2012-08-27 14:11:33 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2012 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
2012-02-03 22:07:47 +00:00
|
|
|
#include "CubicUtilities.h"
|
|
|
|
#include "QuadraticUtilities.h"
|
|
|
|
|
2013-01-19 13:22:39 +00:00
|
|
|
const int precisionUnit = 256; // FIXME: arbitrary -- should try different values in test framework
|
|
|
|
|
|
|
|
// FIXME: cache keep the bounds and/or precision with the caller?
|
2013-01-17 21:02:47 +00:00
|
|
|
double calcPrecision(const Cubic& cubic) {
|
|
|
|
_Rect dRect;
|
2013-01-19 13:22:39 +00:00
|
|
|
dRect.setBounds(cubic); // OPTIMIZATION: just use setRawBounds ?
|
2013-01-17 21:02:47 +00:00
|
|
|
double width = dRect.right - dRect.left;
|
|
|
|
double height = dRect.bottom - dRect.top;
|
2013-01-19 13:22:39 +00:00
|
|
|
return (width > height ? width : height) / precisionUnit;
|
2013-01-17 21:02:47 +00:00
|
|
|
}
|
|
|
|
|
2013-01-22 12:55:54 +00:00
|
|
|
#if SK_DEBUG
|
|
|
|
double calcPrecision(const Cubic& cubic, double t, double scale) {
|
|
|
|
Cubic part;
|
2013-01-24 21:47:16 +00:00
|
|
|
sub_divide(cubic, SkTMax(0., t - scale), SkTMin(1., t + scale), part);
|
2013-01-22 12:55:54 +00:00
|
|
|
return calcPrecision(part);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2012-02-03 22:07:47 +00:00
|
|
|
void coefficients(const double* cubic, double& A, double& B, double& C, double& D) {
|
|
|
|
A = cubic[6]; // d
|
|
|
|
B = cubic[4] * 3; // 3*c
|
|
|
|
C = cubic[2] * 3; // 3*b
|
|
|
|
D = cubic[0]; // a
|
|
|
|
A -= D - C + B; // A = -a + 3*b - 3*c + d
|
|
|
|
B += 3 * D - 2 * C; // B = 3*a - 6*b + 3*c
|
|
|
|
C -= 3 * D; // C = -3*a + 3*b
|
|
|
|
}
|
|
|
|
|
|
|
|
// cubic roots
|
|
|
|
|
|
|
|
const double PI = 4 * atan(1);
|
|
|
|
|
|
|
|
// from SkGeometry.cpp (and Numeric Solutions, 5.6)
|
2013-01-24 21:47:16 +00:00
|
|
|
int cubicRootsValidT(double A, double B, double C, double D, double t[3]) {
|
|
|
|
#if 0
|
2012-02-03 22:07:47 +00:00
|
|
|
if (approximately_zero(A)) { // we're just a quadratic
|
2013-01-24 21:47:16 +00:00
|
|
|
return quadraticRootsValidT(B, C, D, t);
|
2012-02-03 22:07:47 +00:00
|
|
|
}
|
|
|
|
double a, b, c;
|
|
|
|
{
|
|
|
|
double invA = 1 / A;
|
|
|
|
a = B * invA;
|
|
|
|
b = C * invA;
|
|
|
|
c = D * invA;
|
|
|
|
}
|
|
|
|
double a2 = a * a;
|
|
|
|
double Q = (a2 - b * 3) / 9;
|
|
|
|
double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
|
|
|
|
double Q3 = Q * Q * Q;
|
|
|
|
double R2MinusQ3 = R * R - Q3;
|
|
|
|
double adiv3 = a / 3;
|
|
|
|
double* roots = t;
|
|
|
|
double r;
|
|
|
|
|
|
|
|
if (R2MinusQ3 < 0) // we have 3 real roots
|
|
|
|
{
|
|
|
|
double theta = acos(R / sqrt(Q3));
|
|
|
|
double neg2RootQ = -2 * sqrt(Q);
|
|
|
|
|
|
|
|
r = neg2RootQ * cos(theta / 3) - adiv3;
|
|
|
|
if (is_unit_interval(r))
|
|
|
|
*roots++ = r;
|
|
|
|
|
|
|
|
r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
|
|
|
|
if (is_unit_interval(r))
|
|
|
|
*roots++ = r;
|
|
|
|
|
|
|
|
r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
|
|
|
|
if (is_unit_interval(r))
|
|
|
|
*roots++ = r;
|
|
|
|
}
|
|
|
|
else // we have 1 real root
|
|
|
|
{
|
|
|
|
double A = fabs(R) + sqrt(R2MinusQ3);
|
|
|
|
A = cube_root(A);
|
|
|
|
if (R > 0) {
|
|
|
|
A = -A;
|
|
|
|
}
|
|
|
|
if (A != 0) {
|
|
|
|
A += Q / A;
|
|
|
|
}
|
|
|
|
r = A - adiv3;
|
|
|
|
if (is_unit_interval(r))
|
|
|
|
*roots++ = r;
|
|
|
|
}
|
|
|
|
return (int)(roots - t);
|
2013-01-24 21:47:16 +00:00
|
|
|
#else
|
|
|
|
double s[3];
|
|
|
|
int realRoots = cubicRootsReal(A, B, C, D, s);
|
|
|
|
int foundRoots = add_valid_ts(s, realRoots, t);
|
|
|
|
return foundRoots;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
int cubicRootsReal(double A, double B, double C, double D, double s[3]) {
|
|
|
|
#if SK_DEBUG
|
|
|
|
// create a string mathematica understands
|
|
|
|
// GDB set print repe 15 # if repeated digits is a bother
|
|
|
|
// set print elements 400 # if line doesn't fit
