skia2/samplecode/SampleApp.cpp

2487 lines
76 KiB
C++
Raw Normal View History

Automatic update of all copyright notices to reflect new license terms. I have manually examined all of these diffs and restored a few files that seem to require manual adjustment. The following files still need to be modified manually, in a separate CL: android_sample/SampleApp/AndroidManifest.xml android_sample/SampleApp/res/layout/layout.xml android_sample/SampleApp/res/menu/sample.xml android_sample/SampleApp/res/values/strings.xml android_sample/SampleApp/src/com/skia/sampleapp/SampleApp.java android_sample/SampleApp/src/com/skia/sampleapp/SampleView.java experimental/CiCarbonSampleMain.c experimental/CocoaDebugger/main.m experimental/FileReaderApp/main.m experimental/SimpleCocoaApp/main.m experimental/iOSSampleApp/Shared/SkAlertPrompt.h experimental/iOSSampleApp/Shared/SkAlertPrompt.m experimental/iOSSampleApp/SkiOSSampleApp-Base.xcconfig experimental/iOSSampleApp/SkiOSSampleApp-Debug.xcconfig experimental/iOSSampleApp/SkiOSSampleApp-Release.xcconfig gpu/src/android/GrGLDefaultInterface_android.cpp gyp/common.gypi gyp_skia include/ports/SkHarfBuzzFont.h include/views/SkOSWindow_wxwidgets.h make.bat make.py src/opts/memset.arm.S src/opts/memset16_neon.S src/opts/memset32_neon.S src/opts/opts_check_arm.cpp src/ports/SkDebug_brew.cpp src/ports/SkMemory_brew.cpp src/ports/SkOSFile_brew.cpp src/ports/SkXMLParser_empty.cpp src/utils/ios/SkImageDecoder_iOS.mm src/utils/ios/SkOSFile_iOS.mm src/utils/ios/SkStream_NSData.mm tests/FillPathTest.cpp Review URL: http://codereview.appspot.com/4816058 git-svn-id: http://skia.googlecode.com/svn/trunk@1982 2bbb7eff-a529-9590-31e7-b0007b416f81
2011-07-28 14:26:00 +00:00
/*
* Copyright 2011 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SampleApp.h"
#include "OverView.h"
#include "Resources.h"
#include "SampleCode.h"
#include "SkAnimTimer.h"
#include "SkCanvas.h"
#include "SkColorSpace_XYZ.h"
#include "SkCommandLineFlags.h"
#include "SkCommonFlagsPathRenderer.h"
#include "SkData.h"
#include "SkDocument.h"
#include "SkGraphics.h"
#include "SkOSFile.h"
#include "SkOSPath.h"
#include "SkPaint.h"
#include "SkPaintFilterCanvas.h"
#include "SkPicture.h"
#include "SkPictureRecorder.h"
#include "SkPM4fPriv.h"
#include "SkStream.h"
#include "SkSurface.h"
#include "SkTemplates.h"
#include "SkTSort.h"
#include "SkTime.h"
#include "SkTypeface.h"
#include "SkWindow.h"
#include "sk_tool_utils.h"
#include "SkScan.h"
#include "SkClipOpPriv.h"
#include "SkThreadedBMPDevice.h"
#include "SkReadBuffer.h"
#include "SkStream.h"
#if defined(SK_BUILD_FOR_MAC) || defined(SK_BUILD_FOR_IOS)
#include "SkCGUtils.h"
#endif
#define PICTURE_MEANS_PIPE false
#define SERIALIZE_PICTURE true
#if SK_SUPPORT_GPU
# include "gl/GrGLInterface.h"
# include "gl/GrGLUtil.h"
# include "GrContext.h"
# include "SkGr.h"
# if SK_ANGLE
# include "gl/angle/GLTestContext_angle.h"
# endif
#else
class GrContext;
#endif
enum OutputColorSpace {
kLegacy_OutputColorSpace,
kSRGB_OutputColorSpace,
kNarrow_OutputColorSpace,
kMonitor_OutputColorSpace,
};
const struct {
SkColorType fColorType;
OutputColorSpace fColorSpace;
const char* fName;
} gConfig[] = {
{ kN32_SkColorType, kLegacy_OutputColorSpace, "L32" },
{ kN32_SkColorType, kSRGB_OutputColorSpace, "S32" },
{ kRGBA_F16_SkColorType, kSRGB_OutputColorSpace, "F16" },
{ kRGBA_F16_SkColorType, kNarrow_OutputColorSpace, "F16 Narrow" },
{ kRGBA_F16_SkColorType, kMonitor_OutputColorSpace, "F16 Device" },
};
// Should be 3x + 1
#define kMaxFatBitsScale 28
extern SampleView* CreateSamplePictFileView(const char filename[]);
class PictFileFactory : public SkViewFactory {
SkString fFilename;
public:
PictFileFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSamplePictFileView(fFilename.c_str());
}
};
extern SampleView* CreateSamplePathFinderView(const char filename[]);
class PathFinderFactory : public SkViewFactory {
SkString fFilename;
public:
PathFinderFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSamplePathFinderView(fFilename.c_str());
}
};
extern SampleView* CreateSampleSVGFileView(const SkString& filename);
class SVGFileFactory : public SkViewFactory {
SkString fFilename;
public:
SVGFileFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSampleSVGFileView(fFilename);
}
};
#ifdef SAMPLE_PDF_FILE_VIEWER
extern SampleView* CreateSamplePdfFileViewer(const char filename[]);
class PdfFileViewerFactory : public SkViewFactory {
SkString fFilename;
public:
PdfFileViewerFactory(const SkString& filename) : fFilename(filename) {}
SkView* operator() () const override {
return CreateSamplePdfFileViewer(fFilename.c_str());
}
};
#endif // SAMPLE_PDF_FILE_VIEWER
#if SK_ANGLE
//#define DEFAULT_TO_ANGLE 1
#else
#define DEFAULT_TO_GPU 0 // if 1 default rendering is on GPU
#endif
#define ANIMATING_EVENTTYPE "nextSample"
#define ANIMATING_DELAY 250
#ifdef SK_DEBUG
#define FPS_REPEAT_MULTIPLIER 1
#else
#define FPS_REPEAT_MULTIPLIER 10
#endif
#define FPS_REPEAT_COUNT (10 * FPS_REPEAT_MULTIPLIER)
static SampleWindow* gSampleWindow;
static bool gShowGMBounds;
static void post_event_to_sink(SkEvent* evt, SkEventSink* sink) {
evt->setTargetID(sink->getSinkID())->post();
}
static SkAnimTimer gAnimTimer;
///////////////////////////////////////////////////////////////////////////////
static const char* skip_until(const char* str, const char* skip) {
if (!str) {
return nullptr;
}
return strstr(str, skip);
}
static const char* skip_past(const char* str, const char* skip) {
const char* found = skip_until(str, skip);
if (!found) {
return nullptr;
}
return found + strlen(skip);
}
static const char* gPrefFileName = "sampleapp_prefs.txt";
static bool readTitleFromPrefs(SkString* title) {
SkFILEStream stream(gPrefFileName);
if (!stream.isValid()) {
return false;
}
size_t len = stream.getLength();
SkString data(len);
stream.read(data.writable_str(), len);
const char* s = data.c_str();
s = skip_past(s, "curr-slide-title");
s = skip_past(s, "=");
s = skip_past(s, "\"");
const char* stop = skip_until(s, "\"");
if (stop > s) {
title->set(s, stop - s);
return true;
}
return false;
}
static void writeTitleToPrefs(const char* title) {
SkFILEWStream stream(gPrefFileName);
SkString data;
data.printf("curr-slide-title = \"%s\"\n", title);
stream.write(data.c_str(), data.size());
}
///////////////////////////////////////////////////////////////////////////////
class SampleWindow::DefaultDeviceManager : public SampleWindow::DeviceManager {
public:
DefaultDeviceManager() {
#if SK_SUPPORT_GPU
fCurContext = nullptr;
fCurIntf = nullptr;
fMSAASampleCount = 0;
fDeepColor = false;
fActualColorBits = 0;
#endif
fBackend = kNone_BackEndType;
}
~DefaultDeviceManager() override {
#if SK_SUPPORT_GPU
SkSafeUnref(fCurContext);
SkSafeUnref(fCurIntf);
#endif
}
void setUpBackend(SampleWindow* win, const BackendOptions& backendOptions) override {
SkASSERT(kNone_BackEndType == fBackend);
fBackend = kNone_BackEndType;
#if SK_SUPPORT_GPU
switch (win->getDeviceType()) {
case kRaster_DeviceType: // fallthrough
case kGPU_DeviceType:
// all these guys use the native backend
fBackend = kNativeGL_BackEndType;
break;
#if SK_ANGLE
case kANGLE_DeviceType:
// ANGLE is really the only odd man out
fBackend = kANGLE_BackEndType;
break;
#endif // SK_ANGLE
default:
SkASSERT(false);
break;
}
AttachmentInfo attachmentInfo;
bool result = win->attach(fBackend, backendOptions.fMSAASampleCount,
backendOptions.fDeepColor, &attachmentInfo);
if (!result) {
SkDebugf("Failed to initialize GL");
return;
}
fMSAASampleCount = backendOptions.fMSAASampleCount;
fDeepColor = backendOptions.fDeepColor;
// Assume that we have at least 24-bit output, for backends that don't supply this data
fActualColorBits = SkTMax(attachmentInfo.fColorBits, 24);
SkASSERT(nullptr == fCurIntf);
switch (win->getDeviceType()) {
case kRaster_DeviceType: // fallthrough
case kGPU_DeviceType:
// all these guys use the native interface
fCurIntf = GrGLCreateNativeInterface();
break;
#if SK_ANGLE
case kANGLE_DeviceType:
fCurIntf = sk_gpu_test::CreateANGLEGLInterface();
break;
#endif // SK_ANGLE
default:
SkASSERT(false);
break;
}
SkASSERT(nullptr == fCurContext);
fCurContext = GrContext::Create(kOpenGL_GrBackend, (GrBackendContext) fCurIntf,
backendOptions.fGrContextOptions);
if (nullptr == fCurContext || nullptr == fCurIntf) {
// We need some context and interface to see results
SkSafeUnref(fCurContext);
SkSafeUnref(fCurIntf);
fCurContext = nullptr;
fCurIntf = nullptr;
SkDebugf("Failed to setup 3D");
win->release();
}
#endif // SK_SUPPORT_GPU
// call windowSizeChanged to create the gpu-backed Surface
this->windowSizeChanged(win);
}
void tearDownBackend(SampleWindow *win) override {
#if SK_SUPPORT_GPU
if (fCurContext) {
// in case we have outstanding refs to this guy (lua?)
