAindex <= srcBindex) {
|
||
|
copyAlphaVertex(&buffer[currentIndex++], &buffer[srcAindex * 2 + 1]);
|
||
|
if (srcAindex == srcBindex) break;
|
||
|
copyAlphaVertex(&buffer[currentIndex++], &buffer[srcBindex * 2 + 1]);
|
||
|
srcAindex++;
|
||
|
srcBindex--;
|
||
|
}
|
||
|
|
||
|
#if VERTEX_DEBUG
|
||
|
for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) {
|
||
|
ALOGD("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
void getStrokeVerticesFromUnclosedVerticesAA(const Vector<Vertex>& vertices, float halfStrokeWidth,
|
||
|
VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) {
|
||
|
AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * vertices.size() + 2);
|
||
|
|
||
|
// avoid lines smaller than hairline since they break triangle based sampling. instead reducing
|
||
|
// alpha value (TODO: support different X/Y scale)
|
||
|
float maxAlpha = 1.0f;
|
||
|
if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY &&
|
||
|
halfStrokeWidth * inverseScaleX < 0.5f) {
|
||
|
maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX;
|
||
|
halfStrokeWidth = 0.0f;
|
||
|
}
|
||
|
|
||
|
// there is no outer/inner here, using them for consistency with below approach
|
||
|
int offset = 2 * (vertices.size() - 2);
|
||
|
int currentAAOuterIndex = 2;
|
||
|
int currentAAInnerIndex = 2 * offset + 5; // reversed
|
||
|
int currentStrokeIndex = currentAAInnerIndex + 7;
|
||
|
|
||
|
const Vertex* last = &(vertices[0]);
|
||
|
const Vertex* current = &(vertices[1]);
|
||
|
vec2 lastNormal(current->position[1] - last->position[1],
|
||
|
last->position[0] - current->position[0]);
|
||
|
lastNormal.normalize();
|
||
|
|
||
|
{
|
||
|
// start cap
|
||
|
vec2 totalOffset = lastNormal;
|
||
|
vec2 AAOffset = totalOffset;
|
||
|
AAOffset.x *= 0.5f * inverseScaleX;
|
||
|
AAOffset.y *= 0.5f * inverseScaleY;
|
||
|
|
||
|
vec2 innerOffset = totalOffset;
|
||
|
scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
vec2 outerOffset = innerOffset + AAOffset;
|
||
|
innerOffset -= AAOffset;
|
||
|
|
||
|
// TODO: support square cap by changing this offset to incorporate halfStrokeWidth
|
||
|
vec2 capAAOffset(AAOffset.y, -AAOffset.x);
|
||
|
AlphaVertex::set(&buffer[0],
|
||
|
last->position[0] + outerOffset.x + capAAOffset.x,
|
||
|
last->position[1] + outerOffset.y + capAAOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[1],
|
||
|
last->position[0] + innerOffset.x - capAAOffset.x,
|
||
|
last->position[1] + innerOffset.y - capAAOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
AlphaVertex::set(&buffer[2 * offset + 6],
|
||
|
last->position[0] - outerOffset.x + capAAOffset.x,
|
||
|
last->position[1] - outerOffset.y + capAAOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[2 * offset + 7],
|
||
|
last->position[0] - innerOffset.x - capAAOffset.x,
|
||
|
last->position[1] - innerOffset.y - capAAOffset.y,
|
||
|
maxAlpha);
|
||
|
copyAlphaVertex(&buffer[2 * offset + 8], &buffer[0]);
|
||
|
copyAlphaVertex(&buffer[2 * offset + 9], &buffer[1]);
|
||
|
copyAlphaVertex(&buffer[2 * offset + 10], &buffer[1]); // degenerate tris (the only two!)
