2016-10-18 17:02:51 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2016 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <cmath>
|
|
|
|
#include "gm.h"
|
|
|
|
#include "Resources.h"
|
|
|
|
#include "SkCodec.h"
|
|
|
|
#include "SkColorSpace_Base.h"
|
|
|
|
#include "SkColorSpace_A2B.h"
|
|
|
|
#include "SkColorSpacePriv.h"
|
|
|
|
#include "SkData.h"
|
|
|
|
#include "SkFloatingPoint.h"
|
|
|
|
#include "SkImageInfo.h"
|
|
|
|
#include "SkScalar.h"
|
|
|
|
#include "SkSRGB.h"
|
|
|
|
#include "SkStream.h"
|
|
|
|
#include "SkSurface.h"
|
|
|
|
#include "SkTypes.h"
|
|
|
|
|
|
|
|
static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) {
|
|
|
|
// Call the src components x, y, and z.
|
|
|
|
uint8_t maxX = colorLUT->fGridPoints[0] - 1;
|
|
|
|
uint8_t maxY = colorLUT->fGridPoints[1] - 1;
|
|
|
|
uint8_t maxZ = colorLUT->fGridPoints[2] - 1;
|
|
|
|
|
|
|
|
// An approximate index into each of the three dimensions of the table.
|
|
|
|
float x = src[0] * maxX;
|
|
|
|
float y = src[1] * maxY;
|
|
|
|
float z = src[2] * maxZ;
|
|
|
|
|
|
|
|
// This gives us the low index for our interpolation.
|
|
|
|
int ix = sk_float_floor2int(x);
|
|
|
|
int iy = sk_float_floor2int(y);
|
|
|
|
int iz = sk_float_floor2int(z);
|
|
|
|
|
|
|
|
// Make sure the low index is not also the max index.
|
|
|
|
ix = (maxX == ix) ? ix - 1 : ix;
|
|
|
|
iy = (maxY == iy) ? iy - 1 : iy;
|
|
|
|
iz = (maxZ == iz) ? iz - 1 : iz;
|
|
|
|
|
|
|
|
// Weighting factors for the interpolation.
|
|
|
|
float diffX = x - ix;
|
|
|
|
float diffY = y - iy;
|
|
|
|
float diffZ = z - iz;
|
|
|
|
|
|
|
|
// Constants to help us navigate the 3D table.
|
|
|
|
// Ex: Assume x = a, y = b, z = c.
|
|
|
|
// table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c].
|
|
|
|
const int n000 = 0;
|
|
|
|
const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2];
|
|
|
|
const int n010 = 3 * colorLUT->fGridPoints[2];
|
|
|
|
const int n011 = n001 + n010;
|
|
|
|
const int n100 = 3;
|
|
|
|
const int n101 = n100 + n001;
|
|
|
|
const int n110 = n100 + n010;
|
|
|
|
const int n111 = n110 + n001;
|
|
|
|
|
|
|
|
// Base ptr into the table.
|
|
|
|
const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]);
|
|
|
|
|
|
|
|
// The code below performs a tetrahedral interpolation for each of the three
|
|
|
|
// dst components. Once the tetrahedron containing the interpolation point is
|
|
|
|
// identified, the interpolation is a weighted sum of grid values at the
|
|
|
|
// vertices of the tetrahedron. The claim is that tetrahedral interpolation
|
|
|
|
// provides a more accurate color conversion.
|
|
|
|
// blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/
|
|
|
|
//
|
|
|
|
// I have one test image, and visually I can't tell the difference between
|
|
|
|
// tetrahedral and trilinear interpolation. In terms of computation, the
|
|
|
|
// tetrahedral code requires more branches but less computation. The
|
|
|
|
// SampleICC library provides an option for the client to choose either
|
|
|
|
// tetrahedral or trilinear.