|
|
|
|
char str[1024];
|
|
|
|
bzero(str, sizeof(str));
|
|
|
|
sprintf(str, "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", A, B, C, D);
|
|
|
|
#endif
|
|
|
|
if (approximately_zero(A)) { // we're just a quadratic
|
|
|
|
return quadraticRootsReal(B, C, D, s);
|
|
|
|
}
|
|
|
|
if (approximately_zero(D)) { // 0 is one root
|
|
|
|
int num = quadraticRootsReal(A, B, C, s);
|
|
|
|
for (int i = 0; i < num; ++i) {
|
|
|
|
if (approximately_zero(s[i])) {
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s[num++] = 0;
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
if (approximately_zero(A + B + C + D)) { // 1 is one root
|
|
|
|
int num = quadraticRootsReal(A, A + B, -D, s);
|
|
|
|
for (int i = 0; i < num; ++i) {
|
|
|
|
if (AlmostEqualUlps(s[i], 1)) {
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
s[num++] = 1;
|
|
|
|
return num;
|
|
|
|
}
|
|
|
|
double a, b, c;
|
|
|
|
{
|
|
|
|
double invA = 1 / A;
|
|
|
|
a = B * invA;
|
|
|
|
b = C * invA;
|
|
|
|
c = D * invA;
|
|
|
|
}
|
|
|
|
double a2 = a * a;
|
|
|
|
double Q = (a2 - b * 3) / 9;
|
|
|
|
double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54;
|
|
|
|
double R2 = R * R;
|
|
|
|
double Q3 = Q * Q * Q;
|
|
|
|
double R2MinusQ3 = R2 - Q3;
|
|
|
|
double adiv3 = a / 3;
|
|
|
|
double r;
|
|
|
|
double* roots = s;
|
|
|
|
#if 0
|
|
|
|
if (approximately_zero_squared(R2MinusQ3) && AlmostEqualUlps(R2, Q3)) {
|
|
|
|
if (approximately_zero_squared(R)) {/* one triple solution */
|
|
|
|
*roots++ = -adiv3;
|
|
|
|
} else { /* one single and one double solution */
|
|
|
|
|
|
|
|
double u = cube_root(-R);
|
|
|
|
*roots++ = 2 * u - adiv3;
|
|
|
|
*roots++ = -u - adiv3;
|
|
|
|
}
|
|
|
|
}
|
2013-01-25 07:06:46 +00:00
|
|
|
else
|
2013-01-24 21:47:16 +00:00
|
|
|
#endif
|
|
|
|
if (R2MinusQ3 < 0) // we have 3 real roots
|
|
|
|
{
|
|
|
|
double theta = acos(R / sqrt(Q3));
|
|
|
|
double neg2RootQ = -2 * sqrt(Q);
|
|
|
|
|
|
|
|
r = neg2RootQ * cos(theta / 3) - adiv3;
|
|
|
|
*roots++ = r;
|
|
|
|
|
|
|
|
r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3;
|
|
|
|
if (!AlmostEqualUlps(s[0], r)) {
|
|
|
|
*roots++ = r;
|
|
|
|
}
|
|
|
|
r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3;
|
|
|
|
if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) {
|
|
|
|
*roots++ = r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // we have 1 real root
|
|
|
|
{
|
|
|
|
double sqrtR2MinusQ3 = sqrt(R2MinusQ3);
|
|
|
|
double A = fabs(R) + sqrtR2MinusQ3;
|
|
|
|
A = cube_root(A);
|
|
|
|
if (R > 0) {
|
|
|
|
A = -A;
|
|
|
|
}
|
|
|
|
if (A != 0) {
|
|
|
|
A += Q / A;
|
|
|
|
}
|
|
|
|
r = A - adiv3;
|
|
|
|
*roots++ = r;
|
|
|
|
if (AlmostEqualUlps(R2, Q3)) {
|
|
|
|
r = -A / 2 - adiv3;
|
|
|
|
if (!AlmostEqualUlps(s[0], r)) {
|
|
|
|
*roots++ = r;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return (int)(roots - s);
|
2012-02-03 22:07:47 +00:00
|
|
|
}
|
2012-07-02 20:27:02 +00:00
|
|
|
|
|
|
|
// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf
|
|
|
|
// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3
|
|
|
|
// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2
|
|
|
|
// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2
|
2013-01-19 13:22:39 +00:00
|
|
|
static double derivativeAtT(const double* cubic, double t) {
|
2012-07-02 20:27:02 +00:00
|
|
|
double one_t = 1 - t;
|
|
|
|
double a = cubic[0];
|
|
|
|
double b = cubic[2];
|
|
|
|
double c = cubic[4];
|
|
|
|
double d = cubic[6];
|
2013-01-19 13:22:39 +00:00
|
|
|
return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t);
|
2012-07-02 20:27:02 +00:00
|
|
|
}
|
|
|
|
|
2013-01-19 13:22:39 +00:00
|
|
|
double dx_at_t(const Cubic& cubic, double t) {
|
|
|
|
return derivativeAtT(&cubic[0].x, t);
|
|
|
|
}
|
|
|
|
|
|
|
|
double dy_at_t(const Cubic& cubic, double t) {
|
|
|
|
return derivativeAtT(&cubic[0].y, t);
|
|
|
|
}
|
|
|
|
|
|
|
|
// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t?
