2013-02-08 17:13:09 +00:00
|
|
|
/*
|
|
|
|
* Copyright 2013 Google Inc.
|
|
|
|
*
|
|
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
|
|
* found in the LICENSE file.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "SkRandom.h"
|
|
|
|
#include "SkTSort.h"
|
2014-01-24 20:56:26 +00:00
|
|
|
#include "Test.h"
|
2013-02-08 17:13:09 +00:00
|
|
|
|
2013-02-08 18:28:47 +00:00
|
|
|
static bool anderson_darling_test(double p[32]) {
|
2013-02-08 17:13:09 +00:00
|
|
|
// Min and max Anderson-Darling values allowable for k=32
|
|
|
|
const double kADMin32 = 0.202; // p-value of ~0.1
|
|
|
|
const double kADMax32 = 3.89; // p-value of ~0.99
|
|
|
|
|
|
|
|
// sort p values
|
|
|
|
SkTQSort<double>(p, p + 31);
|
|
|
|
|
|
|
|
// and compute Anderson-Darling statistic to ensure these are uniform
|
|
|
|
double s = 0.0;
|
|
|
|
for(int k = 0; k < 32; k++) {
|
|
|
|
double v = p[k]*(1.0 - p[31-k]);
|
|
|
|
if (v < 1.0e-30) {
|
|
|
|
v = 1.0e-30;
|
|
|
|
}
|
|
|
|
s += (2.0*(k+1)-1.0)*log(v);
|
|
|
|
}
|
|
|
|
double a2 = -32.0 - 0.03125*s;
|
|
|
|
|
|
|
|
return (kADMin32 < a2 && a2 < kADMax32);
|
|
|
|
}
|
|
|
|
|
2013-02-08 18:28:47 +00:00
|
|
|
static bool chi_square_test(int bins[256], int e) {
|
2013-02-08 17:13:09 +00:00
|
|
|
// Min and max chisquare values allowable
|
|
|
|
const double kChiSqMin256 = 206.3179; // probability of chance = 0.99 with k=256
|
|
|
|
const double kChiSqMax256 = 311.5603; // probability of chance = 0.01 with k=256
|
|
|
|
|
|
|
|
// compute chi-square
|
|
|
|
double chi2 = 0.0;
|
|
|
|
for (int j = 0; j < 256; ++j) {
|
|
|
|
double delta = bins[j] - e;
|
|
|
|
chi2 += delta*delta/e;
|
|
|
|
}
|
|
|
|
|
|
|
|
return (kChiSqMin256 < chi2 && chi2 < kChiSqMax256);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Approximation to the normal distribution CDF
|
|
|
|
// From Waissi and Rossin, 1996
|
2013-02-08 18:28:47 +00:00
|
|
|
static double normal_cdf(double z) {
|
2013-02-08 17:13:09 +00:00
|
|
|
double t = ((-0.0004406*z*z* + 0.0418198)*z*z + 0.9)*z;
|
|
|
|
t *= -1.77245385091; // -sqrt(PI)
|
|
|
|
double p = 1.0/(1.0 + exp(t));
|
|
|
|
|
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2013-02-08 18:28:47 +00:00
|
|
|
static void test_random_byte(skiatest::Reporter* reporter, int shift) {
|
2013-02-08 17:13:09 +00:00
|
|
|
int bins[256];
|
|
|
|
memset(bins, 0, sizeof(int)*256);
|
|
|
|
|
2013-09-09 20:09:12 +00:00
|
|
|
SkRandom rand;
|
2013-02-08 17:13:09 +00:00
|
|
|
for (int i = 0; i < 256*10000; ++i) {
|
|
|
|
bins[(rand.nextU() >> shift) & 0xff]++;
|
|
|
|
}
|
2013-02-09 07:05:02 +00:00
|
|
|
|
2013-02-08 17:13:09 +00:00
|
|
|
REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
|
|
|
|
}
|
|
|
|
|
2013-02-08 18:28:47 +00:00
