116 lines
3.7 KiB
C++
116 lines
3.7 KiB
C++
|
/*
|
||
|
http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
|
||
|
Then for degree elevation, the equations are:
|
||
|
|
||
|
Q0 = P0
|
||
|
Q1 = 1/3 P0 + 2/3 P1
|
||
|
Q2 = 2/3 P1 + 1/3 P2
|
||
|
Q3 = P2
|
||
|
In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
|
||
|
the equations above:
|
||
|
|
||
|
P1 = 3/2 Q1 - 1/2 Q0
|
||
|
P1 = 3/2 Q2 - 1/2 Q3
|
||
|
If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
|
||
|
it's likely not, your best bet is to average them. So,
|
||
|
|
||
|
P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
|
||
|
|
||
|
|
||
|
Cubic defined by: P1/2 - anchor points, C1/C2 control points
|
||
|
|x| is the euclidean norm of x
|
||
|
mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
|
||
|
control point at C = (3·C2 - P2 + 3·C1 - P1)/4
|
||
|
|
||
|
Algorithm
|
||
|
|
||
|
pick an absolute precision (prec)
|
||
|
Compute the Tdiv as the root of (cubic) equation
|
||
|
sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
|
||
|
if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
|
||
|
quadratic, with a defect less than prec, by the mid-point approximation.
|
||
|
Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
|
||
|
0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
|
||
|
approximation
|
||
|
Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
|
||
|
|
||
|
confirmed by (maybe stolen from)
|
||
|
http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
|
||
|
|
||
|
*/
|
||
|
|
||
|
#include "CubicUtilities.h"
|
||
|
#include "CurveIntersection.h"
|
||
|
|
||
|
static double calcTDiv(const Cubic& cubic, double start) {
|
||
|
const double adjust = sqrt(3) / 36;
|
||
|
Cubic sub;
|
||
|
const Cubic* cPtr;
|
||
|
if (start == 0) {
|
||
|
cPtr = &cubic;
|
||
|
} else {
|
||
|
// OPTIMIZE: special-case half-split ?
|
||
|
sub_divide(cubic, start, 1, sub);
|
||
|
cPtr = ⊂
|
||
|
}
|
||
|
const Cubic& c = *cPtr;
|
||
|
double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x;
|
||
|
double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y;
|
||
|
double dist = sqrt(dx * dx + dy * dy);
|
||
|
double tDiv3 = FLT_EPSILON / (adjust * dist);
|
||
|
return cube_root(tDiv3);
|
||
|
}
|
||
|
|
||
|
static void demote(const Cubic& cubic, Quadratic& quad) {
|
||
|
quad[0] = cubic[0];
|
||
|
quad[1].x = (cubic[3].x - 3 * (cubic[2].x - cubic[1].x) - cubic[0].x) / 4;
|
||
|
quad[1].y = (cubic[3].y - 3 * (cubic[2].y - cubic[1].y) - cubic[0].y) / 4;
|
||
|
quad[2] = cubic[3];
|
||
|
}
|
||
|
|
||
|
int cubic_to_quadratics(const Cubic& cubic, SkTDArray<Quadratic>& quadratics) {
|
||
|
quadratics.setCount(1); // FIXME: every place I have setCount(), I also want setReserve()
|
||
|
Cubic reduced;
|
||
|
int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed);
|
||
|
if (order < 3) {
|
||
|
memcpy(quadratics[0], reduced, order * sizeof(_Point));
|
||
|
return order;
|
||
|
}
|
||
|
double tDiv = calcTDiv(cubic, 0);
|
||
|
if (approximately_greater_than_one(tDiv)) {
|
||
|
demote(cubic, quadratics[0]);
|
||
|
return 2;
|
||
|
}
|
||
|
if (tDiv >= 0.5) {
|
||
|
CubicPair pair;
|
||
|
chop_at(cubic, pair, 0.5);
|
||
|
quadratics.setCount(2);
|
||
|
demote(pair.first(), quadratics[0]);
|
||
|
demote(pair.second(), quadratics[1]);
|
||
|
return 2;
|
||
|
}
|
||
|
double start = 0;
|
||
|
int index = -1;
|
||
|
// if we iterate but make little progress, check to see if the curve is flat
|
||
|
// or if the control points are tangent to each other
|
||
|
do {
|
||
|
Cubic part;
|
||
|
sub_divide(part, start, tDiv, part);
|
||
|
quadratics.append();
|
||
|
demote(part, quadratics[++index]);
|
||
|
if (tDiv == 1) {
|
||
|
break;
|
||
|
}
|
||
|
start = tDiv;
|
||
|
tDiv = calcTDiv(cubic, start);
|
||
|
if (tDiv > 1) {
|
||
|
tDiv = 1;
|
||
|
}
|
||
|
} while (true);
|
||
|
return 2;
|
||
|
}
|