skia2/tests/WangsFormulaTest.cpp

524 lines
21 KiB
C++
Raw Normal View History

/*
* Copyright 2020 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "include/utils/SkRandom.h"
#include "src/core/SkGeometry.h"
Use Wang's formula for quadratic and cubic point counts - most of the small diffs are because I moved GrWangsFormula.h out of the tessellate/ directory and into the geometry/ directory since it's more general than HW tessellation. The previous implementation was based on the heuristic that the distance from the true curve to the line segment would be divided by 4 every time the curve was recursively subdivided. This was a reasonable approximation if the curve had balanced curvature on both sides of the split. However, in the case of the new GM's curve, the left half was already very linear and the right half had much higher curves. This lead to the approximation reporting fewer points than required. Theoretically, those few points that weren't utilized by the left half of the curve could have been made available to the right half, but the implementation of that would be tricky. Instead, it now uses Wang's formula to compute the number of points. Since recursive subdivision leads to linearly spaced samples assuming it can't stop early, this point count represents a valid upper bound on what's needed. It also then ensures both left and right halves of a curve have the point counts they might need w/o updating the generation implementations. However, since the recursive point generation exits once each section has reached the error tolerance, in scenarios where the prior approximation was reasonable, we'll end up using fewer points than reported by Wang's. Hopefully that means there is negligible performance regression since we won't be increasing vertex counts by that much (except where needed for correctness). Bug: skia:11886 Change-Id: Iba39dbe4de82011775524583efd461b10c9259fe Reviewed-on: https://skia-review.googlesource.com/c/skia/+/405197 Reviewed-by: Chris Dalton <csmartdalton@google.com> Reviewed-by: Brian Salomon <bsalomon@google.com> Commit-Queue: Michael Ludwig <michaelludwig@google.com>
2021-05-11 14:00:12 +00:00
#include "src/gpu/geometry/GrWangsFormula.h"
#include "tests/Test.h"
constexpr static int kPrecision = 4; // 1/4 pixel max error.
const SkPoint kSerp[4] = {
{285.625f, 499.687f}, {411.625f, 808.188f}, {1064.62f, 135.688f}, {1042.63f, 585.187f}};
const SkPoint kLoop[4] = {
{635.625f, 614.687f}, {171.625f, 236.188f}, {1064.62f, 135.688f}, {516.625f, 570.187f}};
const SkPoint kQuad[4] = {
{460.625f, 557.187f}, {707.121f, 209.688f}, {779.628f, 577.687f}};
static float wangs_formula_quadratic_reference_impl(float precision, const SkPoint p[3]) {
float k = (2 * 1) / 8.f * precision;
return sqrtf(k * (p[0] - p[1]*2 + p[2]).length());
}
static float wangs_formula_cubic_reference_impl(float precision, const SkPoint p[4]) {
float k = (3 * 2) / 8.f * precision;
return sqrtf(k * std::max((p[0] - p[1]*2 + p[2]).length(),
(p[1] - p[2]*2 + p[3]).length()));
}
// Returns number of segments for linearized quadratic rational. This is an analogue
// to Wang's formula, taken from:
//
// J. Zheng, T. Sederberg. "Estimating Tessellation Parameter Intervals for
// Rational Curves and Surfaces." ACM Transactions on Graphics 19(1). 2000.
// See Thm 3, Corollary 1.
//
// Input points should be in projected space.
