2020-05-01 18:16:27 +00:00
|
|
|
/**
|
|
|
|
* Command line application to run CanvasKit benchmarks in webpages using puppeteer. Different
|
|
|
|
* webpages can be specified to measure different aspects. The HTML page run contains the JS code
|
|
|
|
* to run the scenario and either 1) produce the perf output as a JSON object or 2) defer to
|
|
|
|
* puppeteer reading the tracing data.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
const puppeteer = require('puppeteer');
|
|
|
|
const express = require('express');
|
|
|
|
const fs = require('fs');
|
|
|
|
const commandLineArgs = require('command-line-args');
|
|
|
|
const commandLineUsage= require('command-line-usage');
|
|
|
|
|
|
|
|
const opts = [
|
|
|
|
{
|
|
|
|
name: 'bench_html',
|
|
|
|
typeLabel: '{underline file}',
|
|
|
|
description: 'An HTML file containing the bench harness.'
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'canvaskit_js',
|
|
|
|
typeLabel: '{underline file}',
|
|
|
|
description: '(required) The path to canvaskit.js.'
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'canvaskit_wasm',
|
|
|
|
typeLabel: '{underline file}',
|
|
|
|
description: '(required) The path to canvaskit.wasm.'
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'input_lottie',
|
|
|
|
typeLabel: '{underline file}',
|
|
|
|
description: 'The Lottie JSON file to process.'
|
|
|
|
},
|
2020-06-10 19:10:16 +00:00
|
|
|
{
|
|
|
|
name: 'input_skp',
|
|
|
|
typeLabel: '{underline file}',
|
|
|
|
description: 'The SKP file to process.'
|
|
|
|
},
|
2020-05-01 18:16:27 +00:00
|
|
|
{
|
|
|
|
name: 'assets',
|
|
|
|
typeLabel: '{underline file}',
|
2020-05-29 20:13:51 +00:00
|
|
|
description: 'A directory containing any assets needed by the lottie file (e.g. images/fonts).'
|
2020-05-01 18:16:27 +00:00
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'output',
|
|
|
|
typeLabel: '{underline file}',
|
|
|
|
description: 'The perf file to write. Defaults to perf.json',
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'use_gpu',
|
|
|
|
description: 'Whether we should run in non-headless mode with GPU.',
|
|
|
|
type: Boolean,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'use_tracing',
|
|
|
|
description: 'If non-empty, will be interpreted as the tracing categories that should be ' +
|
|
|
|
'measured and returned in the output JSON. Example: "blink,cc,gpu"',
|
|
|
|
type: String,
|
|
|
|
},
|
|
|
|
{
|
|
|
|
name: 'port',
|
|
|
|
description: 'The port number to use, defaults to 8081.',
|
|
|
|
type: Number,
|
|
|
|
},
|
2020-05-29 20:13:51 +00:00
|
|
|
{
|
|
|
|
name: 'query_params',
|
|
|
|
description: 'The query params to be added to the testing page URL. Useful for passing' +
|
|
|
|
'options to the perf html page.',
|
|
|
|
type: String,
|
|
|
|
multiple: true
|
|
|
|
},
|
2020-05-01 18:16:27 +00:00
|
|
|
{
|
|
|
|
name: 'help',
|
|
|
|
alias: 'h',
|
|
|
|
type: Boolean,
|
|
|
|
description: 'Print this usage guide.'
|
|
|
|
},
|
|
|
|
];
|
|
|
|
|
|
|
|
const usage = [
|
|
|
|
{
|
|
|
|
header: 'Skia Web-based Performance Metrics of CanvasKit',
|
|
|
|
content: "Command line application to capture performance metrics from a browser."
|
|
|
|
},
|
|
|
|
{
|
|
|
|
header: 'Options',
|
|
|
|
optionList: opts,
|
|
|
|
},
|
|
|
|
];
|
|
|
|
|
|
|
|
// Parse and validate flags.