fCurContext->abandonContext();
fCurContext->unref();
fCurContext = nullptr;
}
SkSafeUnref(fCurIntf);
fCurIntf = nullptr;
fGpuSurface = nullptr;
#endif
win->release();
fBackend = kNone_BackEndType;
}
sk_sp<SkSurface> makeSurface(SampleWindow::DeviceType dType, SampleWindow* win) override {
#if SK_SUPPORT_GPU
if (IsGpuDeviceType(dType) && fCurContext) {
SkSurfaceProps props(win->getSurfaceProps());
if (kRGBA_F16_SkColorType == win->info().colorType() || fActualColorBits > 24) {
// If we're rendering to F16, we need an off-screen surface - the current render
// target is most likely the wrong format.
//
// If we're using a deep (10-bit or higher) surface, we probably need an off-screen
// surface. 10-bit, in particular, has strange gamma behavior.
return SkSurface::MakeRenderTarget(fCurContext, SkBudgeted::kNo, win->info(),
fMSAASampleCount, &props);
} else {
return fGpuSurface;
}
}
#endif
return nullptr;
}
void publishCanvas(SampleWindow::DeviceType dType,
SkCanvas* renderingCanvas, SampleWindow* win) override {
#if SK_SUPPORT_GPU
if (!IsGpuDeviceType(dType) ||
kRGBA_F16_SkColorType == win->info().colorType() ||
fActualColorBits > 24) {
// We made/have an off-screen surface. Extract the pixels exactly as we rendered them:
SkImageInfo info = win->info();
size_t rowBytes = info.minRowBytes();
size_t size = info.getSafeSize(rowBytes);
auto data = SkData::MakeUninitialized(size);
SkASSERT(data);
if (!renderingCanvas->readPixels(info, data->writable_data(), rowBytes, 0, 0)) {
SkDEBUGFAIL("Failed to read canvas pixels");
return;
}
// Now, re-interpret those pixels as sRGB, so they won't be color converted when we
// draw then to FBO0. This ensures that if we rendered in any strange gamut, we'll see
// the "correct" output (because we generated the pixel values we wanted in the
// offscreen canvas).
auto colorSpace = kRGBA_F16_SkColorType == info.colorType()
? SkColorSpace::MakeSRGBLinear()
: SkColorSpace::MakeSRGB();
auto offscreenImage = SkImage::MakeRasterData(info.makeColorSpace(colorSpace), data,
rowBytes);
SkCanvas* gpuCanvas = fGpuSurface->getCanvas();
// With ten-bit output, we need to manually apply the gamma of the output device
// (unless we're in non-gamma correct mode, in which case our data is already
// fake-sRGB, like we're expected to put in the 10-bit buffer):
bool doGamma = (fActualColorBits == 30) && win->info().colorSpace();
SkPaint gammaPaint;
gammaPaint.setBlendMode(SkBlendMode::kSrc);
if (doGamma) {
gammaPaint.setColorFilter(sk_tool_utils::MakeLinearToSRGBColorFilter());
}
gpuCanvas->drawImage(offscreenImage, 0, 0, &gammaPaint);
}
fGpuSurface->prepareForExternalIO();
#endif
win->present();
}
void windowSizeChanged(SampleWindow* win) override {
#if SK_SUPPORT_GPU
if (fCurContext) {
AttachmentInfo attachmentInfo;
win->attach(fBackend, fMSAASampleCount, fDeepColor, &attachmentInfo);
fActualColorBits = SkTMax(attachmentInfo.fColorBits, 24);
fGpuSurface = win->makeGpuBackedSurface(attachmentInfo, fCurIntf, fCurContext);
}
#endif
}
GrContext* getGrContext() override {
#if SK_SUPPORT_GPU
return fCurContext;
#else
return nullptr;
#endif
}
int numColorSamples() const override {
#if SK_SUPPORT_GPU
return fMSAASampleCount;
#else
return 0;
#endif
}
int getColorBits() override {
#if SK_SUPPORT_GPU
return fActualColorBits;
#else
return 24;
#endif
}
private:
#if SK_SUPPORT_GPU
GrContext* fCurContext;
const GrGLInterface* fCurIntf;
sk_sp<SkSurface> fGpuSurface;
int fMSAASampleCount;
bool fDeepColor;
int fActualColorBits;
#endif
SkOSWindow::SkBackEndTypes fBackend;
typedef SampleWindow::DeviceManager INHERITED;
};
///////////////
static const char view_inval_msg[] = "view-inval-msg";
void SampleWindow::postInvalDelay() {
(new SkEvent(view_inval_msg, this->getSinkID()))->postDelay(1);
}
static bool isInvalEvent(const SkEvent& evt) {
return evt.isType(view_inval_msg);
}
//////////////////
#include "GMSampleView.h"
class AutoUnrefArray {
public:
AutoUnrefArray() {}
~AutoUnrefArray() {
int count = fObjs.count();
for (int i = 0; i < count; ++i) {
fObjs[i]->unref();
}
}
SkRefCnt*& push_back() { return *fObjs.append(); }
private:
SkTDArray<SkRefCnt*> fObjs;
};
// registers GMs as Samples
// This can't be performed during static initialization because it could be
// run before GMRegistry has been fully built.
static void SkGMRegistyToSampleRegistry() {
static bool gOnce;
static AutoUnrefArray fRegisters;
if (!gOnce) {
const skiagm::GMRegistry* gmreg = skiagm::GMRegistry::Head();
while (gmreg) {
fRegisters.push_back() = new SkViewRegister(gmreg->factory());
gmreg = gmreg->next();
}
gOnce = true;
}
}
//////////////////////////////////////////////////////////////////////////////
enum FlipAxisEnum {
kFlipAxis_X = (1 << 0),
kFlipAxis_Y = (1 << 1)
};
#include "SkDrawFilter.h"
struct HintingState {
SkPaint::Hinting hinting;
const char* name;
const char* label;
};
static HintingState gHintingStates[] = {
{SkPaint::kNo_Hinting, "Mixed", nullptr },
{SkPaint::kNo_Hinting, "None", "H0 " },
{SkPaint::kSlight_Hinting, "Slight", "Hs " },
{SkPaint::kNormal_Hinting, "Normal", "Hn " },
{SkPaint::kFull_Hinting, "Full", "Hf " },
};
struct PixelGeometryState {
SkPixelGeometry pixelGeometry;
const char* name;
const char* label;
};
static PixelGeometryState gPixelGeometryStates[] = {
{SkPixelGeometry::kUnknown_SkPixelGeometry, "Mixed", nullptr },
{SkPixelGeometry::kUnknown_SkPixelGeometry, "Flat", "{Flat} " },
{SkPixelGeometry::kRGB_H_SkPixelGeometry, "RGB H", "{RGB H} " },
{SkPixelGeometry::kBGR_H_SkPixelGeometry, "BGR H", "{BGR H} " },
{SkPixelGeometry::kRGB_V_SkPixelGeometry, "RGB_V", "{RGB V} " },
{SkPixelGeometry::kBGR_V_SkPixelGeometry, "BGR_V", "{BGR V} " },
};
struct FilterQualityState {
SkFilterQuality fQuality;
const char* fName;
const char* fLabel;
};
static FilterQualityState gFilterQualityStates[] = {
{ kNone_SkFilterQuality, "Mixed", nullptr },
{ kNone_SkFilterQuality, "None", "F0 " },
{ kLow_SkFilterQuality, "Low", "F1 " },
{ kMedium_SkFilterQuality, "Medium", "F2 " },
{ kHigh_SkFilterQuality, "High", "F3 " },
};
class FlagsFilterCanvas : public SkPaintFilterCanvas {
public:
FlagsFilterCanvas(SkCanvas* canvas, SkOSMenu::TriState lcd, SkOSMenu::TriState aa,
SkOSMenu::TriState subpixel, int hinting, int filterQuality)
: INHERITED(canvas)
, fLCDState(lcd)
, fAAState(aa)
, fSubpixelState(subpixel)
, fHintingState(hinting)
, fFilterQualityIndex(filterQuality) {
SkASSERT((unsigned)filterQuality < SK_ARRAY_COUNT(gFilterQualityStates));
}
protected:
bool onFilter(SkTCopyOnFirstWrite<SkPaint>* paint, Type t) const override {
if (!*paint) {
return true;
}
if (kText_Type == t && SkOSMenu::kMixedState != fLCDState) {
paint->writable()->setLCDRenderText(SkOSMenu::kOnState == fLCDState);
}
if (SkOSMenu::kMixedState != fAAState) {
paint->writable()->setAntiAlias(SkOSMenu::kOnState == fAAState);
}
if (0 != fFilterQualityIndex) {
paint->writable()->setFilterQuality(gFilterQualityStates[fFilterQualityIndex].fQuality);
}
if (SkOSMenu::kMixedState != fSubpixelState) {
paint->writable()->setSubpixelText(SkOSMenu::kOnState == fSubpixelState);
}
if (0 != fHintingState && fHintingState < (int)SK_ARRAY_COUNT(gHintingStates)) {