static float wangs_formula_conic_reference_impl(float precision,
const SkPoint P[3],
const float w) {
// Compute center of bounding box in projected space
float min_x = P[0].fX, max_x = min_x,
min_y = P[0].fY, max_y = min_y;
for (int i = 1; i < 3; i++) {
min_x = std::min(min_x, P[i].fX);
max_x = std::max(max_x, P[i].fX);
min_y = std::min(min_y, P[i].fY);
max_y = std::max(max_y, P[i].fY);
}
const SkPoint C = SkPoint::Make(0.5f * (min_x + max_x), 0.5f * (min_y + max_y));
// Translate control points and compute max length
SkPoint tP[3] = {P[0] - C, P[1] - C, P[2] - C};
float max_len = 0;
for (int i = 0; i < 3; i++) {
max_len = std::max(max_len, tP[i].length());
}
SkASSERT(max_len > 0);
// Compute delta = parametric step size of linearization
const float eps = 1 / precision;
const float r_minus_eps = std::max(0.f, max_len - eps);
const float min_w = std::min(w, 1.f);
const float numer = 4 * min_w * eps;
const float denom =
(tP[2] - tP[1] * 2 * w + tP[0]).length() + r_minus_eps * std::abs(1 - 2 * w + 1);
const float delta = sqrtf(numer / denom);
// Return corresponding num segments in the interval [tmin,tmax]
constexpr float tmin = 0, tmax = 1;
SkASSERT(delta > 0);
return (tmax - tmin) / delta;
}
static void for_random_matrices(SkRandom* rand, std::function<void(const SkMatrix&)> f) {
SkMatrix m;
m.setIdentity();
f(m);
for (int i = -10; i <= 30; ++i) {
for (int j = -10; j <= 30; ++j) {
m.setScaleX(std::ldexp(1 + rand->nextF(), i));
m.setSkewX(0);
m.setSkewY(0);
m.setScaleY(std::ldexp(1 + rand->nextF(), j));
f(m);
m.setScaleX(std::ldexp(1 + rand->nextF(), i));
m.setSkewX(std::ldexp(1 + rand->nextF(), (j + i) / 2));
m.setSkewY(std::ldexp(1 + rand->nextF(), (j + i) / 2));
m.setScaleY(std::ldexp(1 + rand->nextF(), j));
f(m);
}
}
}
static void for_random_beziers(int numPoints, SkRandom* rand,
std::function<void(const SkPoint[])> f,
int maxExponent = 30) {
SkASSERT(numPoints <= 4);
SkPoint pts[4];
for (int i = -10; i <= maxExponent; ++i) {
for (int j = 0; j < numPoints; ++j) {
pts[j].set(std::ldexp(1 + rand->nextF(), i), std::ldexp(1 + rand->nextF(), i));
}
f(pts);
}
}
// Ensure the optimized "*_log2" versions return the same value as ceil(std::log2(f)).
DEF_TEST(WangsFormula_log2, r) {
// Constructs a cubic such that the 'length' term in wang's formula == term.
//
// f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
// abs(p1 - p2*2 + p3))));
auto setupCubicLengthTerm = [](int seed, SkPoint pts[], float term) {
memset(pts, 0, sizeof(SkPoint) * 4);
SkPoint term2d = (seed & 1) ?
SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
seed >>= 1;
if (seed & 1) {
term2d.fX = -term2d.fX;
}
seed >>= 1;
if (seed & 1) {
std::swap(term2d.fX, term2d.fY);
}
seed >>= 1;
switch (seed % 4) {
case 0:
pts[0] = term2d;
pts[3] = term2d * .75f;
return;
case 1:
pts[1] = term2d * -.5f;
return;
case 2:
pts[1] = term2d * -.5f;
return;
case 3:
pts[3] = term2d;
pts[0] = term2d * .75f;
return;
}
};
// Constructs a quadratic such that the 'length' term in wang's formula == term.
//
// f = sqrt(k * length(p0 - p1*2 + p2));
auto setupQuadraticLengthTerm = [](int seed, SkPoint pts[], float term) {
memset(pts, 0, sizeof(SkPoint) * 3);
SkPoint term2d = (seed & 1) ?
SkPoint::Make(term, 0) : SkPoint::Make(.5f, std::sqrt(3)/2) * term;
seed >>= 1;
if (seed & 1) {
term2d.fX = -term2d.fX;
}
seed >>= 1;
if (seed & 1) {
std::swap(term2d.fX, term2d.fY);
}
seed >>= 1;
switch (seed % 3) {
case 0:
pts[0] = term2d;
return;
case 1:
pts[1] = term2d * -.5f;
return;
case 2:
pts[2] = term2d;
return;
}
};
// GrWangsFormula::cubic and ::quadratic both use rsqrt instead of sqrt for speed. Linearization
// is all approximate anyway, so as long as we are within ~1/2 tessellation segment of the
// reference value we are good enough.
constexpr static float kTessellationTolerance = 1/128.f;
for (int level = 0; level < 30; ++level) {
float epsilon = std::ldexp(SK_ScalarNearlyZero, level * 2);
SkPoint pts[4];
{
// Test cubic boundaries.
// f = sqrt(k * length(max(abs(p0 - p1*2 + p2),
// abs(p1 - p2*2 + p3))));
constexpr static float k = (3 * 2) / (8 * (1.f/kPrecision));
float x = std::ldexp(1, level * 2) / k;
setupCubicLengthTerm(level << 1, pts, x - epsilon);
float referenceValue = wangs_formula_cubic_reference_impl(kPrecision, pts);
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
float c = GrWangsFormula::cubic(kPrecision, pts);
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kPrecision, pts) == level);
setupCubicLengthTerm(level << 1, pts, x + epsilon);
referenceValue = wangs_formula_cubic_reference_impl(kPrecision, pts);
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level + 1);
c = GrWangsFormula::cubic(kPrecision, pts);
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/referenceValue, 1, kTessellationTolerance));
REPORTER_ASSERT(r, GrWangsFormula::cubic_log2(kPrecision, pts) == level + 1);
}
{
// Test quadratic boundaries.
