skia2/include/core/SkPathRef.h

600 lines
21 KiB
C
Raw Normal View History

/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPathRef_DEFINED
#define SkPathRef_DEFINED
#include "SkMatrix.h"
#include "SkPoint.h"
#include "SkRect.h"
#include "SkRefCnt.h"
#include "SkTDArray.h"
#include <stddef.h> // ptrdiff_t
class SkRBuffer;
class SkWBuffer;
// TODO: refactor this header to move more of the implementation into the .cpp
/**
* Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
* modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
* SkPathRef::Editor object. Installing the editor resets the generation ID. It also performs
* copy-on-write if the SkPathRef is shared by multipls SkPaths. The caller passes the Editor's
* constructor a SkAutoTUnref, which may be updated to point to a new SkPathRef after the editor's
* constructor returns.
*
* The points and verbs are stored in a single allocation. The points are at the begining of the
* allocation while the verbs are stored at end of the allocation, in reverse order. Thus the points
* and verbs both grow into the middle of the allocation until the meet. To access verb i in the
* verb array use ref.verbs()[~i] (because verbs() returns a pointer just beyond the first
* logical verb or the last verb in memory).
*/
class SkPathRef : public ::SkRefCnt {
public:
SK_DECLARE_INST_COUNT(SkPathRef);
class Editor {
public:
Editor(SkAutoTUnref<SkPathRef>* pathRef,
int incReserveVerbs = 0,
int incReservePoints = 0)
{
if ((*pathRef)->unique()) {
(*pathRef)->incReserve(incReserveVerbs, incReservePoints);
} else {
SkPathRef* copy = SkNEW(SkPathRef);
copy->copy(**pathRef, incReserveVerbs, incReservePoints);
pathRef->reset(copy);
}
fPathRef = *pathRef;
fPathRef->fGenerationID = 0;
SkDEBUGCODE(sk_atomic_inc(&fPathRef->fEditorsAttached);)
}
~Editor() { SkDEBUGCODE(sk_atomic_dec(&fPathRef->fEditorsAttached);) }
/**
* Returns the array of points.
*/
SkPoint* points() { return fPathRef->fPoints; }
/**
* Gets the ith point. Shortcut for this->points() + i
*/
SkPoint* atPoint(int i) {
SkASSERT((unsigned) i < (unsigned) fPathRef->fPointCnt);
return this->points() + i;
};
/**
* Adds the verb and allocates space for the number of points indicated by the verb. The
* return value is a pointer to where the points for the verb should be written.
*/
SkPoint* growForVerb(int /*SkPath::Verb*/ verb);
SkPoint* growForConic(SkScalar w);
/**
* Allocates space for additional verbs and points and returns pointers to the new verbs and
* points. verbs will point one beyond the first new verb (index it using [~<i>]). pts points
* at the first new point (indexed normally [<i>]).
*/
void grow(int newVerbs, int newPts, uint8_t** verbs, SkPoint** pts) {
SkASSERT(NULL != verbs);
SkASSERT(NULL != pts);
fPathRef->validate();
int oldVerbCnt = fPathRef->fVerbCnt;
int oldPointCnt = fPathRef->fPointCnt;
SkASSERT(verbs && pts);
fPathRef->grow(newVerbs, newPts);
*verbs = fPathRef->fVerbs - oldVerbCnt;
*pts = fPathRef->fPoints + oldPointCnt;
fPathRef->validate();
}
/**
* Resets the path ref to a new verb and point count. The new verbs and points are
* uninitialized.
*/
void resetToSize(int newVerbCnt, int newPointCnt, int newConicCount) {
fPathRef->resetToSize(newVerbCnt, newPointCnt, newConicCount);
}
/**
* Gets the path ref that is wrapped in the Editor.
*/
SkPathRef* pathRef() { return fPathRef; }
private:
SkPathRef* fPathRef;
};
public:
/**
* Gets a path ref with no verbs or points.