paint->writable()->setHinting(gHintingStates[fHintingState].hinting);
}
return true;
}
private:
SkOSMenu::TriState fLCDState;
SkOSMenu::TriState fAAState;
SkOSMenu::TriState fSubpixelState;
int fHintingState;
int fFilterQualityIndex;
typedef SkPaintFilterCanvas INHERITED;
};
///////////////////////////////////////////////////////////////////////////////
class SampleTFSerializer : public SkTypefaceSerializer {
public:
sk_sp<SkData> serialize(SkTypeface* tf) override {
tf->ref();
return SkData::MakeWithCopy(&tf, sizeof(tf));
}
};
class SampleTFDeserializer : public SkTypefaceDeserializer {
public:
sk_sp<SkTypeface> deserialize(const void* data, size_t size) override {
SkASSERT(sizeof(SkTypeface*) == size);
SkTypeface* tf;
memcpy(&tf, data, size);
return sk_sp<SkTypeface>(tf); // this was ref'd in SampleTFSerializer
}
};
///////////////////////////////////////////////////////////////////////////////
enum TilingMode {
kNo_Tiling,
kAbs_128x128_Tiling,
kAbs_256x256_Tiling,
kRel_4x4_Tiling,
kRel_1x16_Tiling,
kRel_16x1_Tiling,
kLast_TilingMode_Enum
};
struct TilingInfo {
const char* label;
SkScalar w, h;
};
static const struct TilingInfo gTilingInfo[] = {
{ "No tiling", SK_Scalar1 , SK_Scalar1 }, // kNo_Tiling
{ "128x128" , SkIntToScalar(128), SkIntToScalar(128) }, // kAbs_128x128_Tiling
{ "256x256" , SkIntToScalar(256), SkIntToScalar(256) }, // kAbs_256x256_Tiling
{ "1/4x1/4" , SK_Scalar1 / 4 , SK_Scalar1 / 4 }, // kRel_4x4_Tiling
{ "1/1x1/16" , SK_Scalar1 , SK_Scalar1 / 16 }, // kRel_1x16_Tiling
{ "1/16x1/1" , SK_Scalar1 / 16 , SK_Scalar1 }, // kRel_16x1_Tiling
};
static_assert((SK_ARRAY_COUNT(gTilingInfo) == kLast_TilingMode_Enum),
"Incomplete_tiling_labels");
SkSize SampleWindow::tileSize() const {
SkASSERT((TilingMode)fTilingMode < kLast_TilingMode_Enum);
const struct TilingInfo* info = gTilingInfo + fTilingMode;
return SkSize::Make(info->w > SK_Scalar1 ? info->w : this->width() * info->w,
info->h > SK_Scalar1 ? info->h : this->height() * info->h);
}
//////////////////////////////////////////////////////////////////////////////
static SkView* curr_view(SkWindow* wind) {
SkView::F2BIter iter(wind);
return iter.next();
}
static bool curr_title(SkWindow* wind, SkString* title) {
SkView* view = curr_view(wind);
if (view) {
SkEvent evt(gTitleEvtName);
if (view->doQuery(&evt)) {
title->set(evt.findString(gTitleEvtName));
return true;
}
}
return false;
}
bool SampleWindow::sendAnimatePulse() {
SkView* view = curr_view(this);
if (SampleView::IsSampleView(view)) {
return ((SampleView*)view)->animate(gAnimTimer);
}
return false;
}
void SampleWindow::setZoomCenter(float x, float y) {
fZoomCenterX = x;
fZoomCenterY = y;
}
bool SampleWindow::zoomIn() {
// Arbitrarily decided
if (fFatBitsScale == kMaxFatBitsScale) return false;
fFatBitsScale++;
this->inval(nullptr);
return true;
}
bool SampleWindow::zoomOut() {
if (fFatBitsScale == 1) return false;
fFatBitsScale--;
this->inval(nullptr);
return true;
}
void SampleWindow::updatePointer(int x, int y) {
fMouseX = x;
fMouseY = y;
if (fShowZoomer) {
this->inval(nullptr);
}
}
static inline SampleWindow::DeviceType cycle_devicetype(SampleWindow::DeviceType ct) {
static const SampleWindow::DeviceType gCT[] = {
SampleWindow::kRaster_DeviceType
#if SK_SUPPORT_GPU
, SampleWindow::kGPU_DeviceType
#if SK_ANGLE
, SampleWindow::kANGLE_DeviceType
#endif // SK_ANGLE
#endif // SK_SUPPORT_GPU
};
static_assert(SK_ARRAY_COUNT(gCT) == SampleWindow::kDeviceTypeCnt, "array_size_mismatch");
return gCT[ct];
}
static SkString getSampleTitle(const SkViewFactory* sampleFactory) {
SkView* view = (*sampleFactory)();
SkString title;
SampleCode::RequestTitle(view, &title);
view->unref();
return title;
}
static bool compareSampleTitle(const SkViewFactory* first, const SkViewFactory* second) {
return strcmp(getSampleTitle(first).c_str(), getSampleTitle(second).c_str()) < 0;
}
static int find_by_title(const SkViewFactory* const* factories, int count, const char title[]) {
for (int i = 0; i < count; i++) {
if (getSampleTitle(factories[i]).equals(title)) {
return i;
}
}
return -1;
}
static void restrict_samples(SkTDArray<const SkViewFactory*>& factories, const SkString titles[],
int count) {
int newCount = 0;
for (int i = 0; i < count; ++i) {
int index = find_by_title(factories.begin(), factories.count(), titles[i].c_str());
if (index >= 0) {
SkTSwap(factories.begin()[newCount], factories.begin()[index]);
newCount += 1;
}
}
if (newCount) {
factories.setCount(newCount);
}
}
DEFINE_string(slide, "", "Start on this sample.");
DEFINE_string(pictureDir, "", "Read pictures from here.");
DEFINE_string(picture, "", "Path to single picture.");
DEFINE_string(pathfinder, "", "SKP file with a single path to isolate.");
DEFINE_string(svg, "", "Path to single SVG file.");
DEFINE_string(svgDir, "", "Read SVGs from here.");
DEFINE_string(sequence, "", "Path to file containing the desired samples/gms to show.");
DEFINE_bool(sort, false, "Sort samples by title.");
DEFINE_bool(list, false, "List samples?");
DEFINE_bool(startgpu, false, "Start up with gpu?");
DEFINE_bool(redraw, false, "Force continuous redrawing, for profiling or debugging tools.");
#ifdef SAMPLE_PDF_FILE_VIEWER
DEFINE_string(pdfPath, "", "Path to direcotry of pdf files.");
#endif
#if SK_SUPPORT_GPU
DEFINE_pathrenderer_flag;
DEFINE_int32(msaa, 0, "Request multisampling with this count.");
DEFINE_bool(deepColor, false, "Request deep color (10-bit/channel or more) display buffer.");
#endif
#include "SkTaskGroup.h"
SampleWindow::SampleWindow(void* hwnd, int argc, char** argv, DeviceManager* devManager)
: INHERITED(hwnd)
, fDevManager(nullptr) {
SkCommandLineFlags::Parse(argc, argv);
fCurrIndex = -1;
if (!FLAGS_pictureDir.isEmpty()) {
SkOSFile::Iter iter(FLAGS_pictureDir[0], "skp");
SkString filename;
while (iter.next(&filename)) {
*fSamples.append() = new PictFileFactory(
SkOSPath::Join(FLAGS_pictureDir[0], filename.c_str()));
}
}
if (!FLAGS_picture.isEmpty()) {
SkString path(FLAGS_picture[0]);
fCurrIndex = fSamples.count();
*fSamples.append() = new PictFileFactory(path);
}
if (!FLAGS_pathfinder.isEmpty()) {
SkString path(FLAGS_pathfinder[0]);
fCurrIndex = fSamples.count();
*fSamples.append() = new PathFinderFactory(path);
}
if (!FLAGS_svg.isEmpty()) {
SkString path(FLAGS_svg[0]);
fCurrIndex = fSamples.count();
*fSamples.append() = new SVGFileFactory(path);
}
if (!FLAGS_svgDir.isEmpty()) {
SkOSFile::Iter iter(FLAGS_svgDir[0], "svg");
SkString filename;
while (iter.next(&filename)) {
*fSamples.append() = new SVGFileFactory(
SkOSPath::Join(FLAGS_svgDir[0], filename.c_str()));
}
}
#ifdef SAMPLE_PDF_FILE_VIEWER
if (!FLAGS_pdfPath.isEmpty()) {
SkOSFile::Iter iter(FLAGS_pdfPath[0], "pdf");
SkString filename;
while (iter.next(&filename)) {
*fSamples.append() = new PdfFileViewerFactory(
SkOSPath::Join(FLAGS_pictureDir[0], filename.c_str()));
}
}
#endif
SkGMRegistyToSampleRegistry();
{
const SkViewRegister* reg = SkViewRegister::Head();
while (reg) {
*fSamples.append() = reg->factory();
reg = reg->next();
}
}
if (!FLAGS_sequence.isEmpty()) {
// The sequence file just contains a list (separated by CRs) of the samples or GM:gms
// you want to restrict to. Only these will appear when you cycle through.