|
||
|
copyAlphaVertex(&buffer[2 * offset + 11], &buffer[2 * offset + 7]);
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 1; i < vertices.size() - 1; i++) {
|
||
|
const Vertex* next = &(vertices[i + 1]);
|
||
|
vec2 nextNormal(next->position[1] - current->position[1],
|
||
|
current->position[0] - next->position[0]);
|
||
|
nextNormal.normalize();
|
||
|
|
||
|
vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
|
||
|
vec2 AAOffset = totalOffset;
|
||
|
AAOffset.x *= 0.5f * inverseScaleX;
|
||
|
AAOffset.y *= 0.5f * inverseScaleY;
|
||
|
|
||
|
vec2 innerOffset = totalOffset;
|
||
|
scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
vec2 outerOffset = innerOffset + AAOffset;
|
||
|
innerOffset -= AAOffset;
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentAAOuterIndex++],
|
||
|
current->position[0] + outerOffset.x,
|
||
|
current->position[1] + outerOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[currentAAOuterIndex++],
|
||
|
current->position[0] + innerOffset.x,
|
||
|
current->position[1] + innerOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentStrokeIndex++],
|
||
|
current->position[0] + innerOffset.x,
|
||
|
current->position[1] + innerOffset.y,
|
||
|
maxAlpha);
|
||
|
AlphaVertex::set(&buffer[currentStrokeIndex++],
|
||
|
current->position[0] - innerOffset.x,
|
||
|
current->position[1] - innerOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentAAInnerIndex--],
|
||
|
current->position[0] - innerOffset.x,
|
||
|
current->position[1] - innerOffset.y,
|
||
|
maxAlpha);
|
||
|
AlphaVertex::set(&buffer[currentAAInnerIndex--],
|
||
|
current->position[0] - outerOffset.x,
|
||
|
current->position[1] - outerOffset.y,
|
||
|
0.0f);
|
||
|
|
||
|
last = current;
|
||
|
current = next;
|
||
|
lastNormal = nextNormal;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
// end cap
|
||
|
vec2 totalOffset = lastNormal;
|
||
|
vec2 AAOffset = totalOffset;
|
||
|
AAOffset.x *= 0.5f * inverseScaleX;
|
||
|
AAOffset.y *= 0.5f * inverseScaleY;
|
||
|
|
||
|
vec2 innerOffset = totalOffset;
|
||
|
scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
vec2 outerOffset = innerOffset + AAOffset;
|
||
|
innerOffset -= AAOffset;
|
||
|
|
||
|
// TODO: support square cap by changing this offset to incorporate halfStrokeWidth
|
||
|
vec2 capAAOffset(-AAOffset.y, AAOffset.x);
|
||
|
|
||
|
AlphaVertex::set(&buffer[offset + 2],
|
||
|
current->position[0] + outerOffset.x + capAAOffset.x,
|
||
|
current->position[1] + outerOffset.y + capAAOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[offset + 3],
|
||
|
current->position[0] + innerOffset.x - capAAOffset.x,
|
||
|
current->position[1] + innerOffset.y - capAAOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
AlphaVertex::set(&buffer[offset + 4],
|
||
|
current->position[0] - outerOffset.x + capAAOffset.x,
|
||
|
current->position[1] - outerOffset.y + capAAOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[offset + 5],
|
||
|
current->position[0] - innerOffset.x - capAAOffset.x,
|
||
|
current->position[1] - innerOffset.y - capAAOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
copyAlphaVertex(&buffer[vertexBuffer.getSize() - 2], &buffer[offset + 3]);
|
||
|
copyAlphaVertex(&buffer[vertexBuffer.getSize() - 1], &buffer[offset + 5]);
|
||
|
}
|
||
|
|
||
|
#if VERTEX_DEBUG
