skia2/samplecode/SampleCCPRGeometry.cpp

402 lines
14 KiB
C++
Raw Normal View History

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrContextPriv.h"
#include "GrPathUtils.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "SampleCode.h"
#include "SkCanvas.h"
#include "SkMakeUnique.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkView.h"
#include "ccpr/GrCCPRCoverageProcessor.h"
#include "ccpr/GrCCPRGeometry.h"
#include "gl/GrGLGpu.cpp"
#include "ops/GrDrawOp.h"
using TriangleInstance = GrCCPRCoverageProcessor::TriangleInstance;
using CurveInstance = GrCCPRCoverageProcessor::CurveInstance;
using RenderPass = GrCCPRCoverageProcessor::RenderPass;
static constexpr float kDebugBloat = 40;
static int num_points(RenderPass renderPass) {
return renderPass >= RenderPass::kSerpentineHulls ? 4 : 3;
}
static int is_quadratic(RenderPass renderPass) {
return renderPass >= RenderPass::kQuadraticHulls && renderPass < RenderPass::kSerpentineHulls;
}
/**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
* coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different
* geometry processors.
*/
class CCPRGeometryView : public SampleView {
public:
CCPRGeometryView() { this->updateGpuData(); }
void onDrawContent(SkCanvas*) override;
SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override;
bool onClick(SampleView::Click*) override;
bool onQuery(SkEvent* evt) override;
private:
class Click;
class Op;
void updateAndInval() {
this->updateGpuData();
this->inval(nullptr);
}
void updateGpuData();
RenderPass fRenderPass = RenderPass::kTriangleHulls;
SkMatrix fCubicKLM;
SkPoint fPoints[4] = {
{100.05f, 100.05f},
{400.75f, 100.05f},
{400.75f, 300.95f},
{100.05f, 300.95f}
};
SkTArray<SkPoint> fGpuPoints;
SkTArray<int32_t> fInstanceData;
int fInstanceCount;
typedef SampleView INHERITED;
};
class CCPRGeometryView::Op : public GrDrawOp {
DEFINE_OP_CLASS_ID
public:
Op(CCPRGeometryView* view)
: INHERITED(ClassID())
, fView(view) {
this->setBounds(SkRect::MakeLargest(), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo);
}
const char* name() const override { return "[Testing/Sample code] CCPRGeometryView::Op"; }
private:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*,
GrPixelConfigIsClamped) override {
return RequiresDstTexture::kNo;
}
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*) override;
CCPRGeometryView* fView;
typedef GrDrawOp INHERITED;
};
static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3], SkColor color) {
SkPoint p1, p2;
if (SkScalarAbs(line[1]) > SkScalarAbs(line[0])) {
// Draw from vertical edge to vertical edge.
p1 = {0, -line[2] / line[1]};
p2 = {(SkScalar) w, (-line[2] - w * line[0]) / line[1]};
} else {
// Draw from horizontal edge to horizontal edge.