// If none are found, or the file is empty, then it will be ignored, and all samples
// will be available.
SkFILEStream stream(FLAGS_sequence[0]);
if (stream.isValid()) {
size_t len = stream.getLength();
SkAutoTMalloc<char> storage(len + 1);
char* buffer = storage.get();
stream.read(buffer, len);
buffer[len] = 0;
SkTArray<SkString> titles;
SkStrSplit(buffer, "\n\r", &titles);
restrict_samples(fSamples, titles.begin(), titles.count());
}
}
if (FLAGS_sort) {
// Sort samples, so foo.skp and foo.pdf are consecutive and we can quickly spot where
// skp -> pdf -> png fails.
SkTQSort(fSamples.begin(), fSamples.end() ? fSamples.end() - 1 : nullptr, compareSampleTitle);
}
if (!FLAGS_slide.isEmpty()) {
fCurrIndex = findByTitle(FLAGS_slide[0]);
if (fCurrIndex < 0) {
fprintf(stderr, "Unknown sample \"%s\"\n", FLAGS_slide[0]);
listTitles();
}
}
#if SK_SUPPORT_GPU
fBackendOptions.fGrContextOptions.fGpuPathRenderers = CollectGpuPathRenderersFromFlags();
fBackendOptions.fMSAASampleCount = FLAGS_msaa;
fBackendOptions.fDeepColor = FLAGS_deepColor;
#endif
fColorConfigIndex = 0;
if (FLAGS_list) {
listTitles();
}
if (fCurrIndex < 0) {
SkString title;
if (readTitleFromPrefs(&title)) {
fCurrIndex = findByTitle(title.c_str());
}
}
if (fCurrIndex < 0) {
fCurrIndex = 0;
}
static SkTaskGroup::Enabler enabled(-1);
gSampleWindow = this;
fDeviceType = kRaster_DeviceType;
#if SK_SUPPORT_GPU
if (FLAGS_startgpu) {
fDeviceType = kGPU_DeviceType;
}
#endif
#if DEFAULT_TO_GPU
fDeviceType = kGPU_DeviceType;
#endif
#if SK_ANGLE && DEFAULT_TO_ANGLE
fDeviceType = kANGLE_DeviceType;
#endif
fUseClip = false;
fUsePicture = false;
fAnimating = false;
fRotate = false;
fPerspAnim = false;
fRequestGrabImage = false;
fTilingMode = kNo_Tiling;
fMeasureFPS = false;
fUseDeferredCanvas = false;
fLCDState = SkOSMenu::kMixedState;
fAAState = SkOSMenu::kMixedState;
fSubpixelState = SkOSMenu::kMixedState;
fHintingState = 0;
fPixelGeometryIndex = 0;
fFilterQualityIndex = 0;
fFlipAxis = 0;
fMouseX = fMouseY = 0;
fFatBitsScale = 8;
fTypeface = SkTypeface::MakeFromName("Courier", SkFontStyle(SkFontStyle::kBold_Weight,
SkFontStyle::kNormal_Width,
SkFontStyle::kUpright_Slant));
fShowZoomer = false;
fZoomLevel = 0;
fZoomScale = SK_Scalar1;
fOffset = { 0, 0 };
fMagnify = false;
fSaveToPdf = false;
fSaveToSKP = false;
if (true) {
fPipeSerializer.setTypefaceSerializer(new SampleTFSerializer);
fPipeDeserializer.setTypefaceDeserializer(new SampleTFDeserializer);
}
int sinkID = this->getSinkID();
fAppMenu = new SkOSMenu;
fAppMenu->setTitle("Global Settings");
int itemID;
itemID = fAppMenu->appendList("ColorType", "ColorType", sinkID, 0,
gConfig[0].fName,
gConfig[1].fName,
gConfig[2].fName,
gConfig[3].fName,
gConfig[4].fName,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'C');
itemID = fAppMenu->appendList("Device Type", "Device Type", sinkID, 0,
"Raster",
"OpenGL",
#if SK_ANGLE
"ANGLE",
#endif
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'd');
itemID = fAppMenu->appendTriState("AA", "AA", sinkID, fAAState);
fAppMenu->assignKeyEquivalentToItem(itemID, 'b');
itemID = fAppMenu->appendTriState("LCD", "LCD", sinkID, fLCDState);
fAppMenu->assignKeyEquivalentToItem(itemID, 'l');
itemID = fAppMenu->appendList("FilterQuality", "FilterQuality", sinkID, fFilterQualityIndex,
gFilterQualityStates[0].fName,
gFilterQualityStates[1].fName,
gFilterQualityStates[2].fName,
gFilterQualityStates[3].fName,
gFilterQualityStates[4].fName,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'n');
itemID = fAppMenu->appendTriState("Subpixel", "Subpixel", sinkID, fSubpixelState);
fAppMenu->assignKeyEquivalentToItem(itemID, 's');
itemID = fAppMenu->appendList("Hinting", "Hinting", sinkID, fHintingState,
gHintingStates[0].name,
gHintingStates[1].name,
gHintingStates[2].name,
gHintingStates[3].name,
gHintingStates[4].name,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'h');
itemID = fAppMenu->appendList("Pixel Geometry", "Pixel Geometry", sinkID, fPixelGeometryIndex,
gPixelGeometryStates[0].name,
gPixelGeometryStates[1].name,
gPixelGeometryStates[2].name,
gPixelGeometryStates[3].name,
gPixelGeometryStates[4].name,
gPixelGeometryStates[5].name,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 'P');
itemID =fAppMenu->appendList("Tiling", "Tiling", sinkID, fTilingMode,
gTilingInfo[kNo_Tiling].label,
gTilingInfo[kAbs_128x128_Tiling].label,
gTilingInfo[kAbs_256x256_Tiling].label,
gTilingInfo[kRel_4x4_Tiling].label,
gTilingInfo[kRel_1x16_Tiling].label,
gTilingInfo[kRel_16x1_Tiling].label,
nullptr);
fAppMenu->assignKeyEquivalentToItem(itemID, 't');
itemID = fAppMenu->appendSwitch("Slide Show", "Slide Show" , sinkID, false);
fAppMenu->assignKeyEquivalentToItem(itemID, 'a');
itemID = fAppMenu->appendSwitch("Clip", "Clip" , sinkID, fUseClip);
fAppMenu->assignKeyEquivalentToItem(itemID, 'c');
itemID = fAppMenu->appendSwitch("Flip X", "Flip X" , sinkID, false);
fAppMenu->assignKeyEquivalentToItem(itemID, 'x');
itemID = fAppMenu->appendSwitch("Flip Y", "Flip Y" , sinkID, false);
fAppMenu->assignKeyEquivalentToItem(itemID, 'y');
itemID = fAppMenu->appendSwitch("Zoomer", "Zoomer" , sinkID, fShowZoomer);
fAppMenu->assignKeyEquivalentToItem(itemID, 'z');
itemID = fAppMenu->appendSwitch("Magnify", "Magnify" , sinkID, fMagnify);
fAppMenu->assignKeyEquivalentToItem(itemID, 'm');
itemID = fAppMenu->appendAction("Save to PDF", sinkID);
fAppMenu->assignKeyEquivalentToItem(itemID, 'e');
this->addMenu(fAppMenu);
fSlideMenu = new SkOSMenu;
this->addMenu(fSlideMenu);
this->setVisibleP(true);
this->setClipToBounds(false);
this->loadView((*fSamples[fCurrIndex])());
if (nullptr == devManager) {
fDevManager = new DefaultDeviceManager();
} else {
devManager->ref();
fDevManager = devManager;
}
fDevManager->setUpBackend(this, fBackendOptions);
// If another constructor set our dimensions, ensure that our
// onSizeChange gets called.
if (this->height() && this->width()) {
this->onSizeChange();
}
// can't call this synchronously, since it may require a subclass to
// to implement, or the caller may need us to have returned from the
// constructor first. Hence we post an event to ourselves.