|
|
|
|
const options = commandLineArgs(opts);
|
|
|
|
|
|
|
|
if (!options.output) {
|
|
|
|
options.output = 'perf.json';
|
|
|
|
}
|
|
|
|
if (!options.port) {
|
|
|
|
options.port = 8081;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (options.help) {
|
|
|
|
console.log(commandLineUsage(usage));
|
|
|
|
process.exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!options.bench_html) {
|
|
|
|
console.error('You must supply the bench_html file to run.');
|
|
|
|
console.log(commandLineUsage(usage));
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
const driverHTML = fs.readFileSync(options.bench_html, 'utf8');
|
|
|
|
|
|
|
|
// This express webserver will serve the HTML file running the benchmark and any additional assets
|
|
|
|
// needed to run the tests.
|
|
|
|
const app = express();
|
|
|
|
app.get('/', (req, res) => res.send(driverHTML));
|
|
|
|
|
|
|
|
if (!options.canvaskit_js) {
|
|
|
|
console.error('You must supply path to canvaskit.js.');
|
|
|
|
console.log(commandLineUsage(usage));
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!options.canvaskit_wasm) {
|
|
|
|
console.error('You must supply path to canvaskit.wasm.');
|
|
|
|
console.log(commandLineUsage(usage));
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
const canvasKitJS = fs.readFileSync(options.canvaskit_js, 'utf8');
|
|
|
|
const canvasKitWASM = fs.readFileSync(options.canvaskit_wasm, 'binary');
|
|
|
|
|
|
|
|
app.get('/static/canvaskit.js', (req, res) => res.send(canvasKitJS));
|
|
|
|
app.get('/static/canvaskit.wasm', function(req, res) {
|
|
|
|
// Set the MIME type so it can be streamed efficiently.
|
|
|
|
res.type('application/wasm');
|
|
|
|
res.send(new Buffer(canvasKitWASM, 'binary'));
|
|
|
|
});
|
|
|
|
|
|
|
|
|
|
|
|
if (options.input_lottie) {
|
|
|
|
const lottieJSON = fs.readFileSync(options.input_lottie, 'utf8');
|
|
|
|
app.get('/static/lottie.json', (req, res) => res.send(lottieJSON));
|
|
|
|
}
|
2020-06-10 19:10:16 +00:00
|
|
|
if (options.input_skp) {
|
|
|
|
const skpBytes = fs.readFileSync(options.input_skp, 'binary');
|
|
|
|
app.get('/static/test.skp', (req, res) => {
|
|
|
|
res.send(new Buffer(skpBytes, 'binary'));
|
|
|
|
});
|
|
|
|
}
|
2020-05-01 18:16:27 +00:00
|
|
|
if (options.assets) {
|
|
|
|
app.use('/static/assets/', express.static(options.assets));
|
|
|
|
console.log('assets served from', options.assets);
|
|
|
|
}
|
|
|
|
|
|
|
|
app.listen(options.port, () => console.log('- Local web server started.'));
|
|
|
|
|
|
|
|
let hash = "#cpu";
|
|
|
|
if (options.use_gpu) {
|
|
|
|
hash = "#gpu";
|
|
|
|
}
|
2020-05-29 20:13:51 +00:00
|
|
|
let query_param_string = '?';
|
|
|
|
if (options.query_params) {
|
|
|
|
for (const string of options.query_params) {
|
|
|
|
query_param_string += string + '&';
|
|
|
|
}
|
|
|
|
}
|
|
|
|
const targetURL = `http://localhost:${options.port}/${query_param_string}${hash}`;
|
2020-05-01 18:16:27 +00:00
|
|
|
const viewPort = {width: 1000, height: 1000};
|
|
|
|
|
|
|
|
// Drive chrome to load the web page from the server we have running.