|
|
|
|
void dxdy_at_t(const Cubic& cubic, double t, _Point& dxdy) {
|
|
|
|
dxdy.x = derivativeAtT(&cubic[0].x, t);
|
|
|
|
dxdy.y = derivativeAtT(&cubic[0].y, t);
|
2012-07-02 20:27:02 +00:00
|
|
|
}
|
|
|
|
|
2013-01-19 13:22:39 +00:00
|
|
|
|
2013-01-17 21:02:47 +00:00
|
|
|
int find_cubic_inflections(const Cubic& src, double tValues[])
|
|
|
|
{
|
|
|
|
double Ax = src[1].x - src[0].x;
|
|
|
|
double Ay = src[1].y - src[0].y;
|
|
|
|
double Bx = src[2].x - 2 * src[1].x + src[0].x;
|
|
|
|
double By = src[2].y - 2 * src[1].y + src[0].y;
|
|
|
|
double Cx = src[3].x + 3 * (src[1].x - src[2].x) - src[0].x;
|
|
|
|
double Cy = src[3].y + 3 * (src[1].y - src[2].y) - src[0].y;
|
2013-01-24 21:47:16 +00:00
|
|
|
return quadraticRootsValidT(Bx * Cy - By * Cx, (Ax * Cy - Ay * Cx), Ax * By - Ay * Bx, tValues);
|
2013-01-17 21:02:47 +00:00
|
|
|
}
|
|
|
|
|
2012-07-02 20:27:02 +00:00
|
|
|
bool rotate(const Cubic& cubic, int zero, int index, Cubic& rotPath) {
|
|
|
|
double dy = cubic[index].y - cubic[zero].y;
|
|
|
|
double dx = cubic[index].x - cubic[zero].x;
|
2013-01-24 21:47:16 +00:00
|
|
|
if (approximately_zero(dy)) {
|
|
|
|
if (approximately_zero(dx)) {
|
2012-07-02 20:27:02 +00:00
|
|
|
return false;
|
|
|
|
}
|
|
|
|
memcpy(rotPath, cubic, sizeof(Cubic));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
for (int index = 0; index < 4; ++index) {
|
|
|
|
rotPath[index].x = cubic[index].x * dx + cubic[index].y * dy;
|
|
|
|
rotPath[index].y = cubic[index].y * dx - cubic[index].x * dy;
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2013-01-19 13:22:39 +00:00
|
|
|
#if 0 // unused for now
|
2012-07-02 20:27:02 +00:00
|
|
|
double secondDerivativeAtT(const double* cubic, double t) {
|
|
|
|
double a = cubic[0];
|
|
|
|
double b = cubic[2];
|
|
|
|
double c = cubic[4];
|
|
|
|
double d = cubic[6];
|
|
|
|
return (c - 2 * b + a) * (1 - t) + (d - 2 * c + b) * t;
|
|
|
|
}
|
2013-01-19 13:22:39 +00:00
|
|
|
#endif
|
2012-07-02 20:27:02 +00:00
|
|
|
|
|
|
|
void xy_at_t(const Cubic& cubic, double t, double& x, double& y) {
|
|
|
|
double one_t = 1 - t;
|
|
|
|
double one_t2 = one_t * one_t;
|
|
|
|
double a = one_t2 * one_t;
|
|
|
|
double b = 3 * one_t2 * t;
|
|
|
|
double t2 = t * t;
|
|
|
|
double c = 3 * one_t * t2;
|
|
|
|
double d = t2 * t;
|
|
|
|
if (&x) {
|
|
|
|
x = a * cubic[0].x + b * cubic[1].x + c * cubic[2].x + d * cubic[3].x;
|
|
|
|
}
|
|
|
|
if (&y) {
|
|
|
|
y = a * cubic[0].y + b * cubic[1].y + c * cubic[2].y + d * cubic[3].y;
|
|
|
|
}
|
|
|
|
}
|