// this->updateTitle();
post_event_to_sink(new SkEvent(gUpdateWindowTitleEvtName), this);
gAnimTimer.run();
}
SampleWindow::~SampleWindow() {
SkSafeUnref(fDevManager);
}
int SampleWindow::findByTitle(const char title[]) {
int i, count = fSamples.count();
for (i = 0; i < count; i++) {
if (getSampleTitle(i).equals(title)) {
return i;
}
}
return -1;
}
void SampleWindow::listTitles() {
int count = fSamples.count();
SkDebugf("All Slides:\n");
for (int i = 0; i < count; i++) {
SkDebugf(" %s\n", getSampleTitle(i).c_str());
}
}
static SkBitmap capture_bitmap(SkCanvas* canvas) {
SkBitmap bm;
if (bm.tryAllocPixels(canvas->imageInfo())) {
canvas->readPixels(bm, 0, 0);
}
return bm;
}
static void drawText(SkCanvas* canvas, SkString str, SkScalar left, SkScalar top, SkPaint& paint) {
SkColor desiredColor = paint.getColor();
paint.setColor(SK_ColorWHITE);
const char* c_str = str.c_str();
size_t size = str.size();
SkRect bounds;
paint.measureText(c_str, size, &bounds);
bounds.offset(left, top);
SkScalar inset = SkIntToScalar(-2);
bounds.inset(inset, inset);
canvas->drawRect(bounds, paint);
paint.setColor(desiredColor);
canvas->drawText(c_str, size, left, top, paint);
}
#define XCLIP_N 8
#define YCLIP_N 8
#include "SkDeferredCanvas.h"
#include "SkDumpCanvas.h"
void SampleWindow::draw(SkCanvas* canvas) {
std::unique_ptr<SkThreadedBMPDevice> tDev;
std::unique_ptr<SkCanvas> tCanvas;
if (fThreads > 0) {
tDev.reset(new SkThreadedBMPDevice(this->getBitmap(), fThreads));
tCanvas.reset(new SkCanvas(tDev.get()));
canvas = tCanvas.get();
}
gAnimTimer.updateTime();
if (fGesture.isActive()) {
this->updateMatrix();
}
if (fMeasureFPS) {
fMeasureFPS_Time = 0;
}
SkSize tile = this->tileSize();
if (kNo_Tiling == fTilingMode) {
SkDebugfDumper dumper;
SkDumpCanvas dump(&dumper);
SkDeferredCanvas deferred(canvas, SkDeferredCanvas::kEager);
SkCanvas* c = fUseDeferredCanvas ? &deferred : canvas;
this->INHERITED::draw(c); // no looping or surfaces needed
} else {
const SkScalar w = SkScalarCeilToScalar(tile.width());
const SkScalar h = SkScalarCeilToScalar(tile.height());
SkImageInfo info = SkImageInfo::MakeN32Premul(SkScalarTruncToInt(w), SkScalarTruncToInt(h));
auto surface(canvas->makeSurface(info));
SkCanvas* tileCanvas = surface->getCanvas();
for (SkScalar y = 0; y < height(); y += h) {
for (SkScalar x = 0; x < width(); x += w) {
SkAutoCanvasRestore acr(tileCanvas, true);
tileCanvas->translate(-x, -y);
tileCanvas->clear(0);
this->INHERITED::draw(tileCanvas);
surface->draw(canvas, x, y, nullptr);
}
}
// for drawing the borders between tiles
SkPaint paint;
paint.setColor(0x60FF00FF);
paint.setStyle(SkPaint::kStroke_Style);
for (SkScalar y = 0; y < height(); y += tile.height()) {
for (SkScalar x = 0; x < width(); x += tile.width()) {
canvas->drawRect(SkRect::MakeXYWH(x, y, tile.width(), tile.height()), paint);
}
}
}
if (fShowZoomer && !fSaveToPdf) {
showZoomer(canvas);
}
if (fMagnify && !fSaveToPdf) {
magnify(canvas);
}
if (fMeasureFPS && fMeasureFPS_Time) {
this->updateTitle();
this->postInvalDelay();
}
if (this->sendAnimatePulse() || FLAGS_redraw) {
this->inval(nullptr);
}
canvas->flush();
// do this last
fDevManager->publishCanvas(fDeviceType, canvas, this);
}
static float clipW = 200;
static float clipH = 200;
void SampleWindow::magnify(SkCanvas* canvas) {
SkRect r;
int count = canvas->save();
SkMatrix m = canvas->getTotalMatrix();
if (!m.invert(&m)) {
return;
}
SkPoint offset, center;
SkScalar mouseX = fMouseX * SK_Scalar1;
SkScalar mouseY = fMouseY * SK_Scalar1;
m.mapXY(mouseX - clipW/2, mouseY - clipH/2, &offset);
m.mapXY(mouseX, mouseY, &center);
r.set(0, 0, clipW * m.getScaleX(), clipH * m.getScaleX());
r.offset(offset.fX, offset.fY);
SkPaint paint;
paint.setColor(0xFF66AAEE);
paint.setStyle(SkPaint::kStroke_Style);
paint.setStrokeWidth(10.f * m.getScaleX());
//lense offset
//canvas->translate(0, -250);
canvas->drawRect(r, paint);
canvas->clipRect(r);
m = canvas->getTotalMatrix();
m.setTranslate(-center.fX, -center.fY);
m.postScale(0.5f * fFatBitsScale, 0.5f * fFatBitsScale);
m.postTranslate(center.fX, center.fY);
canvas->concat(m);
this->INHERITED::draw(canvas);
canvas->restoreToCount(count);
}
static SkPaint& set_color_ref(SkPaint& paint, SkColor c) {
paint.setColor(c);
return paint;
}
static void show_lcd_box(SkCanvas* canvas, SkScalar x, SkScalar y, SkColor c,
SkScalar sx, SkScalar sy) {
const SkScalar w = (1 - 1/sx) / 3;
SkPaint paint;
SkRect r = SkRect::MakeXYWH(x, y, w, 1 - 1/sy);
canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(SkColorGetR(c), 0, 0)));
r.offset(w, 0);
canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(0, SkColorGetG(c), 0)));
r.offset(w, 0);
canvas->drawRect(r, set_color_ref(paint, SkColorSetRGB(0, 0, SkColorGetB(c))));
}
static void show_lcd_circle(SkCanvas* canvas, SkScalar x, SkScalar y, SkColor c,
SkScalar, SkScalar) {
const SkRect r = SkRect::MakeXYWH(x, y, 1, 1);
const SkScalar cx = x + 0.5f;
const SkScalar cy = y + 0.5f;
SkPaint paint;
paint.setAntiAlias(true);
SkPath path;
path.addArc(r, 0, 120); path.lineTo(cx, cy);
canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(SkColorGetR(c), 0, 0)));
path.reset(); path.addArc(r, 120, 120); path.lineTo(cx, cy);
canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(0, SkColorGetG(c), 0)));
path.reset(); path.addArc(r, 240, 120); path.lineTo(cx, cy);
canvas->drawPath(path, set_color_ref(paint, SkColorSetRGB(0, 0, SkColorGetB(c))));
}
typedef void (*ShowLCDProc)(SkCanvas*, SkScalar, SkScalar, SkColor, SkScalar, SkScalar);
/*
* Like drawBitmapRect but we manually draw each pixels in RGB
*/
static void show_lcd_grid(SkCanvas* canvas, const SkBitmap& bitmap,
const SkIRect& origSrc, const SkRect& dst, ShowLCDProc proc) {
SkIRect src;
if (!src.intersect(origSrc, bitmap.bounds())) {
return;
}
const SkScalar sx = dst.width() / src.width();
const SkScalar sy = dst.height() / src.height();
SkAutoCanvasRestore acr(canvas, true);
canvas->translate(dst.left(), dst.top());
canvas->scale(sx, sy);
for (int y = 0; y < src.height(); ++y) {
for (int x = 0; x < src.width(); ++x) {
proc(canvas, SkIntToScalar(x), SkIntToScalar(y),
bitmap.getColor(src.left() + x, src.top() + y), sx, sy);
}
}
}
void SampleWindow::showZoomer(SkCanvas* canvas) {
int count = canvas->save();
canvas->resetMatrix();
// Ensure the mouse position is on screen.
int width = SkScalarRoundToInt(this->width());
int height = SkScalarRoundToInt(this->height());
if (fMouseX >= width) fMouseX = width - 1;
else if (fMouseX < 0) fMouseX = 0;
if (fMouseY >= height) fMouseY = height - 1;
else if (fMouseY < 0) fMouseY = 0;
SkBitmap bitmap = capture_bitmap(canvas);
// Find the size of the zoomed in view, forced to be odd, so the examined pixel is in the middle.