|
||
|
for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) {
|
||
|
ALOGD("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
void getStrokeVerticesFromPerimeterAA(const Vector<Vertex>& perimeter, float halfStrokeWidth,
|
||
|
VertexBuffer& vertexBuffer, float inverseScaleX, float inverseScaleY) {
|
||
|
AlphaVertex* buffer = vertexBuffer.alloc<AlphaVertex>(6 * perimeter.size() + 8);
|
||
|
|
||
|
// avoid lines smaller than hairline since they break triangle based sampling. instead reducing
|
||
|
// alpha value (TODO: support different X/Y scale)
|
||
|
float maxAlpha = 1.0f;
|
||
|
if (halfStrokeWidth != 0 && inverseScaleX == inverseScaleY &&
|
||
|
halfStrokeWidth * inverseScaleX < 0.5f) {
|
||
|
maxAlpha *= (2 * halfStrokeWidth) / inverseScaleX;
|
||
|
halfStrokeWidth = 0.0f;
|
||
|
}
|
||
|
|
||
|
int offset = 2 * perimeter.size() + 3;
|
||
|
int currentAAOuterIndex = 0;
|
||
|
int currentStrokeIndex = offset;
|
||
|
int currentAAInnerIndex = offset * 2;
|
||
|
|
||
|
const Vertex* last = &(perimeter[perimeter.size() - 1]);
|
||
|
const Vertex* current = &(perimeter[0]);
|
||
|
vec2 lastNormal(current->position[1] - last->position[1],
|
||
|
last->position[0] - current->position[0]);
|
||
|
lastNormal.normalize();
|
||
|
for (unsigned int i = 0; i < perimeter.size(); i++) {
|
||
|
const Vertex* next = &(perimeter[i + 1 >= perimeter.size() ? 0 : i + 1]);
|
||
|
vec2 nextNormal(next->position[1] - current->position[1],
|
||
|
current->position[0] - next->position[0]);
|
||
|
nextNormal.normalize();
|
||
|
|
||
|
vec2 totalOffset = totalOffsetFromNormals(lastNormal, nextNormal);
|
||
|
vec2 AAOffset = totalOffset;
|
||
|
AAOffset.x *= 0.5f * inverseScaleX;
|
||
|
AAOffset.y *= 0.5f * inverseScaleY;
|
||
|
|
||
|
vec2 innerOffset = totalOffset;
|
||
|
scaleOffsetForStrokeWidth(innerOffset, halfStrokeWidth, inverseScaleX, inverseScaleY);
|
||
|
vec2 outerOffset = innerOffset + AAOffset;
|
||
|
innerOffset -= AAOffset;
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentAAOuterIndex++],
|
||
|
current->position[0] + outerOffset.x,
|
||
|
current->position[1] + outerOffset.y,
|
||
|
0.0f);
|
||
|
AlphaVertex::set(&buffer[currentAAOuterIndex++],
|
||
|
current->position[0] + innerOffset.x,
|
||
|
current->position[1] + innerOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentStrokeIndex++],
|
||
|
current->position[0] + innerOffset.x,
|
||
|
current->position[1] + innerOffset.y,
|
||
|
maxAlpha);
|
||
|
AlphaVertex::set(&buffer[currentStrokeIndex++],
|
||
|
current->position[0] - innerOffset.x,
|
||
|
current->position[1] - innerOffset.y,
|
||
|
maxAlpha);
|
||
|
|
||
|
AlphaVertex::set(&buffer[currentAAInnerIndex++],
|
||
|
current->position[0] - innerOffset.x,
|
||
|
current->position[1] - innerOffset.y,
|
||
|
maxAlpha);
|
||
|
AlphaVertex::set(&buffer[currentAAInnerIndex++],
|
||
|
current->position[0] - outerOffset.x,
|
||
|
current->position[1] - outerOffset.y,
|
||
|
0.0f);
|
||
|
|
||
|
last = current;
|
||
|
current = next;
|
||
|
lastNormal = nextNormal;
|
||
|
}
|
||
|
|
||
|
// wrap each strip around to beginning, creating degenerate tris to bridge strips
|
||
|
copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[0]);
|
||
|
copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]);
|
||
|
copyAlphaVertex(&buffer[currentAAOuterIndex++], &buffer[1]);
