skia2/modules/canvaskit/tests/matrix.spec.js

211 lines
5.3 KiB
JavaScript
Raw Normal View History

describe('CanvasKit\'s Matrix Helpers', () => {
beforeEach(async () => {
await LoadCanvasKit;
});
const expectArrayCloseTo = (a, b, precision) => {
precision = precision || 14 // digits of precision in base 10
expect(a.length).toEqual(b.length);
for (let i=0; i<a.length; i++) {
expect(a[i]).toBeCloseTo(b[i], precision);
}
};
describe('3x3 matrices', () => {
it('can make a translated 3x3 matrix', () => {
expectArrayCloseTo(
CanvasKit.Matrix.translated(5, -1),
[1, 0, 5,
0, 1, -1,
0, 0, 1]);
});
it('can make a scaled 3x3 matrix', () => {
expectArrayCloseTo(
CanvasKit.Matrix.scaled(2, 3),
[2, 0, 0,
0, 3, 0,
0, 0, 1]);
});
it('can make a rotated 3x3 matrix', () => {
expectArrayCloseTo(
CanvasKit.Matrix.rotated(Math.PI, 9, 9),
[-1, 0, 18,
0, -1, 18,
0, 0, 1]);
});
it('can make a skewed 3x3 matrix', () => {
expectArrayCloseTo(
CanvasKit.Matrix.skewed(4, 3, 2, 1),
[1, 4, -8,
3, 1, -3,
0, 0, 1]);
});
it('can multiply 3x3 matrices', () => {
const a = [
0.1, 0.2, 0.3,
0.0, 0.6, 0.7,
0.9, -0.9, -0.8,
];
const b = [
2.0, 3.0, 4.0,
-3.0, -4.0, -5.0,
7.0, 8.0, 9.0,
];
const expected = [
1.7, 1.9, 2.1,
3.1, 3.2, 3.3,
-1.1, -0.1, 0.9,
];
expectArrayCloseTo(
CanvasKit.Matrix.multiply(a, b),
expected);
});
it('satisfies the inverse rule for 3x3 matrics', () => {
// a matrix times its inverse is the identity matrix.
const a = [
0.1, 0.2, 0.3,
0.0, 0.6, 0.7,
0.9, -0.9, -0.8,
];
const b = CanvasKit.Matrix.invert(a);
expectArrayCloseTo(
CanvasKit.Matrix.multiply(a, b),
CanvasKit.Matrix.identity());
});
it('maps 2D points correctly with a 3x3 matrix', () => {
const a = [
3, 0, -4,
0, 2, 4,
0, 0, 1,
];
const points = [
0, 0,
1, 1,
];
const expected = [
-4, 4,
-1, 6,
];
expectArrayCloseTo(
CanvasKit.Matrix.mapPoints(a, points),
expected);
});
}); // describe 3x3
describe('4x4 matrices', () => {
it('can make a translated 4x4 matrix', () => {
expectArrayCloseTo(
CanvasKit.M44.translated([5, 6, 7]),
[1, 0, 0, 5,
0, 1, 0, 6,
0, 0, 1, 7,
0, 0, 0, 1]);
});
it('can make a scaled 4x4 matrix', () => {
expectArrayCloseTo(
CanvasKit.M44.scaled([5, 6, 7]),
[5, 0, 0, 0,
0, 6, 0, 0,
0, 0, 7, 0,
0, 0, 0, 1]);
});
it('can make a rotated 4x4 matrix', () => {
expectArrayCloseTo(
CanvasKit.M44.rotated([1,1,1], Math.PI),
[-1/3, 2/3, 2/3, 0,
2/3, -1/3, 2/3, 0,
2/3, 2/3, -1/3, 0,
0, 0, 0, 1]);
});
it('can make a 4x4 matrix looking from eye to center', () => {
eye = [1, 0, 0];
center = [1, 0, 1];
up = [0, 1, 0]
expectArrayCloseTo(
CanvasKit.M44.lookat(eye, center, up),
[-1, 0, 0, 1,
0, 1, 0, 0,
0, 0, -1, 0,
0, 0, 0, 1]);
});
it('can make a 4x4 prespective matrix', () => {
expectArrayCloseTo(
CanvasKit.M44.perspective(2, 10, Math.PI/2),
[1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1.5, 5,
0, 0, -1, 1]);
});
it('can multiply 4x4 matrices', () => {
const a = [
0.1, 0.2, 0.3, 0.4,
0.0, 0.6, 0.7, 0.8,
0.9, -0.9, -0.8, -0.7,
-0.6, -0.5, -0.4, -0.3,
];
const b = [
2.0, 3.0, 4.0, 5.0,
-3.0, -4.0, -5.0, -6.0,
7.0, 8.0, 9.0, 10.0,
-4.0, -3.0, -2.0, -1.0,
];
const expected = [
0.1, 0.7, 1.3, 1.9,
-0.1, 0.8, 1.7, 2.6,
1.7, 2.0, 2.3, 2.6,
-1.3, -2.1, -2.9, -3.7,
];
expectArrayCloseTo(
CanvasKit.M44.multiply(a, b),
expected);
});
it('satisfies the identity rule for 4x4 matrices', () => {
const a = [
0.1, 0.2, 0.3, 0.4,
0.0, 0.6, 0.7, 0.8,
0.9, 0.9, -0.8, -0.7,
-0.6, -0.5, -0.4, -0.3,
];
const b = CanvasKit.M44.invert(a)
expectArrayCloseTo(
CanvasKit.M44.multiply(a, b),
CanvasKit.M44.identity());
});
it('can create a camera setup matrix', () => {
const camAngle = Math.PI / 12;
const cam = {
'eye' : [0, 0, 1 / Math.tan(camAngle/2) - 1],
'coa' : [0, 0, 0],
'up' : [0, 1, 0],
'near' : 0.02,
'far' : 4,
'angle': camAngle,
};
const mat = CanvasKit.M44.setupCamera(CanvasKit.LTRBRect(0, 0, 200, 200), 200, cam);
// these values came from an invocation of setupCamera visually inspected.
const expected = [
7.595754, 0, -0.5, 0,
0, 7.595754, -0.5, 0,
0, 0, 1.010050, -1324.368418,
0, 0, -0.005, 7.595754];
expectArrayCloseTo(mat, expected, 5);
});
}); // describe 4x4
});