|
|
|
static void test_random_float(skiatest::Reporter* reporter) {
|
2013-02-08 17:13:09 +00:00
|
|
|
int bins[256];
|
|
|
|
memset(bins, 0, sizeof(int)*256);
|
|
|
|
|
2013-09-09 20:09:12 +00:00
|
|
|
SkRandom rand;
|
2013-02-08 17:13:09 +00:00
|
|
|
for (int i = 0; i < 256*10000; ++i) {
|
|
|
|
float f = rand.nextF();
|
|
|
|
REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f);
|
|
|
|
bins[(int)(f*256.f)]++;
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
|
|
|
|
|
|
|
|
double p[32];
|
|
|
|
for (int j = 0; j < 32; ++j) {
|
|
|
|
float f = rand.nextF();
|
|
|
|
REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f);
|
|
|
|
p[j] = f;
|
|
|
|
}
|
|
|
|
REPORTER_ASSERT(reporter, anderson_darling_test(p));
|
|
|
|
}
|
|
|
|
|
|
|
|
// This is a test taken from tuftests by Marsaglia and Tsang. The idea here is that
|
|
|
|
// we are using the random bit generated from a single shift position to generate
|
2013-02-09 07:05:02 +00:00
|
|
|
// "strings" of 16 bits in length, shifting the string and adding a new bit with each
|
2013-02-08 17:13:09 +00:00
|
|
|
// iteration. We track the numbers generated. The ones that we don't generate will
|
2013-02-09 07:05:02 +00:00
|
|
|
// have a normal distribution with mean ~24108 and standard deviation ~127. By
|
2013-02-08 17:13:09 +00:00
|
|
|
// creating a z-score (# of deviations from the mean) for one iteration of this step
|
|
|
|
// we can determine its probability.
|
|
|
|
//
|
2013-02-09 07:05:02 +00:00
|
|
|
// The original test used 26 bit strings, but is somewhat slow. This version uses 16
|
2013-02-08 17:13:09 +00:00
|
|
|
// bits which is less rigorous but much faster to generate.
|
2013-02-08 18:28:47 +00:00
|
|
|
static double test_single_gorilla(skiatest::Reporter* reporter, int shift) {
|
2013-02-08 17:13:09 +00:00
|
|
|
const int kWordWidth = 16;
|
|
|
|
const double kMean = 24108.0;
|
|
|
|
const double kStandardDeviation = 127.0;
|
|
|
|
const int kN = (1 << kWordWidth);
|
|
|
|
const int kNumEntries = kN >> 5; // dividing by 32
|
|
|
|
unsigned int entries[kNumEntries];
|
|
|
|
|
2013-09-09 20:09:12 +00:00
|
|
|
SkRandom rand;
|
2013-02-08 17:13:09 +00:00
|
|
|
memset(entries, 0, sizeof(unsigned int)*kNumEntries);
|
|
|
|
// pre-seed our string value
|
|
|
|
int value = 0;
|
|
|
|
for (int i = 0; i < kWordWidth-1; ++i) {
|
|
|
|
value <<= 1;
|
|
|
|
unsigned int rnd = rand.nextU();
|
|
|
|
value |= ((rnd >> shift) & 0x1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// now make some strings and track them
|
|
|
|
for (int i = 0; i < kN; ++i) {
|
2015-12-09 20:02:30 +00:00
|
|
|
value = SkLeftShift(value, 1);
|
2013-02-08 17:13:09 +00:00
|
|
|
unsigned int rnd = rand.nextU();
|
|
|
|