// f = std::sqrt(k * Length(p0 - p1*2 + p2));
constexpr static float k = 2 / (8 * (1.f/kPrecision));
float x = std::ldexp(1, level * 2) / k;
setupQuadraticLengthTerm(level << 1, pts, x - epsilon);
float referenceValue = wangs_formula_quadratic_reference_impl(kPrecision, pts);
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level);
float q = GrWangsFormula::quadratic(kPrecision, pts);
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kPrecision, pts) == level);
setupQuadraticLengthTerm(level << 1, pts, x + epsilon);
referenceValue = wangs_formula_quadratic_reference_impl(kPrecision, pts);
REPORTER_ASSERT(r, std::ceil(std::log2(referenceValue)) == level+1);
q = GrWangsFormula::quadratic(kPrecision, pts);
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/referenceValue, 1, kTessellationTolerance));
REPORTER_ASSERT(r, GrWangsFormula::quadratic_log2(kPrecision, pts) == level + 1);
}
}
auto check_cubic_log2 = [&](const SkPoint* pts) {
float f = std::max(1.f, wangs_formula_cubic_reference_impl(kPrecision, pts));
int f_log2 = GrWangsFormula::cubic_log2(kPrecision, pts);
REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
float c = std::max(1.f, GrWangsFormula::cubic(kPrecision, pts));
REPORTER_ASSERT(r, SkScalarNearlyEqual(c/f, 1, kTessellationTolerance));
};
auto check_quadratic_log2 = [&](const SkPoint* pts) {
float f = std::max(1.f, wangs_formula_quadratic_reference_impl(kPrecision, pts));
int f_log2 = GrWangsFormula::quadratic_log2(kPrecision, pts);
REPORTER_ASSERT(r, SkScalarCeilToInt(std::log2(f)) == f_log2);
float q = std::max(1.f, GrWangsFormula::quadratic(kPrecision, pts));
REPORTER_ASSERT(r, SkScalarNearlyEqual(q/f, 1, kTessellationTolerance));
};
SkRandom rand;
for_random_matrices(&rand, [&](const SkMatrix& m) {
SkPoint pts[4];
m.mapPoints(pts, kSerp, 4);
check_cubic_log2(pts);
m.mapPoints(pts, kLoop, 4);
check_cubic_log2(pts);
m.mapPoints(pts, kQuad, 3);
check_quadratic_log2(pts);
});
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
check_cubic_log2(pts);
});
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
check_quadratic_log2(pts);
});
}
// Ensure using transformations gives the same result as pre-transforming all points.
DEF_TEST(WangsFormula_vectorXforms, r) {
auto check_cubic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m){
SkPoint ptsXformed[4];
m.mapPoints(ptsXformed, pts, 4);
int expected = GrWangsFormula::cubic_log2(kPrecision, ptsXformed);
int actual = GrWangsFormula::cubic_log2(kPrecision, pts, GrVectorXform(m));
REPORTER_ASSERT(r, actual == expected);
};
auto check_quadratic_log2_with_transform = [&](const SkPoint* pts, const SkMatrix& m) {
SkPoint ptsXformed[3];
m.mapPoints(ptsXformed, pts, 3);
int expected = GrWangsFormula::quadratic_log2(kPrecision, ptsXformed);
int actual = GrWangsFormula::quadratic_log2(kPrecision, pts, GrVectorXform(m));
REPORTER_ASSERT(r, actual == expected);
};
SkRandom rand;
for_random_matrices(&rand, [&](const SkMatrix& m) {
check_cubic_log2_with_transform(kSerp, m);
check_cubic_log2_with_transform(kLoop, m);
check_quadratic_log2_with_transform(kQuad, m);
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
check_cubic_log2_with_transform(pts, m);
});
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
check_quadratic_log2_with_transform(pts, m);
});
});
}
DEF_TEST(WangsFormula_worst_case_cubic, r) {
{
SkPoint worstP[] = {{0,0}, {100,100}, {0,0}, {0,0}};