p1 = {-line[2] / line[0], 0};
p2 = {(-line[2] - h * line[1]) / line[0], (SkScalar) h};
}
SkPaint linePaint;
linePaint.setColor(color);
linePaint.setAlpha(128);
linePaint.setStyle(SkPaint::kStroke_Style);
linePaint.setStrokeWidth(0);
linePaint.setAntiAlias(true);
canvas->drawLine(p1, p2, linePaint);
}
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
SkAutoCanvasRestore acr(canvas, true);
canvas->setMatrix(SkMatrix::I());
SkPath outline;
outline.moveTo(fPoints[0]);
if (4 == num_points(fRenderPass)) {
outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
} else if (is_quadratic(fRenderPass)) {
outline.quadTo(fPoints[1], fPoints[3]);
} else {
outline.lineTo(fPoints[1]);
outline.lineTo(fPoints[3]);
outline.close();
}
SkPaint outlinePaint;
outlinePaint.setColor(0x30000000);
outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true);
canvas->drawPath(outline, outlinePaint);
#if 0
SkPaint gridPaint;
gridPaint.setColor(0x10000000);
gridPaint.setStyle(SkPaint::kStroke_Style);
gridPaint.setStrokeWidth(0);
gridPaint.setAntiAlias(true);
for (int y = 0; y < this->height(); y += kDebugBloat) {
canvas->drawLine(0, y, this->width(), y, gridPaint);
}
for (int x = 0; x < this->width(); x += kDebugBloat) {
canvas->drawLine(x, 0, x, this->height(), outlinePaint);
}
#endif
const char* caption = "Use GPU backend to visualize geometry.";
if (GrRenderTargetContext* rtc =
canvas->internal_private_accessTopLayerRenderTargetContext()) {
rtc->priv().testingOnly_addDrawOp(skstd::make_unique<Op>(this));
caption = GrCCPRCoverageProcessor::GetRenderPassName(fRenderPass);
}
SkPaint pointsPaint;
pointsPaint.setColor(SK_ColorBLUE);
pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true);
if (4 == num_points(fRenderPass)) {
int w = this->width(), h = this->height();
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
draw_klm_line(w, h, canvas, &fCubicKLM[3], SK_ColorBLUE);
draw_klm_line(w, h, canvas, &fCubicKLM[6], SK_ColorRED);
} else {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint);
}
SkPaint captionPaint;
captionPaint.setTextSize(20);
captionPaint.setColor(SK_ColorBLACK);
captionPaint.setAntiAlias(true);
canvas->drawText(caption, strlen(caption), 10, 30, captionPaint);
}
void CCPRGeometryView::updateGpuData() {
int vertexCount = num_points(fRenderPass);
fGpuPoints.reset();
fInstanceData.reset();
fInstanceCount = 0;
if (4 == vertexCount) {
double t[2], s[2];
SkCubicType type = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
if (RenderPass::kSerpentineHulls == fRenderPass && SkCubicType::kLoop == type) {
fRenderPass = RenderPass::kLoopHulls;
}
if (RenderPass::kSerpentineCorners == fRenderPass && SkCubicType::kLoop == type) {
fRenderPass = RenderPass::kLoopCorners;
}
if (RenderPass::kLoopHulls == fRenderPass && SkCubicType::kLoop != type) {
fRenderPass = RenderPass::kSerpentineHulls;
}
if (RenderPass::kLoopCorners == fRenderPass && SkCubicType::kLoop != type) {
fRenderPass = RenderPass::kSerpentineCorners;
}
GrCCPRGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.cubicTo(fPoints[1], fPoints[2], fPoints[3], kDebugBloat/2, kDebugBloat/2);
geometry.endContour();
fGpuPoints.push_back_n(geometry.points().count(), geometry.points().begin());
int ptsIdx = 0;
for (GrCCPRGeometry::Verb verb : geometry.verbs()) {
switch (verb) {
case GrCCPRGeometry::Verb::kLineTo:
++ptsIdx;
continue;
case GrCCPRGeometry::Verb::kMonotonicQuadraticTo:
ptsIdx += 2;
continue;
case GrCCPRGeometry::Verb::kMonotonicSerpentineTo:
case GrCCPRGeometry::Verb::kMonotonicLoopTo:
fInstanceData.push_back(ptsIdx);
fInstanceData.push_back(0); // Atlas offset.
ptsIdx += 3;
++fInstanceCount;
continue;
default: continue;
}
}
} else if (is_quadratic(fRenderPass)) {
GrCCPRGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.quadraticTo(fPoints[1], fPoints[3]);
geometry.endContour();
fGpuPoints.push_back_n(geometry.points().count(), geometry.points().begin());
for (GrCCPRGeometry::Verb verb : geometry.verbs()) {
if (GrCCPRGeometry::Verb::kBeginContour == verb ||
GrCCPRGeometry::Verb::kEndOpenContour == verb ||
GrCCPRGeometry::Verb::kEndClosedContour == verb) {
continue;
}
SkASSERT(GrCCPRGeometry::Verb::kMonotonicQuadraticTo == verb);
fInstanceData.push_back(2 * fInstanceCount++); // Pts idx.
fInstanceData.push_back(0); // Atlas offset.