value |= ((rnd >> shift) & 0x1);
|
|
|
|
|
|
|
|
int index = value & (kNumEntries-1);
|
|
|
|
SkASSERT(index < kNumEntries);
|
2013-02-14 13:20:35 +00:00
|
|
|
int entry_shift = (value >> (kWordWidth-5)) & 0x1f;
|
2013-02-08 17:13:09 +00:00
|
|
|
entries[index] |= (0x1 << entry_shift);
|
|
|
|
}
|
|
|
|
|
|
|
|
// count entries
|
|
|
|
int total = 0;
|
|
|
|
for (int i = 0; i < kNumEntries; ++i) {
|
|
|
|
unsigned int entry = entries[i];
|
|
|
|
while (entry) {
|
|
|
|
total += (entry & 0x1);
|
|
|
|
entry >>= 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// convert counts to normal distribution z-score
|
2013-02-09 07:05:02 +00:00
|
|
|
double z = ((kN-total)-kMean)/kStandardDeviation;
|
2013-02-08 17:13:09 +00:00
|
|
|
|
2013-02-09 07:05:02 +00:00
|
|
|
// compute probability from normal distibution CDF
|
2013-02-08 17:13:09 +00:00
|
|
|
double p = normal_cdf(z);
|
|
|
|
|
2013-02-14 13:20:35 +00:00
|
|
|
REPORTER_ASSERT(reporter, 0.01 < p && p < 0.99);
|
2013-02-08 17:13:09 +00:00
|
|
|
return p;
|
|
|
|
}
|
|
|
|
|
2013-02-08 18:28:47 +00:00
|
|
|
static void test_gorilla(skiatest::Reporter* reporter) {
|
2013-02-08 17:13:09 +00:00
|
|
|
|
|
|
|
double p[32];
|
|
|
|
for (int bit_position = 0; bit_position < 32; ++bit_position) {
|
|
|
|
p[bit_position] = test_single_gorilla(reporter, bit_position);
|
|
|
|
}
|
2013-02-09 07:05:02 +00:00
|
|
|
|
2013-02-14 13:20:35 +00:00
|
|
|
REPORTER_ASSERT(reporter, anderson_darling_test(p));
|
2013-02-08 17:13:09 +00:00
|
|
|
}
|
|
|
|
|
2013-02-08 18:28:47 +00:00
|
|
|
static void test_range(skiatest::Reporter* reporter) {
|
2013-09-09 20:09:12 +00:00
|
|
|
SkRandom rand;
|
2013-02-09 07:05:02 +00:00
|
|
|
|
2013-02-08 17:13:09 +00:00
|
|
|
// just to make sure we don't crash in this case
|
|
|
|
(void) rand.nextRangeU(0, 0xffffffff);
|
|
|
|
|
|
|
|
// check a case to see if it's uniform
|
|
|
|
int bins[256];
|
|
|
|
memset(bins, 0, sizeof(int)*256);
|
|
|
|
for (int i = 0; i < 256*10000; ++i) {
|
|
|
|
unsigned int u = rand.nextRangeU(17, 17+255);
|
|
|
|
REPORTER_ASSERT(reporter, 17 <= u && u <= 17+255);
|
|
|
|
bins[u - 17]++;
|
|
|
|
}
|
|
|
|
|
|
|
|
REPORTER_ASSERT(reporter, chi_square_test(bins, 10000));
|
|
|
|
}
|
|
|
|
|
2013-12-12 21:11:12 +00:00
|
|
|
DEF_TEST(Random, reporter) {
|
2013-02-08 17:13:09 +00:00
|
|
|
// check uniform distributions of each byte in 32-bit word
|
|
|
|
test_random_byte(reporter, 0);
|
|
|
|
test_random_byte(reporter, 8);
|
|
|
|
test_random_byte(reporter, 16);
|
|
|
|
test_random_byte(reporter, 24);
|
|
|
|
|
|
|
|
test_random_float(reporter);
|
|
|
|
|
2013-02-08 18:44:27 +00:00
|
|
|
test_gorilla(reporter);
|
2013-02-08 17:13:09 +00:00
|
|
|
|
|
|
|
test_range(reporter);
|
|
|
|
}
|