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kPrecision, 100, 100) ==
wangs_formula_cubic_reference_impl(kPrecision, worstP));
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kPrecision, 100, 100) ==
GrWangsFormula::cubic_log2(kPrecision, worstP));
}
{
SkPoint worstP[] = {{100,100}, {100,100}, {200,200}, {100,100}};
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic(kPrecision, 100, 100) ==
wangs_formula_cubic_reference_impl(kPrecision, worstP));
REPORTER_ASSERT(r, GrWangsFormula::worst_case_cubic_log2(kPrecision, 100, 100) ==
GrWangsFormula::cubic_log2(kPrecision, worstP));
}
auto check_worst_case_cubic = [&](const SkPoint* pts) {
SkRect bbox;
bbox.setBoundsNoCheck(pts, 4);
float worst = GrWangsFormula::worst_case_cubic(kPrecision, bbox.width(), bbox.height());
int worst_log2 = GrWangsFormula::worst_case_cubic_log2(kPrecision, bbox.width(),
bbox.height());
float actual = wangs_formula_cubic_reference_impl(kPrecision, pts);
REPORTER_ASSERT(r, worst >= actual);
REPORTER_ASSERT(r, std::ceil(std::log2(std::max(1.f, worst))) == worst_log2);
};
SkRandom rand;
for (int i = 0; i < 100; ++i) {
for_random_beziers(4, &rand, [&](const SkPoint pts[]) {
check_worst_case_cubic(pts);
});
}
}
// Ensure Wang's formula for quads produces max error within tolerance.
DEF_TEST(WangsFormula_quad_within_tol, r) {
// Wang's formula and the quad math starts to lose precision with very large
// coordinate values, so limit the magnitude a bit to prevent test failures
// due to loss of precision.
constexpr int maxExponent = 15;
SkRandom rand;
for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
const int nsegs = static_cast<int>(
std::ceil(wangs_formula_quadratic_reference_impl(kPrecision, pts)));
const float tdelta = 1.f / nsegs;
for (int j = 0; j < nsegs; ++j) {
const float tmin = j * tdelta, tmax = (j + 1) * tdelta;
// Get section of quad in [tmin,tmax]
const SkPoint* sectionPts;
SkPoint tmp0[5];
SkPoint tmp1[5];
if (tmin == 0) {
if (tmax == 1) {
sectionPts = pts;
} else {
SkChopQuadAt(pts, tmp0, tmax);
sectionPts = tmp0;
}
} else {
SkChopQuadAt(pts, tmp0, tmin);
if (tmax == 1) {
sectionPts = tmp0 + 2;
} else {
SkChopQuadAt(tmp0 + 2, tmp1, (tmax - tmin) / (1 - tmin));
sectionPts = tmp1;
}
}
// For quads, max distance from baseline is always at t=0.5.
SkPoint p;
p = SkEvalQuadAt(sectionPts, 0.5f);
// Get distance of p to baseline
const SkPoint n = {sectionPts[2].fY - sectionPts[0].fY,
sectionPts[0].fX - sectionPts[2].fX};
const float d = std::abs((p - sectionPts[0]).dot(n)) / n.length();
// Check distance is within specified tolerance
REPORTER_ASSERT(r, d <= (1.f / kPrecision) + SK_ScalarNearlyZero);
}
}, maxExponent);
}
// Ensure the specialized version for rational quads reduces to regular Wang's
// formula when all weights are equal to one
DEF_TEST(WangsFormula_rational_quad_reduces, r) {
constexpr static float kTessellationTolerance = 1 / 128.f;
SkRandom rand;
for (int i = 0; i < 100; ++i) {
for_random_beziers(3, &rand, [&r](const SkPoint pts[]) {
const float rational_nsegs = wangs_formula_conic_reference_impl(kPrecision, pts, 1.f);
const float integral_nsegs = wangs_formula_quadratic_reference_impl(kPrecision, pts);
REPORTER_ASSERT(
r, SkScalarNearlyEqual(rational_nsegs, integral_nsegs, kTessellationTolerance));
});
}
}
// Ensure the rational quad version (used for conics) produces max error within tolerance.