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
|
|
if (diffZ < diffY) {
|
|
|
|
if (diffZ < diffX) {
|
|
|
|
dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) +
|
|
|
|
diffY * (ptr[n010] - ptr[n000]) +
|
|
|
|
diffX * (ptr[n111] - ptr[n110]));
|
|
|
|
} else if (diffY < diffX) {
|
|
|
|
dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
|
|
|
|
diffY * (ptr[n011] - ptr[n001]) +
|
|
|
|
diffX * (ptr[n001] - ptr[n000]));
|
|
|
|
} else {
|
|
|
|
dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
|
|
|
|
diffY * (ptr[n010] - ptr[n000]) +
|
|
|
|
diffX * (ptr[n011] - ptr[n010]));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (diffZ < diffX) {
|
|
|
|
dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) +
|
|
|
|
diffY * (ptr[n111] - ptr[n101]) +
|
|
|
|
diffX * (ptr[n001] - ptr[n000]));
|
|
|
|
} else if (diffY < diffX) {
|
|
|
|
dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
|
|
|
|
diffY * (ptr[n111] - ptr[n101]) +
|
|
|
|
diffX * (ptr[n101] - ptr[n100]));
|
|
|
|
} else {
|
|
|
|
dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
|
|
|
|
diffY * (ptr[n110] - ptr[n100]) +
|
|
|
|
diffX * (ptr[n111] - ptr[n110]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Increment the table ptr in order to handle the next component.
|
|
|
|
// Note that this is the how table is designed: all of nXXX
|
|
|
|
// variables are multiples of 3 because there are 3 output
|
|
|
|
// components.
|
|
|
|
ptr++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
* This tests decoding from a Lab source image and displays on the left
|
|
|
|
* the image as raw RGB values, and on the right a Lab PCS.
|
|
|
|
* It currently does NOT apply a/b/m-curves, as in the .icc profile
|
|
|
|
* We are testing it on these are all identity transforms.
|
|
|
|
*/
|
|
|
|
class LabPCSDemoGM : public skiagm::GM {
|
|
|
|
public:
|
|
|
|
LabPCSDemoGM()
|
|
|
|
: fWidth(1080)
|
|
|
|
, fHeight(480)
|
|
|
|
{}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
|
|
|
|
SkString onShortName() override {
|
|
|
|
return SkString("labpcsdemo");
|
|
|
|
}
|
|
|
|
|
|
|
|
SkISize onISize() override {
|
|
|
|
return SkISize::Make(fWidth, fHeight);
|
|
|
|
}
|
|
|
|
|
|
|
|
void onDraw(SkCanvas* canvas) override {
|
|
|
|
canvas->drawColor(SK_ColorGREEN);
|
|
|
|
const char* filename = "brickwork-texture.jpg";
|
|
|
|
renderImage(canvas, filename, 0, false);
|
|
|
|
renderImage(canvas, filename, 1, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) {
|
|
|
|
SkBitmap bitmap;
|
|
|
|
SkStream* stream(GetResourceAsStream(filename));
|
|
|
|
if (stream == nullptr) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream));
|
|
|
|
|
|
|
|
|
|
|
|
// srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses
|
|
|
|
// Lab as the PCS, so we can take any arbitrary image that should
|
|
|
|
// be sRGB and this should show a reasonable image
|
|
|
|
const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc"));
|
|
|
|
sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str());
|
|
|
|
if (iccData == nullptr) {
|
|
|
|
return;
|
|
|
|
}
|
2016-10-24 13:24:02 +00:00
|
|
|
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(iccData->bytes(), iccData->size());
|
2016-10-18 17:02:51 +00:00
|
|
|
|
|
|
|
const int imageWidth = codec->getInfo().width();
|
|
|
|
const int imageHeight = codec->getInfo().height();
|
|
|
|
// Using nullptr as the color space instructs the codec to decode in legacy mode,
|
|
|
|
// meaning that we will get the raw encoded bytes without any color correction.
|
|
|
|
SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType,
|
|
|
|
kOpaque_SkAlphaType, nullptr);
|
|
|
|
bitmap.allocPixels(imageInfo);
|
|
|
|
codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes());
|
|
|
|
if (convertLabToXYZ) {
|
|
|
|
SkASSERT(SkColorSpace_Base::Type::kA2B == as_CSB(colorSpace)->type());
|
|
|
|
SkColorSpace_A2B& cs = *static_cast<SkColorSpace_A2B*>(colorSpace.get());
|
2016-10-24 16:52:26 +00:00
|
|
|
const SkColorLookUpTable* colorLUT = nullptr;
|
2016-10-18 17:02:51 +00:00
|
|
|
bool printConversions = false;
|
|
|
|
// We're skipping evaluating the TRCs and the matrix here since they aren't
|
|
|
|
// in the ICC profile initially used here.