int zoomedWidth = (width >> 1) | 1;
int zoomedHeight = (height >> 1) | 1;
SkIRect src;
src.set(0, 0, zoomedWidth / fFatBitsScale, zoomedHeight / fFatBitsScale);
src.offset(fMouseX - (src.width()>>1), fMouseY - (src.height()>>1));
SkRect dest;
dest.set(0, 0, SkIntToScalar(zoomedWidth), SkIntToScalar(zoomedHeight));
dest.offset(SkIntToScalar(width - zoomedWidth), SkIntToScalar(height - zoomedHeight));
SkPaint paint;
// Clear the background behind our zoomed in view
paint.setColor(SK_ColorWHITE);
canvas->drawRect(dest, paint);
switch (fFatBitsScale) {
case kMaxFatBitsScale:
show_lcd_grid(canvas, bitmap, src, dest, show_lcd_box);
break;
case kMaxFatBitsScale - 1:
show_lcd_grid(canvas, bitmap, src, dest, show_lcd_circle);
break;
default:
canvas->drawBitmapRect(bitmap, src, dest, nullptr);
break;
}
paint.setColor(SK_ColorBLACK);
paint.setStyle(SkPaint::kStroke_Style);
// Draw a border around the pixel in the middle
SkRect originalPixel;
originalPixel.set(SkIntToScalar(fMouseX), SkIntToScalar(fMouseY), SkIntToScalar(fMouseX + 1), SkIntToScalar(fMouseY + 1));
SkMatrix matrix;
SkRect scalarSrc;
scalarSrc.set(src);
SkColor color = bitmap.getColor(fMouseX, fMouseY);
if (matrix.setRectToRect(scalarSrc, dest, SkMatrix::kFill_ScaleToFit)) {
SkRect pixel;
matrix.mapRect(&pixel, originalPixel);
// TODO Perhaps measure the values and make the outline white if it's "dark"
if (color == SK_ColorBLACK) {
paint.setColor(SK_ColorWHITE);
}
canvas->drawRect(pixel, paint);
}
paint.setColor(SK_ColorBLACK);
// Draw a border around the destination rectangle
canvas->drawRect(dest, paint);
paint.setStyle(SkPaint::kStrokeAndFill_Style);
// Identify the pixel and its color on screen
paint.setTypeface(fTypeface);
paint.setAntiAlias(true);
paint.setTextSize(18);
SkScalar lineHeight = paint.getFontMetrics(nullptr);
SkString string;
string.appendf("(%i, %i)", fMouseX, fMouseY);
SkScalar left = dest.fLeft + SkIntToScalar(3);
SkScalar i = SK_Scalar1;
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Alpha
i += SK_Scalar1;
string.reset();
string.appendf("A: %X", SkColorGetA(color));
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Red
i += SK_Scalar1;
string.reset();
string.appendf("R: %X", SkColorGetR(color));
paint.setColor(SK_ColorRED);
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Green
i += SK_Scalar1;
string.reset();
string.appendf("G: %X", SkColorGetG(color));
paint.setColor(0xFF008800);
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
// Blue
i += SK_Scalar1;
string.reset();
string.appendf("B: %X", SkColorGetB(color));
paint.setColor(SK_ColorBLUE);
drawText(canvas, string, left, lineHeight * i + dest.fTop, paint);
canvas->restoreToCount(count);
}
void SampleWindow::onDraw(SkCanvas* canvas) {
}
#include "SkColorPriv.h"
void SampleWindow::saveToPdf()
{
fSaveToPdf = true;
this->inval(nullptr);
}
SkCanvas* SampleWindow::beforeChildren(SkCanvas* canvas) {
if (fSaveToPdf) {
SkString name;
if (!this->getRawTitle(&name)) {
name.set("unknown_sample");
}
name.append(".pdf");
#ifdef SK_BUILD_FOR_ANDROID
name.prepend("/sdcard/");
#endif
fPDFDocument = SkDocument::MakePDF(name.c_str());
canvas = fPDFDocument->beginPage(this->width(), this->height());
} else if (fSaveToSKP) {
canvas = fRecorder.beginRecording(9999, 9999, nullptr, 0);
} else if (fUsePicture) {
if (PICTURE_MEANS_PIPE) {
fPipeStream.reset(new SkDynamicMemoryWStream);
canvas = fPipeSerializer.beginWrite(SkRect::MakeWH(this->width(), this->height()),
fPipeStream.get());
} else {
canvas = fRecorder.beginRecording(9999, 9999, nullptr, 0);
}
} else {
canvas = this->INHERITED::beforeChildren(canvas);
}
if (fUseClip) {
canvas->drawColor(0xFFFF88FF);
canvas->clipPath(fClipPath, kIntersect_SkClipOp, true);
}
// Install a flags filter proxy canvas if needed
if (fLCDState != SkOSMenu::kMixedState ||
fAAState != SkOSMenu::kMixedState ||
fSubpixelState != SkOSMenu::kMixedState ||
fHintingState > 0 ||
fFilterQualityIndex > 0) {
canvas = new FlagsFilterCanvas(canvas, fLCDState, fAAState, fSubpixelState, fHintingState,
fFilterQualityIndex);
fFlagsFilterCanvas.reset(canvas);
}
return canvas;
}
#include "SkMultiPictureDraw.h"
void SampleWindow::afterChildren(SkCanvas* orig) {
fFlagsFilterCanvas.reset(nullptr);
if (fSaveToPdf) {
fSaveToPdf = false;
fPDFDocument->endPage();
fPDFDocument.reset(nullptr);
// We took over the draw calls in order to create the PDF, so we need
// to redraw.
this->inval(nullptr);
return;
}
if (fRequestGrabImage) {
fRequestGrabImage = false;
SkBitmap bmp = capture_bitmap(orig);
if (!bmp.isNull()) {
static int gSampleGrabCounter;
SkString name;
name.printf("sample_grab_%d.png", gSampleGrabCounter++);
sk_tool_utils::EncodeImageToFile(name.c_str(), bmp,
SkEncodedImageFormat::kPNG, 100);
}
this->inval(nullptr);
return;
}
if (fSaveToSKP) {
sk_sp<SkPicture> picture(fRecorder.finishRecordingAsPicture());
SkFILEWStream stream("sample_app.skp");
picture->serialize(&stream);
fSaveToSKP = false;
this->inval(nullptr);
return;
}
if (fUsePicture) {
if (PICTURE_MEANS_PIPE) {
fPipeSerializer.endWrite();
sk_sp<SkData> data(fPipeStream->detachAsData());
fPipeDeserializer.playback(data->data(), data->size(), orig);
fPipeStream.reset();
} else {
sk_sp<SkPicture> picture(fRecorder.finishRecordingAsPicture());
if (SERIALIZE_PICTURE) {
auto data = picture->serialize();
picture = SkPicture::MakeFromData(data.get(), nullptr);
}
orig->drawPicture(picture.get());
}
}
// Do this after presentGL and other finishing, rather than in afterChild
if (fMeasureFPS) {
orig->flush();
fTimer.end();
fMeasureFPS_Time += fTimer.fWall;
}
}
void SampleWindow::beforeChild(SkView* child, SkCanvas* canvas) {
if (fRotate) {
SkScalar cx = this->width() / 2;
SkScalar cy = this->height() / 2;
canvas->rotate(gAnimTimer.scaled(10), cx, cy);
}
if (fPerspAnim) {
SkScalar secs = gAnimTimer.scaled(1);
static const SkScalar gAnimPeriod = 10 * SK_Scalar1;
static const SkScalar gAnimMag = SK_Scalar1 / 1000;
SkScalar t = SkScalarMod(secs, gAnimPeriod);
if (SkScalarFloorToInt(secs / gAnimPeriod) & 0x1) {
t = gAnimPeriod - t;
}
t = 2 * t - gAnimPeriod;
t *= gAnimMag / gAnimPeriod;
SkMatrix m;
m.reset();
#if 1
m.setPerspY(t);
#else
m.setPerspY(SK_Scalar1 / 1000);
m.setSkewX(8.0f / 25);
m.dump();
#endif
canvas->concat(m);
}
if (fMeasureFPS) {
(void)SampleView::SetRepeatDraw(child, FPS_REPEAT_COUNT);
fTimer.start();
} else {
(void)SampleView::SetRepeatDraw(child, 1);
}
if (fPerspAnim || fRotate) {
this->inval(nullptr);
}
}
void SampleWindow::changeOffset(SkVector delta) {
fOffset += delta;
this->updateMatrix();
}
void SampleWindow::changeZoomLevel(float delta) {
fZoomLevel += delta;
if (fZoomLevel > 0) {
fZoomLevel = SkMinScalar(fZoomLevel, MAX_ZOOM_LEVEL);
fZoomScale = fZoomLevel + SK_Scalar1;
} else if (fZoomLevel < 0) {
fZoomLevel = SkMaxScalar(fZoomLevel, MIN_ZOOM_LEVEL);
fZoomScale = SK_Scalar1 / (SK_Scalar1 - fZoomLevel);
} else {
fZoomScale = SK_Scalar1;
}
this->updateMatrix();
}
void SampleWindow::updateMatrix(){
SkMatrix m;
m.reset();
if (fZoomLevel) {
SkPoint center;
//m = this->getLocalMatrix();//.invert(&m);
m.mapXY(fZoomCenterX, fZoomCenterY, &center);
SkScalar cx = center.fX;
SkScalar cy = center.fY;
m.setTranslate(-cx, -cy);
m.postScale(fZoomScale, fZoomScale);
m.postTranslate(cx, cy);
}
m.postTranslate(fOffset.fX, fOffset.fY);
if (fFlipAxis) {
m.preTranslate(fZoomCenterX, fZoomCenterY);
if (fFlipAxis & kFlipAxis_X) {
m.preScale(-SK_Scalar1, SK_Scalar1);
}
if (fFlipAxis & kFlipAxis_Y) {
m.preScale(SK_Scalar1, -SK_Scalar1);
}
m.preTranslate(-fZoomCenterX, -fZoomCenterY);
//canvas->concat(m);
}
// Apply any gesture matrix
m.preConcat(fGesture.localM());
m.preConcat(fGesture.globalM());
this->setLocalMatrix(m);
this->updateTitle();
this->inval(nullptr);
}
bool SampleWindow::previousSample() {
fCurrIndex = (fCurrIndex - 1 + fSamples.count()) % fSamples.count();
this->loadView((*fSamples[fCurrIndex])());
return true;
}
#include "SkResourceCache.h"
#include "SkGlyphCache.h"
bool SampleWindow::nextSample() {
fCurrIndex = (fCurrIndex + 1) % fSamples.count();
this->loadView((*fSamples[fCurrIndex])());
if (false) {
SkResourceCache::TestDumpMemoryStatistics();
SkGlyphCache::Dump();
SkDebugf("\n");
}
return true;
}
bool SampleWindow::goToSample(int i) {
fCurrIndex = (i) % fSamples.count();
this->loadView((*fSamples[fCurrIndex])());
return true;
}
SkString SampleWindow::getSampleTitle(int i) {
return ::getSampleTitle(fSamples[i]);
}
int SampleWindow::sampleCount() {
return fSamples.count();
}
void SampleWindow::showOverview() {
this->loadView(create_overview(fSamples.count(), fSamples.begin()));
}
void SampleWindow::postAnimatingEvent() {
if (fAnimating) {
(new SkEvent(ANIMATING_EVENTTYPE, this->getSinkID()))->postDelay(ANIMATING_DELAY);
}
}
static sk_sp<SkColorSpace> getMonitorColorSpace() {
#if defined(SK_BUILD_FOR_MAC)
CGColorSpaceRef cs = CGDisplayCopyColorSpace(CGMainDisplayID());
CFDataRef dataRef = CGColorSpaceCopyICCProfile(cs);
const uint8_t* data = CFDataGetBytePtr(dataRef);
size_t size = CFDataGetLength(dataRef);
sk_sp<SkColorSpace> colorSpace = SkColorSpace::MakeICC(data, size);
CFRelease(cs);
CFRelease(dataRef);
return colorSpace;
#elif defined(SK_BUILD_FOR_WIN)
DISPLAY_DEVICE dd = { sizeof(DISPLAY_DEVICE) };
// Chrome's code for this currently just gets the primary monitor's profile. This code iterates
// over all attached monitors, so it's "better" in that sense. Making intelligent use of this
// information (via things like MonitorFromWindow or MonitorFromRect to pick the correct
// profile for a particular window or region of a window), is an exercise left to the reader.
