skia2/include/private/SkAtomics.h

160 lines
5.5 KiB
C
Raw Normal View History

/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkAtomics_DEFINED
#define SkAtomics_DEFINED
// This file is not part of the public Skia API.
#include "SkTypes.h"
#include <atomic>
// ~~~~~~~~ APIs ~~~~~~~~~
enum sk_memory_order {
sk_memory_order_relaxed,
sk_memory_order_consume,
sk_memory_order_acquire,
sk_memory_order_release,
sk_memory_order_acq_rel,
sk_memory_order_seq_cst,
};
template <typename T>
T sk_atomic_load(const T*, sk_memory_order = sk_memory_order_seq_cst);
template <typename T>
void sk_atomic_store(T*, T, sk_memory_order = sk_memory_order_seq_cst);
template <typename T>
T sk_atomic_fetch_add(T*, T, sk_memory_order = sk_memory_order_seq_cst);
template <typename T>
T sk_atomic_fetch_sub(T*, T, sk_memory_order = sk_memory_order_seq_cst);
template <typename T>
bool sk_atomic_compare_exchange(T*, T* expected, T desired,
sk_memory_order success = sk_memory_order_seq_cst,
sk_memory_order failure = sk_memory_order_seq_cst);
template <typename T>
T sk_atomic_exchange(T*, T, sk_memory_order = sk_memory_order_seq_cst);
// A little wrapper class for small T (think, builtins: int, float, void*) to
// ensure they're always used atomically. This is our stand-in for std::atomic<T>.
// !!! Please _really_ know what you're doing if you change default_memory_order. !!!
template <typename T, sk_memory_order default_memory_order = sk_memory_order_seq_cst>
class SkAtomic : SkNoncopyable {
public:
SkAtomic() {}
explicit SkAtomic(const T& val) : fVal(val) {}
// It is essential we return by value rather than by const&. fVal may change at any time.
T load(sk_memory_order mo = default_memory_order) const {
return sk_atomic_load(&fVal, mo);
}
void store(const T& val, sk_memory_order mo = default_memory_order) {
sk_atomic_store(&fVal, val, mo);
}
// Alias for .load(default_memory_order).
operator T() const {
return this->load();
}
// Alias for .store(v, default_memory_order).
T operator=(const T& v) {
this->store(v);
return v;
}
T fetch_add(const T& val, sk_memory_order mo = default_memory_order) {
return sk_atomic_fetch_add(&fVal, val, mo);
}
T fetch_sub(const T& val, sk_memory_order mo = default_memory_order) {
return sk_atomic_fetch_sub(&fVal, val, mo);
}
bool compare_exchange(T* expected, const T& desired,
sk_memory_order success = default_memory_order,
sk_memory_order failure = default_memory_order) {
return sk_atomic_compare_exchange(&fVal, expected, desired, success, failure);
}
private:
T fVal;
};
// ~~~~~~~~ Implementations ~~~~~~~~~
template <typename T>
T sk_atomic_load(const T* ptr, sk_memory_order mo) {
SkASSERT(mo == sk_memory_order_relaxed ||
mo == sk_memory_order_seq_cst ||
mo == sk_memory_order_acquire ||
mo == sk_memory_order_consume);
const std::atomic<T>* ap = reinterpret_cast<const std::atomic<T>*>(ptr);
return std::atomic_load_explicit(ap, (std::memory_order)mo);
}
template <typename T>
void sk_atomic_store(T* ptr, T val, sk_memory_order mo) {
SkASSERT(mo == sk_memory_order_relaxed ||
mo == sk_memory_order_seq_cst ||
mo == sk_memory_order_release);
std::atomic<T>* ap = reinterpret_cast<std::atomic<T>*>(ptr);
return std::atomic_store_explicit(ap, val, (std::memory_order)mo);
}
template <typename T>
T sk_atomic_fetch_add(T* ptr, T val, sk_memory_order mo) {
// All values of mo are valid.
std::atomic<T>* ap = reinterpret_cast<std::atomic<T>*>(ptr);
return std::atomic_fetch_add_explicit(ap, val, (std::memory_order)mo);
}
template <typename T>
T sk_atomic_fetch_sub(T* ptr, T val, sk_memory_order mo) {
// All values of mo are valid.
std::atomic<T>* ap = reinterpret_cast<std::atomic<T>*>(ptr);
return std::atomic_fetch_sub_explicit(ap, val, (std::memory_order)mo);
}
template <typename T>
bool sk_atomic_compare_exchange(T* ptr, T* expected, T desired,
sk_memory_order success,
sk_memory_order failure) {
// All values of success are valid.
SkASSERT(failure == sk_memory_order_relaxed ||
failure == sk_memory_order_seq_cst ||
failure == sk_memory_order_acquire ||
failure == sk_memory_order_consume);
SkASSERT(failure <= success);
std::atomic<T>* ap = reinterpret_cast<std::atomic<T>*>(ptr);
return std::atomic_compare_exchange_strong_explicit(ap, expected, desired,
(std::memory_order)success,
(std::memory_order)failure);
}
template <typename T>
T sk_atomic_exchange(T* ptr, T val, sk_memory_order mo) {
// All values of mo are valid.
std::atomic<T>* ap = reinterpret_cast<std::atomic<T>*>(ptr);
return std::atomic_exchange_explicit(ap, val, (std::memory_order)mo);
}
// ~~~~~~~~ Legacy APIs ~~~~~~~~~
// From here down we have shims for our old atomics API, to be weaned off of.
// We use the default sequentially-consistent memory order to make things simple
// and to match the practical reality of our old _sync and _win implementations.
inline int32_t sk_atomic_inc(int32_t* ptr) { return sk_atomic_fetch_add(ptr, +1); }
inline int32_t sk_atomic_dec(int32_t* ptr) { return sk_atomic_fetch_add(ptr, -1); }
#endif//SkAtomics_DEFINED