|
|
|
|
async function driveBrowser() {
|
|
|
|
console.log('- Launching chrome for ' + options.input);
|
|
|
|
let browser;
|
|
|
|
let page;
|
|
|
|
const headless = !options.use_gpu;
|
|
|
|
let browser_args = [
|
|
|
|
'--no-sandbox',
|
|
|
|
'--disable-setuid-sandbox',
|
|
|
|
'--window-size=' + viewPort.width + ',' + viewPort.height,
|
2020-06-10 19:10:16 +00:00
|
|
|
// The following two params allow Chrome to run at an unlimited fps. Note, if there is
|
|
|
|
// already a chrome instance running, these arguments will have NO EFFECT, as the existing
|
|
|
|
// Chrome instance will be used instead of puppeteer spinning up a new one.
|
|
|
|
'--disable-frame-rate-limit',
|
|
|
|
'--disable-gpu-vsync',
|
2020-05-01 18:16:27 +00:00
|
|
|
];
|
|
|
|
if (options.use_gpu) {
|
|
|
|
browser_args.push('--ignore-gpu-blacklist');
|
|
|
|
browser_args.push('--ignore-gpu-blocklist');
|
|
|
|
browser_args.push('--enable-gpu-rasterization');
|
|
|
|
}
|
|
|
|
console.log("Running with headless: " + headless + " args: " + browser_args);
|
|
|
|
try {
|
|
|
|
browser = await puppeteer.launch({headless: headless, args: browser_args});
|
|
|
|
page = await browser.newPage();
|
|
|
|
await page.setViewport(viewPort);
|
|
|
|
} catch (e) {
|
|
|
|
console.log('Could not open the browser.', e);
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
console.log("Loading " + targetURL);
|
|
|
|
try {
|
|
|
|
await page.goto(targetURL, {
|
|
|
|
timeout: 60000,
|
|
|
|
waitUntil: 'networkidle0'
|
|
|
|
});
|
|
|
|
|
|
|
|
// Page is mostly loaded, wait for benchmark page to report itself ready.
|
|
|
|
console.log('Waiting 15s for benchmark to be ready');
|
|
|
|
await page.waitForFunction(`(window._perfReady === true) || window._error`, {
|
|
|
|
timeout: 15000,
|
|
|
|
});
|
|
|
|
|
|
|
|
let err = await page.evaluate('window._error');
|
|
|
|
if (err) {
|
|
|
|
console.log(`ERROR: ${err}`);
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Start trace if requested
|
|
|
|
if (options.use_tracing) {
|
|
|
|
const categories = options.use_tracing.split(',');
|
|
|
|
console.log('Collecting tracing data for categories', categories);
|
|
|
|
await page.tracing.start({
|
|
|
|
path: options.output,
|
|
|
|
screenshots: false,
|
|
|
|
categories: categories,
|
|
|
|
});
|
|
|
|
}
|
|
|
|
|
|
|
|
// Benchmarks should have a button with id #start_bench to click (this also makes manual
|
|
|
|
// debugging easier).
|
|
|
|
await page.click('#start_bench');
|
|
|
|
|
|
|
|
console.log('Waiting 60s for run to be done');
|
|
|
|
await page.waitForFunction(`(window._perfDone === true) || window._error`, {
|
|
|
|
timeout: 60000,
|
|
|
|
});
|
|
|
|
|
|
|
|
err = await page.evaluate('window._error');
|
|
|
|
if (err) {
|
|
|
|
console.log(`ERROR: ${err}`);
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (options.use_tracing) {
|
|
|
|
// Stop Trace.
|
|
|
|
await page.tracing.stop();
|
|
|
|
} else {
|
|
|
|
const perfResults = await page.evaluate('window._perfData');
|
|
|
|
console.debug('Perf results: ', perfResults);
|
|
|
|
fs.writeFileSync(options.output, JSON.stringify(perfResults));
|
|
|
|
}
|
|
|
|
|
|
|
|
} catch(e) {
|
|
|
|
console.log('Timed out while loading or drawing.', e);
|
|
|
|
await browser.close();
|
|
|
|
process.exit(1);
|
|
|
|
}
|
|
|
|
|
|
|
|
await browser.close();
|
|
|
|
// Need to call exit() because the web server is still running.
|
|
|
|
process.exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
driveBrowser();
|