|
2016-10-24 16:52:26 +00:00
|
|
|
for (size_t e = 0; e < cs.count(); ++e) {
|
|
|
|
switch (cs.element(e).type()) {
|
|
|
|
case SkColorSpace_A2B::Element::Type::kGammaNamed:
|
|
|
|
SkASSERT(kLinear_SkGammaNamed == cs.element(e).gammaNamed());
|
|
|
|
break;
|
|
|
|
case SkColorSpace_A2B::Element::Type::kGammas:
|
|
|
|
SkASSERT(false);
|
|
|
|
break;
|
|
|
|
case SkColorSpace_A2B::Element::Type::kCLUT:
|
|
|
|
colorLUT = &cs.element(e).colorLUT();
|
|
|
|
break;
|
|
|
|
case SkColorSpace_A2B::Element::Type::kMatrix:
|
|
|
|
SkASSERT(cs.element(e).matrix().isIdentity());
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
SkASSERT(colorLUT);
|
2016-10-18 17:02:51 +00:00
|
|
|
for (int y = 0; y < imageHeight; ++y) {
|
|
|
|
for (int x = 0; x < imageWidth; ++x) {
|
|
|
|
uint32_t& p = *bitmap.getAddr32(x, y);
|
|
|
|
const int r = SkColorGetR(p);
|
|
|
|
const int g = SkColorGetG(p);
|
|
|
|
const int b = SkColorGetB(p);
|
|
|
|
if (printConversions) {
|
|
|
|
SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f };
|
|
|
|
|
2016-10-24 16:52:26 +00:00
|
|
|
interp_3d_clut(lab, lab, colorLUT);
|
2016-10-18 17:02:51 +00:00
|
|
|
|
|
|
|
// Lab has ranges [0,100] for L and [-128,127] for a and b
|
|
|
|
// but the ICC profile loader stores as [0,1]. The ICC
|
|
|
|
// specifies an offset of -128 to convert.
|
|
|
|
// note: formula could be adjusted to remove this conversion,
|
|
|
|
// but for now let's keep it like this for clarity until
|
|
|
|
// an optimized version is added.
|
|
|
|
lab[0] *= 100.f;
|
|
|
|
lab[1] = 255.f * lab[1] - 128.f;
|
|
|
|
lab[2] = 255.f * lab[2] - 128.f;
|
|
|
|
if (printConversions) {
|
|
|
|
SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert from Lab to XYZ
|
|
|
|
float Y = (lab[0] + 16.f) * (1.f/116.f);
|
|
|
|
float X = lab[1] * (1.f/500.f) + Y;
|
|
|
|
float Z = Y - (lab[2] * (1.f/200.f));
|
|
|
|
float cubed;
|
|
|
|
cubed = X*X*X;
|
|
|
|
if (cubed > 0.008856f)
|
|
|
|
X = cubed;
|
|
|
|
else
|
|
|
|
X = (X - (16.f/116.f)) * (1.f/7.787f);
|
|
|
|
cubed = Y*Y*Y;
|
|
|
|
if (cubed > 0.008856f)
|
|
|
|
Y = cubed;
|
|
|
|
else
|
|
|
|
Y = (Y - (16.f/116.f)) * (1.f/7.787f);
|
|
|
|
cubed = Z*Z*Z;
|
|
|
|
if (cubed > 0.008856f)
|
|
|
|
Z = cubed;
|
|
|
|
else
|
|
|
|
Z = (Z - (16.f/116.f)) * (1.f/7.787f);
|
|
|
|
|
|
|
|
// adjust to D50 illuminant
|
|
|
|
X *= 0.96422f;
|
|
|
|
Y *= 1.00000f;
|
|
|
|
Z *= 0.82521f;
|
|
|
|
|
|
|
|
if (printConversions) {
|
|
|
|
SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z);
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert XYZ -> linear sRGB
|
|
|
|
Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z,
|
|
|
|
-0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z,
|
|
|
|
0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z,
|
|
|
|
1.f);
|
|
|
|
// and apply sRGB gamma
|
|
|
|
Sk4i sRGB = sk_linear_to_srgb(lRGB);
|
|
|
|
if (printConversions) {
|
|
|
|
SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]);
|
|
|
|
}
|
|
|
|
p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const int freeWidth = fWidth - 2*imageWidth;
|
|
|
|
const int freeHeight = fHeight - imageHeight;
|
|
|
|
canvas->drawBitmap(bitmap,
|
|
|
|
static_cast<SkScalar>((col+1) * (freeWidth / 3) + col*imageWidth),
|
|
|
|
static_cast<SkScalar>(freeHeight / 2));
|
|
|
|
++col;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
const int fWidth;
|
|
|
|
const int fHeight;
|
|
|
|
|
|
|
|
typedef skiagm::GM INHERITED;
|
|
|
|
};
|
|
|
|
|
|
|
|
DEF_GM( return new LabPCSDemoGM; )
|