for (int i = 0; EnumDisplayDevices(NULL, i, &dd, 0); ++i) {
if (dd.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
// There are other helpful things in dd at this point:
// dd.DeviceString has a longer name for the adapter
// dd.StateFlags indicates primary display, mirroring, etc...
HDC dc = CreateDC(NULL, dd.DeviceName, NULL, NULL);
if (dc) {
char icmPath[MAX_PATH + 1];
DWORD pathLength = MAX_PATH;
BOOL success = GetICMProfileA(dc, &pathLength, icmPath);
DeleteDC(dc);
if (success) {
sk_sp<SkData> iccData = SkData::MakeFromFileName(icmPath);
return SkColorSpace::MakeICC(iccData->data(), iccData->size());
}
}
}
}
return nullptr;
#else
return nullptr;
#endif
}
bool SampleWindow::onEvent(const SkEvent& evt) {
if (evt.isType(gUpdateWindowTitleEvtName)) {
this->updateTitle();
return true;
}
if (evt.isType(ANIMATING_EVENTTYPE)) {
if (fAnimating) {
this->nextSample();
this->postAnimatingEvent();
}
return true;
}
if (evt.isType("set-curr-index")) {
this->goToSample(evt.getFast32());
return true;
}
if (isInvalEvent(evt)) {
this->inval(nullptr);
return true;
}
int selected = -1;
if (SkOSMenu::FindListIndex(evt, "Device Type", &selected)) {
this->setDeviceType((DeviceType)selected);
return true;
}
if (SkOSMenu::FindListIndex(evt, "ColorType", &selected)) {
fColorConfigIndex = selected;
sk_sp<SkColorSpace> colorSpace = nullptr;
switch (gConfig[selected].fColorSpace) {
case kSRGB_OutputColorSpace:
colorSpace = SkColorSpace::MakeSRGB();
break;
case kNarrow_OutputColorSpace:
{
// NarrowGamut RGB (an artifically smaller than sRGB gamut)
SkColorSpacePrimaries primaries ={
0.54f, 0.33f, // Rx, Ry
0.33f, 0.50f, // Gx, Gy
0.25f, 0.20f, // Bx, By
0.3127f, 0.3290f, // Wx, Wy
};
SkMatrix44 narrowGamutRGBMatrix(SkMatrix44::kUninitialized_Constructor);
primaries.toXYZD50(&narrowGamutRGBMatrix);
colorSpace = SkColorSpace::MakeRGB(SkColorSpace::kSRGB_RenderTargetGamma,
narrowGamutRGBMatrix);
}
break;
case kMonitor_OutputColorSpace:
colorSpace = getMonitorColorSpace();
if (!colorSpace) {
// Fallback for platforms / machines where we can't get a monitor profile
colorSpace = SkColorSpace::MakeSRGB();
}
break;
case kLegacy_OutputColorSpace:
default:
// Do nothing
break;
}
if (kRGBA_F16_SkColorType == gConfig[selected].fColorType) {
SkASSERT(colorSpace);
SkASSERT(SkColorSpace_Base::Type::kXYZ == as_CSB(colorSpace)->type());
SkColorSpace_XYZ* csXYZ = static_cast<SkColorSpace_XYZ*>(colorSpace.get());
colorSpace = csXYZ->makeLinearGamma();
}
this->setDeviceColorType(gConfig[selected].fColorType, colorSpace);
return true;
}
if (SkOSMenu::FindSwitchState(evt, "Slide Show", nullptr)) {
this->toggleSlideshow();
return true;
}
if (SkOSMenu::FindTriState(evt, "AA", &fAAState) ||
SkOSMenu::FindTriState(evt, "LCD", &fLCDState) ||
SkOSMenu::FindListIndex(evt, "FilterQuality", &fFilterQualityIndex) ||
SkOSMenu::FindTriState(evt, "Subpixel", &fSubpixelState) ||
SkOSMenu::FindListIndex(evt, "Hinting", &fHintingState) ||
SkOSMenu::FindSwitchState(evt, "Clip", &fUseClip) ||
SkOSMenu::FindSwitchState(evt, "Zoomer", &fShowZoomer) ||
SkOSMenu::FindSwitchState(evt, "Magnify", &fMagnify))
{
this->inval(nullptr);
this->updateTitle();
return true;
}
if (SkOSMenu::FindListIndex(evt, "Pixel Geometry", &fPixelGeometryIndex)) {
this->setPixelGeometry(fPixelGeometryIndex);
return true;
}
if (SkOSMenu::FindListIndex(evt, "Tiling", &fTilingMode)) {
if (SampleView::IsSampleView(curr_view(this))) {
((SampleView*)curr_view(this))->onTileSizeChanged(this->tileSize());
}
this->inval(nullptr);
this->updateTitle();
return true;
}
if (SkOSMenu::FindSwitchState(evt, "Flip X", nullptr)) {
fFlipAxis ^= kFlipAxis_X;
this->updateMatrix();
return true;
}
if (SkOSMenu::FindSwitchState(evt, "Flip Y", nullptr)) {
fFlipAxis ^= kFlipAxis_Y;
this->updateMatrix();
return true;
}
if (SkOSMenu::FindAction(evt,"Save to PDF")) {
this->saveToPdf();
return true;
}
return this->INHERITED::onEvent(evt);
}
bool SampleWindow::onQuery(SkEvent* query) {
if (query->isType("get-slide-count")) {
query->setFast32(fSamples.count());
return true;
}
if (query->isType("get-slide-title")) {
SkView* view = (*fSamples[query->getFast32()])();
SkEvent evt(gTitleEvtName);
if (view->doQuery(&evt)) {
query->setString("title", evt.findString(gTitleEvtName));
}
SkSafeUnref(view);
return true;
}
if (query->isType("use-fast-text")) {
SkEvent evt(gFastTextEvtName);
return curr_view(this)->doQuery(&evt);
}
if (query->isType("ignore-window-bitmap")) {
query->setFast32(this->getGrContext() != nullptr);
return true;
}
return this->INHERITED::onQuery(query);
}
DECLARE_bool(portableFonts);
bool SampleWindow::onHandleChar(SkUnichar uni) {
{
SkView* view = curr_view(this);
if (view) {
SkEvent evt(gCharEvtName);
evt.setFast32(uni);
if (view->doQuery(&evt)) {
return true;
}
}
}
int dx = 0xFF;
int dy = 0xFF;
switch (uni) {
case '5': dx = 0; dy = 0; break;
case '8': dx = 0; dy = -1; break;
case '6': dx = 1; dy = 0; break;
case '2': dx = 0; dy = 1; break;
case '4': dx = -1; dy = 0; break;
case '7': dx = -1; dy = -1; break;
case '9': dx = 1; dy = -1; break;
case '3': dx = 1; dy = 1; break;
case '1': dx = -1; dy = 1; break;
default:
break;
}
if (0xFF != dx && 0xFF != dy) {
this->changeOffset({SkIntToScalar(dx / 32.0f), SkIntToScalar(dy / 32.0f)});
return true;
}
switch (uni) {
case 27: // ESC
gAnimTimer.stop();
if (this->sendAnimatePulse()) {
this->inval(nullptr);
}
break;
case '+':
gSampleWindow->setThreads(gSampleWindow->getThreads() + 1);
this->inval(nullptr);
this->updateTitle();
break;
case '-':
gSampleWindow->setThreads(SkTMax(0, gSampleWindow->getThreads() - 1));
this->inval(nullptr);
this->updateTitle();
break;
case ' ':
gAnimTimer.togglePauseResume();
if (this->sendAnimatePulse()) {
this->inval(nullptr);
}
break;
case 'A':
if (gSkUseAnalyticAA.load() && !gSkForceAnalyticAA.load()) {
gSkForceAnalyticAA = true;
} else {
gSkUseAnalyticAA = !gSkUseAnalyticAA.load();
gSkForceAnalyticAA = false;
}
this->inval(nullptr);
this->updateTitle();
break;
case 'B':
post_event_to_sink(new SkEvent("PictFileView::toggleBBox"), curr_view(this));
// Cannot call updateTitle() synchronously, because the toggleBBox event is still in
// the queue.