|
||
|
|
||
|
copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset]);
|
||
|
copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]);
|
||
|
copyAlphaVertex(&buffer[currentStrokeIndex++], &buffer[offset + 1]);
|
||
|
|
||
|
copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset]);
|
||
|
copyAlphaVertex(&buffer[currentAAInnerIndex++], &buffer[2 * offset + 1]);
|
||
|
// don't need to create last degenerate tri
|
||
|
|
||
|
#if VERTEX_DEBUG
|
||
|
for (unsigned int i = 0; i < vertexBuffer.getSize(); i++) {
|
||
|
ALOGD("point at %f %f, alpha %f", buffer[i].position[0], buffer[i].position[1], buffer[i].alpha);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void PathRenderer::convexPathVertices(const SkPath &path, const SkPaint* paint,
|
||
|
const mat4 *transform, VertexBuffer& vertexBuffer) {
|
||
|
ATRACE_CALL();
|
||
|
|
||
|
SkPaint::Style style = paint->getStyle();
|
||
|
bool isAA = paint->isAntiAlias();
|
||
|
|
||
|
float inverseScaleX, inverseScaleY;
|
||
|
computeInverseScales(transform, inverseScaleX, inverseScaleY);
|
||
|
|
||
|
Vector<Vertex> tempVertices;
|
||
|
float threshInvScaleX = inverseScaleX;
|
||
|
float threshInvScaleY = inverseScaleY;
|
||
|
if (style == SkPaint::kStroke_Style) {
|
||
|
// alter the bezier recursion threshold values we calculate in order to compensate for
|
||
|
// expansion done after the path vertices are found
|
||
|
SkRect bounds = path.getBounds();
|
||
|
if (!bounds.isEmpty()) {
|
||
|
threshInvScaleX *= bounds.width() / (bounds.width() + paint->getStrokeWidth());
|
||
|
threshInvScaleY *= bounds.height() / (bounds.height() + paint->getStrokeWidth());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// force close if we're filling the path, since fill path expects closed perimeter.
|
||
|
bool forceClose = style != SkPaint::kStroke_Style;
|
||
|
bool wasClosed = convexPathPerimeterVertices(path, forceClose, threshInvScaleX * threshInvScaleX,
|
||
|
threshInvScaleY * threshInvScaleY, tempVertices);
|
||
|
|
||
|
if (!tempVertices.size()) {
|
||
|
// path was empty, return without allocating vertex buffer
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
#if VERTEX_DEBUG
|
||
|
for (unsigned int i = 0; i < tempVertices.size(); i++) {
|
||
|
ALOGD("orig path: point at %f %f", tempVertices[i].position[0], tempVertices[i].position[1]);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if (style == SkPaint::kStroke_Style) {
|
||
|
float halfStrokeWidth = paint->getStrokeWidth() * 0.5f;
|
||
|
if (!isAA) {
|
||
|
if (wasClosed) {
|
||
|
getStrokeVerticesFromPerimeter(tempVertices, halfStrokeWidth, vertexBuffer,
|
||
|
inverseScaleX, inverseScaleY);
|
||
|
} else {
|
||
|
getStrokeVerticesFromUnclosedVertices(tempVertices, halfStrokeWidth, vertexBuffer,
|
||
|
inverseScaleX, inverseScaleY);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
if (wasClosed) {
|
||
|
getStrokeVerticesFromPerimeterAA(tempVertices, halfStrokeWidth, vertexBuffer,
|
||
|
inverseScaleX, inverseScaleY);
|
||
|
} else {
|
||
|
getStrokeVerticesFromUnclosedVerticesAA(tempVertices, halfStrokeWidth, vertexBuffer,
|
||
|
inverseScaleX, inverseScaleY);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// For kStrokeAndFill style, the path should be adjusted externally, as it will be treated as a fill here.