*/
static SkPathRef* CreateEmpty() {
static SkPathRef* gEmptyPathRef;
if (!gEmptyPathRef) {
gEmptyPathRef = SkNEW(SkPathRef); // leak!
}
return SkRef(gEmptyPathRef);
}
/**
* Returns true if all of the points in this path are finite, meaning there
* are no infinities and no NaNs.
*/
bool isFinite() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return SkToBool(fIsFinite);
}
bool hasComputedBounds() const {
return !fBoundsIsDirty;
}
/** Returns the bounds of the path's points. If the path contains 0 or 1
points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
Note: this bounds may be larger than the actual shape, since curves
do not extend as far as their control points.
*/
const SkRect& getBounds() const {
if (fBoundsIsDirty) {
this->computeBounds();
}
return fBounds;
}
void setBounds(const SkRect& rect) {
SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
fBounds = rect;
fBoundsIsDirty = false;
fIsFinite = fBounds.isFinite();
}
/**
* Transforms a path ref by a matrix, allocating a new one only if necessary.
*/
static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
const SkPathRef& src,
const SkMatrix& matrix) {
src.validate();
if (matrix.isIdentity()) {
if (*dst != &src) {
src.ref();
dst->reset(const_cast<SkPathRef*>(&src));
(*dst)->validate();
}
return;
}
bool dstUnique = (*dst)->unique();
if (!dstUnique) {
dst->reset(SkNEW(SkPathRef));
(*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t));
(*dst)->fConicWeights = src.fConicWeights;
}
// Need to check this here in case (&src == dst)
bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1;
matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
/*
* Here we optimize the bounds computation, by noting if the bounds are
* already known, and if so, we just transform those as well and mark
* them as "known", rather than force the transformed path to have to
* recompute them.
*
* Special gotchas if the path is effectively empty (<= 1 point) or
* if it is non-finite. In those cases bounds need to stay empty,
* regardless of the matrix.
*/
if (canXformBounds) {
(*dst)->fBoundsIsDirty = false;
if (src.fIsFinite) {
matrix.mapRect(&(*dst)->fBounds, src.fBounds);
if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) {
(*dst)->fBounds.setEmpty();
}
} else {
(*dst)->fIsFinite = false;
(*dst)->fBounds.setEmpty();
}
} else {
(*dst)->fBoundsIsDirty = true;
}
(*dst)->validate();
}
static SkPathRef* CreateFromBuffer(SkRBuffer* buffer
#ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V14_AND_ALL_OTHER_INSTANCES_TOO
, bool newFormat, int32_t oldPacked
#endif
);
/**
* Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
* repopulated with approximately the same number of verbs and points. A new path ref is created
* only if necessary.
*/
static void Rewind(SkAutoTUnref<SkPathRef>* pathRef) {
if ((*pathRef)->unique()) {
(*pathRef)->validate();
(*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite
(*pathRef)->fVerbCnt = 0;
(*pathRef)->fPointCnt = 0;
(*pathRef)->fFreeSpace = (*pathRef)->currSize();
(*pathRef)->fGenerationID = 0;
(*pathRef)->fConicWeights.rewind();
(*pathRef)->validate();
} else {
int oldVCnt = (*pathRef)->countVerbs();
int oldPCnt = (*pathRef)->countPoints();
pathRef->reset(SkNEW(SkPathRef));
(*pathRef)->resetToSize(0, 0, 0, oldVCnt, oldPCnt);
}
}
virtual ~SkPathRef() {
this->validate();
sk_free(fPoints);
SkDEBUGCODE(fPoints = NULL;)
SkDEBUGCODE(fVerbs = NULL;)
SkDEBUGCODE(fVerbCnt = 0x9999999;)
SkDEBUGCODE(fPointCnt = 0xAAAAAAA;)
SkDEBUGCODE(fPointCnt = 0xBBBBBBB;)
SkDEBUGCODE(fGenerationID = 0xEEEEEEEE;)
SkDEBUGCODE(fEditorsAttached = 0x7777777;)
}
int countPoints() const { this->validate(); return fPointCnt; }
int countVerbs() const { this->validate(); return fVerbCnt; }
/**
* Returns a pointer one beyond the first logical verb (last verb in memory order).