}
} else {
fGpuPoints.push_back(fPoints[0]);
fGpuPoints.push_back(fPoints[1]);
fGpuPoints.push_back(fPoints[3]);
fInstanceData.push_back(0);
fInstanceData.push_back(1);
fInstanceData.push_back(2);
fInstanceData.push_back(0); // Atlas offset.
fInstanceCount = 1;
}
}
void CCPRGeometryView::Op::onExecute(GrOpFlushState* state) {
if (fView->fInstanceData.empty()) {
return;
}
GrResourceProvider* rp = state->resourceProvider();
GrContext* context = state->gpu()->getContext();
GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend() ?
static_cast<GrGLGpu*>(state->gpu()) : nullptr;
int vertexCount = num_points(fView->fRenderPass);
sk_sp<GrBuffer> pointsBuffer(rp->createBuffer(fView->fGpuPoints.count() * sizeof(SkPoint),
kTexel_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag,
fView->fGpuPoints.begin()));
if (!pointsBuffer) {
return;
}
sk_sp<GrBuffer> instanceBuffer(rp->createBuffer(fView->fInstanceData.count() * sizeof(int),
kVertex_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag |
GrResourceProvider::kRequireGpuMemory_Flag,
fView->fInstanceData.begin()));
if (!instanceBuffer) {
return;
}
GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled,
SkBlendMode::kSrcOver);
GrCCPRCoverageProcessor ccprProc(fView->fRenderPass, pointsBuffer.get());
SkDEBUGCODE(ccprProc.enableDebugVisualizations(kDebugBloat);)
GrMesh mesh(4 == vertexCount ? GrPrimitiveType::kLinesAdjacency : GrPrimitiveType::kTriangles);
mesh.setInstanced(instanceBuffer.get(), fView->fInstanceCount, 0, vertexCount);
if (glGpu) {
glGpu->handleDirtyContext();
GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
}
state->rtCommandBuffer()->draw(pipeline, ccprProc, &mesh, nullptr, 1, this->bounds());
if (glGpu) {
context->resetContext(kMisc_GrGLBackendState);
}
}
class CCPRGeometryView::Click : public SampleView::Click {
public:
Click(SkView* target, int ptIdx) : SampleView::Click(target), fPtIdx(ptIdx) {}
void doClick(SkPoint points[]) {
if (fPtIdx >= 0) {
this->dragPoint(points, fPtIdx);
} else {
for (int i = 0; i < 4; ++i) {
this->dragPoint(points, i);
}
}
}
private:
void dragPoint(SkPoint points[], int idx) {
SkIPoint delta = fICurr - fIPrev;
points[idx] += SkPoint::Make(delta.x(), delta.y());
}
int fPtIdx;
};
SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
for (int i = 0; i < 4; ++i) {
if (4 != num_points(fRenderPass) && 2 == i) {
continue;
}
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
return new Click(this, i);
}
}
return new Click(this, -1);
}
bool CCPRGeometryView::onClick(SampleView::Click* click) {
Click* myClick = (Click*) click;
myClick->doClick(fPoints);
this->updateAndInval();
return true;
}
bool CCPRGeometryView::onQuery(SkEvent* evt) {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "CCPRGeometry");
return true;
}
SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) {
if (unichar >= '1' && unichar <= '7') {
fRenderPass = RenderPass(unichar - '1');
if (fRenderPass >= RenderPass::kLoopHulls) {
// '6' -> kSerpentineHulls, '7' -> kSerpentineCorners. updateGpuData converts to
// kLoop* if needed.
fRenderPass = RenderPass(int(fRenderPass) + 1);
}
this->updateAndInval();
return true;
}
if (unichar == 'D') {
SkDebugf(" SkPoint fPoints[4] = {\n");
SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y());
SkDebugf(" {%ff, %ff},\n", fPoints[1].x(), fPoints[1].y());
SkDebugf(" {%ff, %ff},\n", fPoints[2].x(), fPoints[2].y());
SkDebugf(" {%ff, %ff}\n", fPoints[3].x(), fPoints[3].y());
SkDebugf(" };\n");
return true;
}
}
return this->INHERITED::onQuery(evt);
}
DEF_SAMPLE( return new CCPRGeometryView; )
#endif // SK_SUPPORT_GPU