|
||
|
if (!isAA) {
|
||
|
getFillVerticesFromPerimeter(tempVertices, vertexBuffer);
|
||
|
} else {
|
||
|
getFillVerticesFromPerimeterAA(tempVertices, vertexBuffer, inverseScaleX, inverseScaleY);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void pushToVector(Vector<Vertex>& vertices, float x, float y) {
|
||
|
// TODO: make this not yuck
|
||
|
vertices.push();
|
||
|
Vertex* newVertex = &(vertices.editArray()[vertices.size() - 1]);
|
||
|
Vertex::set(newVertex, x, y);
|
||
|
}
|
||
|
|
||
|
bool PathRenderer::convexPathPerimeterVertices(const SkPath& path, bool forceClose,
|
||
|
float sqrInvScaleX, float sqrInvScaleY, Vector<Vertex>& outputVertices) {
|
||
|
ATRACE_CALL();
|
||
|
|
||
|
// TODO: to support joins other than sharp miter, join vertices should be labelled in the
|
||
|
// perimeter, or resolved into more vertices. Reconsider forceClose-ing in that case.
|
||
|
SkPath::Iter iter(path, forceClose);
|
||
|
SkPoint pts[4];
|
||
|
SkPath::Verb v;
|
||
|
Vertex* newVertex = 0;
|
||
|
while (SkPath::kDone_Verb != (v = iter.next(pts))) {
|
||
|
switch (v) {
|
||
|
case SkPath::kMove_Verb:
|
||
|
pushToVector(outputVertices, pts[0].x(), pts[0].y());
|
||
|
ALOGV("Move to pos %f %f", pts[0].x(), pts[0].y());
|
||
|
break;
|
||
|
case SkPath::kClose_Verb:
|
||
|
ALOGV("Close at pos %f %f", pts[0].x(), pts[0].y());
|
||
|
break;
|
||
|
case SkPath::kLine_Verb:
|
||
|
ALOGV("kLine_Verb %f %f -> %f %f",
|
||
|
pts[0].x(), pts[0].y(),
|
||
|
pts[1].x(), pts[1].y());
|
||
|
|
||
|
pushToVector(outputVertices, pts[1].x(), pts[1].y());
|
||
|
break;
|
||
|
case SkPath::kQuad_Verb:
|
||
|
ALOGV("kQuad_Verb");
|
||
|
recursiveQuadraticBezierVertices(
|
||
|
pts[0].x(), pts[0].y(),
|
||
|
pts[2].x(), pts[2].y(),
|
||
|
pts[1].x(), pts[1].y(),
|
||
|
sqrInvScaleX, sqrInvScaleY, outputVertices);
|
||
|
break;
|
||
|
case SkPath::kCubic_Verb:
|
||
|
ALOGV("kCubic_Verb");
|
||
|
recursiveCubicBezierVertices(
|
||
|
pts[0].x(), pts[0].y(),
|
||
|
pts[1].x(), pts[1].y(),
|
||
|
pts[3].x(), pts[3].y(),
|
||
|
pts[2].x(), pts[2].y(),
|
||
|
sqrInvScaleX, sqrInvScaleY, outputVertices);
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int size = outputVertices.size();
|
||
|
if (size >= 2 && outputVertices[0].position[0] == outputVertices[size - 1].position[0] &&
|
||
|
outputVertices[0].position[1] == outputVertices[size - 1].position[1]) {
|
||
|
outputVertices.pop();
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void PathRenderer::recursiveCubicBezierVertices(
|
||
|
float p1x, float p1y, float c1x, float c1y,
|
||
|
float p2x, float p2y, float c2x, float c2y,
|
||
|