*/
const uint8_t* verbs() const { this->validate(); return fVerbs; }
/**
* Returns a const pointer to the first verb in memory (which is the last logical verb).
*/
const uint8_t* verbsMemBegin() const { return this->verbs() - fVerbCnt; }
/**
* Returns a const pointer to the first point.
*/
const SkPoint* points() const { this->validate(); return fPoints; }
/**
* Shortcut for this->points() + this->countPoints()
*/
const SkPoint* pointsEnd() const { return this->points() + this->countPoints(); }
const SkScalar* conicWeights() const { this->validate(); return fConicWeights.begin(); }
const SkScalar* conicWeightsEnd() const { this->validate(); return fConicWeights.end(); }
/**
* Convenience methods for getting to a verb or point by index.
*/
uint8_t atVerb(int index) {
SkASSERT((unsigned) index < (unsigned) fVerbCnt);
return this->verbs()[~index];
}
const SkPoint& atPoint(int index) const {
SkASSERT((unsigned) index < (unsigned) fPointCnt);
return this->points()[index];
}
bool operator== (const SkPathRef& ref) const {
this->validate();
ref.validate();
bool genIDMatch = fGenerationID && fGenerationID == ref.fGenerationID;
#ifdef SK_RELEASE
if (genIDMatch) {
return true;
}
#endif
if (fPointCnt != ref.fPointCnt ||
fVerbCnt != ref.fVerbCnt) {
SkASSERT(!genIDMatch);
return false;
}
if (0 != memcmp(this->verbsMemBegin(),
ref.verbsMemBegin(),
ref.fVerbCnt * sizeof(uint8_t))) {
SkASSERT(!genIDMatch);
return false;
}
if (0 != memcmp(this->points(),
ref.points(),
ref.fPointCnt * sizeof(SkPoint))) {
SkASSERT(!genIDMatch);
return false;
}
if (fConicWeights != ref.fConicWeights) {
SkASSERT(!genIDMatch);
return false;
}
// We've done the work to determine that these are equal. If either has a zero genID, copy
// the other's. If both are 0 then genID() will compute the next ID.
if (0 == fGenerationID) {
fGenerationID = ref.genID();
} else if (0 == ref.fGenerationID) {
ref.fGenerationID = this->genID();
}
return true;
}
/**
* Writes the path points and verbs to a buffer.
*/
void writeToBuffer(SkWBuffer* buffer);
/**
* Gets the number of bytes that would be written in writeBuffer()
*/
uint32_t writeSize() {
return 5 * sizeof(uint32_t) +
fVerbCnt * sizeof(uint8_t) +
fPointCnt * sizeof(SkPoint) +
fConicWeights.bytes() +
sizeof(SkRect);
}
private:
enum SerializationOffsets {
kIsFinite_SerializationShift = 25, // requires 1 bit
};
SkPathRef() {
fBoundsIsDirty = true; // this also invalidates fIsFinite
fPointCnt = 0;
fVerbCnt = 0;
fVerbs = NULL;
fPoints = NULL;
fFreeSpace = 0;
fGenerationID = kEmptyGenID;
SkDEBUGCODE(fEditorsAttached = 0;)
this->validate();
}
void copy(const SkPathRef& ref, int additionalReserveVerbs, int additionalReservePoints) {
this->validate();
this->resetToSize(ref.fVerbCnt, ref.fPointCnt, ref.fConicWeights.count(),
additionalReserveVerbs, additionalReservePoints);
memcpy(this->verbsMemWritable(), ref.verbsMemBegin(), ref.fVerbCnt * sizeof(uint8_t));
memcpy(this->fPoints, ref.fPoints, ref.fPointCnt * sizeof(SkPoint));
fConicWeights = ref.fConicWeights;
// We could call genID() here to force a real ID (instead of 0). However, if we're making
// a copy then presumably we intend to make a modification immediately afterwards.