DEF_TEST(WangsFormula_conic_within_tol, r) {
constexpr int maxExponent = 24;
// Single-precision functions in SkConic/SkGeometry lose too much accuracy with
// large-magnitude curves and large weights for this test to pass.
using Sk2d = skvx::Vec<2, double>;
const auto eval_conic = [](const SkPoint pts[3], float w, float t) -> Sk2d {
const auto eval = [](Sk2d A, Sk2d B, Sk2d C, float t) -> Sk2d {
return (A * t + B) * t + C;
};
const Sk2d p0 = {pts[0].fX, pts[0].fY};
const Sk2d p1 = {pts[1].fX, pts[1].fY};
const Sk2d p1w = p1 * w;
const Sk2d p2 = {pts[2].fX, pts[2].fY};
Sk2d numer = eval(p2 - p1w * 2 + p0, (p1w - p0) * 2, p0, t);
Sk2d denomC = {1, 1};
Sk2d denomB = {2 * (w - 1), 2 * (w - 1)};
Sk2d denomA = {-2 * (w - 1), -2 * (w - 1)};
Sk2d denom = eval(denomA, denomB, denomC, t);
return numer / denom;
};
const auto dot = [](const Sk2d& a, const Sk2d& b) -> double {
return a[0] * b[0] + a[1] * b[1];
};
const auto length = [](const Sk2d& p) -> double { return sqrt(p[0] * p[0] + p[1] * p[1]); };
SkRandom rand;
for (int i = -10; i <= 10; ++i) {
const float w = std::ldexp(1 + rand.nextF(), i);
for_random_beziers(
3, &rand,
[&](const SkPoint pts[]) {
const int nsegs = static_cast<int>(
std::ceil(wangs_formula_conic_reference_impl(kPrecision, pts, w)));
const float tdelta = 1.f / nsegs;
for (int j = 0; j < nsegs; ++j) {
const float tmin = j * tdelta, tmax = (j + 1) * tdelta,
tmid = 0.5f * (tmin + tmax);
Sk2d p0, p1, p2;
p0 = eval_conic(pts, w, tmin);
p1 = eval_conic(pts, w, tmid);
p2 = eval_conic(pts, w, tmax);
// Get distance of p1 to baseline (p0, p2).
const Sk2d n = {p2[1] - p0[1], p0[0] - p2[0]};
SkASSERT(length(n) != 0);
const double d = std::abs(dot(p1 - p0, n)) / length(n);
// Check distance is within tolerance
REPORTER_ASSERT(r, d <= (1.0 / kPrecision) + SK_ScalarNearlyZero);
}
},
maxExponent);
}
}
// Ensure the vectorized conic version equals the reference implementation
DEF_TEST(WangsFormula_conic_matches_reference, r) {
constexpr static float kTolerance = 1.f / kPrecision;
SkRandom rand;
for (int i = -10; i <= 10; ++i) {
const float w = std::ldexp(1 + rand.nextF(), i);
for_random_beziers(3, &rand, [&r, w](const SkPoint pts[]) {
const float ref_nsegs = wangs_formula_conic_reference_impl(kPrecision, pts, w);
const float nsegs = GrWangsFormula::conic(kTolerance, pts, w);
// Because the Gr version may implement the math differently for performance,
// allow different slack in the comparison based on the rough scale of the answer.
const float cmpThresh = ref_nsegs * (1.f / (1 << 20));
REPORTER_ASSERT(r, SkScalarNearlyEqual(ref_nsegs, nsegs, cmpThresh));
});
}
}
// Ensure using transformations gives the same result as pre-transforming all points.
DEF_TEST(WangsFormula_conic_vectorXforms, r) {
constexpr static float kTolerance = 1.f / kPrecision;
auto check_conic_with_transform = [&](const SkPoint* pts, float w, const SkMatrix& m) {
SkPoint ptsXformed[3];
m.mapPoints(ptsXformed, pts, 3);
float expected = GrWangsFormula::conic(kTolerance, ptsXformed, w);
float actual = GrWangsFormula::conic(kTolerance, pts, w, GrVectorXform(m));
REPORTER_ASSERT(r, SkScalarNearlyEqual(actual, expected));
};
SkRandom rand;
for (int i = -10; i <= 10; ++i) {
const float w = std::ldexp(1 + rand.nextF(), i);
for_random_beziers(3, &rand, [&](const SkPoint pts[]) {
check_conic_with_transform(pts, w, SkMatrix::I());
check_conic_with_transform(
pts, w, SkMatrix::Scale(rand.nextRangeF(-10, 10), rand.nextRangeF(-10, 10)));
// Random 2x2 matrix
SkMatrix m;
m.setScaleX(rand.nextRangeF(-10, 10));
m.setSkewX(rand.nextRangeF(-10, 10));
m.setSkewY(rand.nextRangeF(-10, 10));
m.setScaleY(rand.nextRangeF(-10, 10));
check_conic_with_transform(pts, w, m);
});
}
}