float sqrInvScaleX, float sqrInvScaleY, Vector<Vertex>& outputVertices) {
|
||
|
float dx = p2x - p1x;
|
||
|
float dy = p2y - p1y;
|
||
|
float d1 = fabs((c1x - p2x) * dy - (c1y - p2y) * dx);
|
||
|
float d2 = fabs((c2x - p2x) * dy - (c2y - p2y) * dx);
|
||
|
float d = d1 + d2;
|
||
|
|
||
|
// multiplying by sqrInvScaleY/X equivalent to multiplying in dimensional scale factors
|
||
|
|
||
|
if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) {
|
||
|
// below thresh, draw line by adding endpoint
|
||
|
pushToVector(outputVertices, p2x, p2y);
|
||
|
} else {
|
||
|
float p1c1x = (p1x + c1x) * 0.5f;
|
||
|
float p1c1y = (p1y + c1y) * 0.5f;
|
||
|
float p2c2x = (p2x + c2x) * 0.5f;
|
||
|
float p2c2y = (p2y + c2y) * 0.5f;
|
||
|
|
||
|
float c1c2x = (c1x + c2x) * 0.5f;
|
||
|
float c1c2y = (c1y + c2y) * 0.5f;
|
||
|
|
||
|
float p1c1c2x = (p1c1x + c1c2x) * 0.5f;
|
||
|
float p1c1c2y = (p1c1y + c1c2y) * 0.5f;
|
||
|
|
||
|
float p2c1c2x = (p2c2x + c1c2x) * 0.5f;
|
||
|
float p2c1c2y = (p2c2y + c1c2y) * 0.5f;
|
||
|
|
||
|
float mx = (p1c1c2x + p2c1c2x) * 0.5f;
|
||
|
float my = (p1c1c2y + p2c1c2y) * 0.5f;
|
||
|
|
||
|
recursiveCubicBezierVertices(
|
||
|
p1x, p1y, p1c1x, p1c1y,
|
||
|
mx, my, p1c1c2x, p1c1c2y,
|
||
|
sqrInvScaleX, sqrInvScaleY, outputVertices);
|
||
|
recursiveCubicBezierVertices(
|
||
|
mx, my, p2c1c2x, p2c1c2y,
|
||
|
p2x, p2y, p2c2x, p2c2y,
|
||
|
sqrInvScaleX, sqrInvScaleY, outputVertices);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void PathRenderer::recursiveQuadraticBezierVertices(
|
||
|
float ax, float ay,
|
||
|
float bx, float by,
|
||
|
float cx, float cy,
|
||
|
float sqrInvScaleX, float sqrInvScaleY, Vector<Vertex>& outputVertices) {
|
||
|
float dx = bx - ax;
|
||
|
float dy = by - ay;
|
||
|
float d = (cx - bx) * dy - (cy - by) * dx;
|
||
|
|
||
|
if (d * d < THRESHOLD * THRESHOLD * (dx * dx * sqrInvScaleY + dy * dy * sqrInvScaleX)) {
|
||
|
// below thresh, draw line by adding endpoint
|
||
|
pushToVector(outputVertices, bx, by);
|
||
|
} else {
|
||
|
float acx = (ax + cx) * 0.5f;
|
||
|
float bcx = (bx + cx) * 0.5f;
|
||
|
float acy = (ay + cy) * 0.5f;
|
||
|
float bcy = (by + cy) * 0.5f;
|
||
|
|
||
|
// midpoint
|
||
|
float mx = (acx + bcx) * 0.5f;
|
||
|
float my = (acy + bcy) * 0.5f;
|
||
|
|
||
|
recursiveQuadraticBezierVertices(ax, ay, mx, my, acx, acy,
|
||
|
sqrInvScaleX, sqrInvScaleY, outputVertices);
|
||
|
recursiveQuadraticBezierVertices(mx, my, bx, by, bcx, bcy,
|
||
|
sqrInvScaleX, sqrInvScaleY, outputVertices);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}; // namespace uirenderer
|
||
|
}; // namespace android
|