fGenerationID = ref.fGenerationID;
fBoundsIsDirty = ref.fBoundsIsDirty;
if (!fBoundsIsDirty) {
fBounds = ref.fBounds;
fIsFinite = ref.fIsFinite;
}
this->validate();
}
// Return true if the computed bounds are finite.
static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
int count = ref.countPoints();
if (count <= 1) { // we ignore just 1 point (moveto)
bounds->setEmpty();
return count ? ref.points()->isFinite() : true;
} else {
return bounds->setBoundsCheck(ref.points(), count);
}
}
// called, if dirty, by getBounds()
void computeBounds() const {
SkDEBUGCODE(this->validate();)
SkASSERT(fBoundsIsDirty);
fIsFinite = ComputePtBounds(&fBounds, *this);
fBoundsIsDirty = false;
}
/** Makes additional room but does not change the counts or change the genID */
void incReserve(int additionalVerbs, int additionalPoints) {
this->validate();
size_t space = additionalVerbs * sizeof(uint8_t) + additionalPoints * sizeof (SkPoint);
this->makeSpace(space);
this->validate();
}
/** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
* allocates space for reserveVerb additional verbs and reservePoints additional points.*/
void resetToSize(int verbCount, int pointCount, int conicCount,
int reserveVerbs = 0, int reservePoints = 0) {
this->validate();
fBoundsIsDirty = true; // this also invalidates fIsFinite
fGenerationID = 0;
size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
size_t newReserve = sizeof(uint8_t) * reserveVerbs + sizeof(SkPoint) * reservePoints;
size_t minSize = newSize + newReserve;
ptrdiff_t sizeDelta = this->currSize() - minSize;
if (sizeDelta < 0 || static_cast<size_t>(sizeDelta) >= 3 * minSize) {
sk_free(fPoints);
fPoints = NULL;
fVerbs = NULL;
fFreeSpace = 0;
fVerbCnt = 0;
fPointCnt = 0;
this->makeSpace(minSize);
fVerbCnt = verbCount;
fPointCnt = pointCount;
fFreeSpace -= newSize;
} else {
fPointCnt = pointCount;
fVerbCnt = verbCount;
fFreeSpace = this->currSize() - minSize;
}
fConicWeights.setCount(conicCount);
this->validate();
}
/**
* Increases the verb count by newVerbs and the point count be newPoints. New verbs and points
* are uninitialized.
*/
void grow(int newVerbs, int newPoints) {
this->validate();
size_t space = newVerbs * sizeof(uint8_t) + newPoints * sizeof (SkPoint);
this->makeSpace(space);
fVerbCnt += newVerbs;
fPointCnt += newPoints;
fFreeSpace -= space;
fBoundsIsDirty = true; // this also invalidates fIsFinite
this->validate();
}
/**
* Increases the verb count 1, records the new verb, and creates room for the requisite number
* of additional points. A pointer to the first point is returned. Any new points are
* uninitialized.
*/
SkPoint* growForVerb(int /*SkPath::Verb*/ verb);
/**
* Ensures that the free space available in the path ref is >= size. The verb and point counts
* are not changed.
*/
void makeSpace(size_t size) {
this->validate();
ptrdiff_t growSize = size - fFreeSpace;
if (growSize <= 0) {
return;
}
size_t oldSize = this->currSize();
// round to next multiple of 8 bytes
growSize = (growSize + 7) & ~static_cast<size_t>(7);
// we always at least double the allocation
if (static_cast<size_t>(growSize) < oldSize) {
growSize = oldSize;
}
if (growSize < kMinSize) {
growSize = kMinSize;
}
size_t newSize = oldSize + growSize;
// Note that realloc could memcpy more than we need. It seems to be a win anyway. TODO:
// encapsulate this.
fPoints = reinterpret_cast<SkPoint*>(sk_realloc_throw(fPoints, newSize));
size_t oldVerbSize = fVerbCnt * sizeof(uint8_t);
void* newVerbsDst = reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(fPoints) + newSize - oldVerbSize);
void* oldVerbsSrc = reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(fPoints) + oldSize - oldVerbSize);
memmove(newVerbsDst, oldVerbsSrc, oldVerbSize);
fVerbs = reinterpret_cast<uint8_t*>(reinterpret_cast<intptr_t>(fPoints) + newSize);
fFreeSpace += growSize;
this->validate();
}
/**
* Private, non-const-ptr version of the public function verbsMemBegin().
*/
uint8_t* verbsMemWritable() {
this->validate();
return fVerbs - fVerbCnt;
}
/**
* Gets the total amount of space allocated for verbs, points, and reserve.
*/
size_t currSize() const {
return reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints);
}
/**
* Gets an ID that uniquely identifies the contents of the path ref. If two path refs have the
* same ID then they have the same verbs and points. However, two path refs may have the same
* contents but different genIDs. Zero is reserved and means an ID has not yet been determined
* for the path ref.
*/
int32_t genID() const {
SkASSERT(!fEditorsAttached);
if (!fGenerationID) {
if (0 == fPointCnt && 0 == fVerbCnt) {
fGenerationID = kEmptyGenID;
} else {
static int32_t gPathRefGenerationID;
// do a loop in case our global wraps around, as we never want to return a 0 or the
// empty ID
do {
fGenerationID = sk_atomic_inc(&gPathRefGenerationID) + 1;
} while (fGenerationID <= kEmptyGenID);
}
}
return fGenerationID;
}
void validate() const {
SkASSERT(static_cast<ptrdiff_t>(fFreeSpace) >= 0);
SkASSERT(reinterpret_cast<intptr_t>(fVerbs) - reinterpret_cast<intptr_t>(fPoints) >= 0);
SkASSERT((NULL == fPoints) == (NULL == fVerbs));
SkASSERT(!(NULL == fPoints && 0 != fFreeSpace));
SkASSERT(!(NULL == fPoints && 0 != fFreeSpace));
SkASSERT(!(NULL == fPoints && fPointCnt));
SkASSERT(!(NULL == fVerbs && fVerbCnt));
SkASSERT(this->currSize() ==
fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt);
#ifdef SK_DEBUG
if (!fBoundsIsDirty && !fBounds.isEmpty()) {
bool isFinite = true;
for (int i = 0; i < fPointCnt; ++i) {
SkASSERT(fPoints[i].fX >= fBounds.fLeft && fPoints[i].fX <= fBounds.fRight &&
fPoints[i].fY >= fBounds.fTop && fPoints[i].fY <= fBounds.fBottom);
if (!fPoints[i].isFinite()) {
isFinite = false;
}
}
SkASSERT(SkToBool(fIsFinite) == isFinite);
}
#endif
}
enum {
kMinSize = 256,
};
mutable SkRect fBounds;
mutable uint8_t fBoundsIsDirty;
mutable SkBool8 fIsFinite; // only meaningful if bounds are valid
SkPoint* fPoints; // points to begining of the allocation
uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards)
int fVerbCnt;
int fPointCnt;
size_t fFreeSpace; // redundant but saves computation
SkTDArray<SkScalar> fConicWeights;
enum {
kEmptyGenID = 1, // GenID reserved for path ref with zero points and zero verbs.
};
mutable int32_t fGenerationID;
SkDEBUGCODE(int32_t fEditorsAttached;) // assert that only one editor in use at any time.
typedef SkRefCnt INHERITED;
};
#endif