post_event_to_sink(new SkEvent(gUpdateWindowTitleEvtName), this);
this->inval(nullptr);
break;
case 'D':
toggleDistanceFieldFonts();
break;
case 'E':
fUseDeferredCanvas = !fUseDeferredCanvas;
this->inval(nullptr);
break;
case 'f':
// only
toggleFPS();
break;
case 'F':
FLAGS_portableFonts ^= true;
this->inval(nullptr);
break;
case 'g':
fRequestGrabImage = true;
this->inval(nullptr);
break;
case 'G':
gShowGMBounds = !gShowGMBounds;
post_event_to_sink(GMSampleView::NewShowSizeEvt(gShowGMBounds),
curr_view(this));
this->inval(nullptr);
break;
case 'i':
this->zoomIn();
break;
case 'o':
this->zoomOut();
break;
case 'r':
fRotate = !fRotate;
this->inval(nullptr);
this->updateTitle();
return true;
case 'k':
fPerspAnim = !fPerspAnim;
this->inval(nullptr);
this->updateTitle();
return true;
case 'K':
fSaveToSKP = true;
this->inval(nullptr);
return true;
case 'M':
fUsePicture = !fUsePicture;
this->inval(nullptr);
this->updateTitle();
return true;
#if SK_SUPPORT_GPU
case 'p':
{
GrContext* grContext = this->getGrContext();
if (grContext) {
size_t cacheBytes;
grContext->getResourceCacheUsage(nullptr, &cacheBytes);
grContext->freeGpuResources();
SkDebugf("Purged %d bytes from the GPU resource cache.\n", cacheBytes);
}
}
return true;
#endif
default:
break;
}
if (fAppMenu->handleKeyEquivalent(uni)|| fSlideMenu->handleKeyEquivalent(uni)) {
this->onUpdateMenu(fAppMenu);
this->onUpdateMenu(fSlideMenu);
return true;
}
return this->INHERITED::onHandleChar(uni);
}
void SampleWindow::setDeviceType(DeviceType type) {
if (type == fDeviceType)
return;
fDevManager->tearDownBackend(this);
fDeviceType = type;
fDevManager->setUpBackend(this, fBackendOptions);
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::setDeviceColorType(SkColorType ct, sk_sp<SkColorSpace> cs) {
this->setColorType(ct, std::move(cs));
fDevManager->tearDownBackend(this);
fDevManager->setUpBackend(this, fBackendOptions);
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::toggleSlideshow() {
fAnimating = !fAnimating;
this->postAnimatingEvent();
this->updateTitle();
}
void SampleWindow::toggleRendering() {
this->setDeviceType(cycle_devicetype(fDeviceType));
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::toggleFPS() {
fMeasureFPS = !fMeasureFPS;
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::toggleDistanceFieldFonts() {
// reset backend
fDevManager->tearDownBackend(this);
fDevManager->setUpBackend(this, fBackendOptions);
SkSurfaceProps props = this->getSurfaceProps();
uint32_t flags = props.flags() ^ SkSurfaceProps::kUseDeviceIndependentFonts_Flag;
this->setSurfaceProps(SkSurfaceProps(flags, props.pixelGeometry()));
this->updateTitle();
this->inval(nullptr);
}
void SampleWindow::setPixelGeometry(int pixelGeometryIndex) {
// reset backend
fDevManager->tearDownBackend(this);
fDevManager->setUpBackend(this, fBackendOptions);
const SkSurfaceProps& oldProps = this->getSurfaceProps();
SkSurfaceProps newProps(oldProps.flags(), SkSurfaceProps::kLegacyFontHost_InitType);
if (pixelGeometryIndex > 0) {
newProps = SkSurfaceProps(oldProps.flags(),
gPixelGeometryStates[pixelGeometryIndex].pixelGeometry);
}
this->setSurfaceProps(newProps);
this->updateTitle();
this->inval(nullptr);
}
#include "SkDumpCanvas.h"
bool SampleWindow::onHandleKey(SkKey key) {
{
SkView* view = curr_view(this);
if (view) {
SkEvent evt(gKeyEvtName);
evt.setFast32(key);
if (view->doQuery(&evt)) {
return true;
}
}
}
int dx = 0xFF;
int dy = 0xFF;
switch (key) {
case kRight_SkKey:
if (this->nextSample()) {
return true;
}
break;
case kLeft_SkKey:
if (this->previousSample()) {
return true;
}
return true;
case kUp_SkKey:
this->changeZoomLevel(1.f / 32.f);
return true;
case kDown_SkKey:
this->changeZoomLevel(-1.f / 32.f);
return true;
case kOK_SkKey: {
SkString title;
if (curr_title(this, &title)) {
writeTitleToPrefs(title.c_str());
}
return true;
}
case kBack_SkKey:
this->showOverview();
return true;
case k5_SkKey: dx = 0; dy = 0; break;
case k8_SkKey: dx = 0; dy = -1; break;
case k6_SkKey: dx = 1; dy = 0; break;
case k2_SkKey: dx = 0; dy = 1; break;
case k4_SkKey: dx = -1; dy = 0; break;
case k7_SkKey: dx = -1; dy = -1; break;
case k9_SkKey: dx = 1; dy = -1; break;
case k3_SkKey: dx = 1; dy = 1; break;
case k1_SkKey: dx = -1; dy = 1; break;
default:
break;
}
if (0xFF != dx && 0xFF != dy) {
this->changeOffset({SkIntToScalar(dx / 32.0f), SkIntToScalar(dy / 32.0f)});
return true;
}
return this->INHERITED::onHandleKey(key);
}
///////////////////////////////////////////////////////////////////////////////
static const char gGestureClickType[] = "GestureClickType";
bool SampleWindow::onDispatchClick(int x, int y, Click::State state,
void* owner, unsigned modi) {
if (Click::kMoved_State == state) {
updatePointer(x, y);
}
int w = SkScalarRoundToInt(this->width());
int h = SkScalarRoundToInt(this->height());
// check for the resize-box
if (w - x < 16 && h - y < 16) {
return false; // let the OS handle the click
}
else if (fMagnify) {
//it's only necessary to update the drawing if there's a click
this->inval(nullptr);
return false; //prevent dragging while magnify is enabled
} else {
// capture control+option, and trigger debugger
if ((modi & kControl_SkModifierKey) && (modi & kOption_SkModifierKey)) {
if (Click::kDown_State == state) {
SkEvent evt("debug-hit-test");
evt.setS32("debug-hit-test-x", x);
evt.setS32("debug-hit-test-y", y);
curr_view(this)->doEvent(evt);
}
return true;
} else {
return this->INHERITED::onDispatchClick(x, y, state, owner, modi);
}
}
}
class GestureClick : public SkView::Click {
public:
GestureClick(SkView* target) : SkView::Click(target) {
this->setType(gGestureClickType);
}
static bool IsGesture(Click* click) {
return click->isType(gGestureClickType);
}
};
SkView::Click* SampleWindow::onFindClickHandler(SkScalar x, SkScalar y,
unsigned modi) {
return new GestureClick(this);
}
bool SampleWindow::onClick(Click* click) {
if (GestureClick::IsGesture(click)) {
float x = static_cast<float>(click->fICurr.fX);
float y = static_cast<float>(click->fICurr.fY);
switch (click->fState) {
case SkView::Click::kDown_State:
fGesture.touchBegin(click->fOwner, x, y);
break;
case SkView::Click::kMoved_State:
fGesture.touchMoved(click->fOwner, x, y);
this->updateMatrix();
break;
case SkView::Click::kUp_State:
fGesture.touchEnd(click->fOwner);
this->updateMatrix();
break;
}
return true;
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
void SampleWindow::loadView(SkView* view) {
SkView::F2BIter iter(this);
SkView* prev = iter.next();
if (prev) {
prev->detachFromParent();
}
view->setVisibleP(true);
view->setClipToBounds(false);
this->attachChildToFront(view)->unref();
view->setSize(this->width(), this->height());
//repopulate the slide menu when a view is loaded
fSlideMenu->reset();
this->onUpdateMenu(fSlideMenu);
this->updateTitle();
}
static const char* gDeviceTypePrefix[] = {
"raster: ",
#if SK_SUPPORT_GPU
"opengl: ",
#if SK_ANGLE
"angle: ",
#endif // SK_ANGLE
#endif // SK_SUPPORT_GPU
};
static_assert(SK_ARRAY_COUNT(gDeviceTypePrefix) == SampleWindow::kDeviceTypeCnt,
"array_size_mismatch");
static const char* trystate_str(SkOSMenu::TriState state,
const char trueStr[], const char falseStr[]) {
if (SkOSMenu::kOnState == state) {
return trueStr;
} else if (SkOSMenu::kOffState == state) {
return falseStr;
}
return nullptr;
}
bool SampleWindow::getRawTitle(SkString* title) {
return curr_title(this, title);
}
void SampleWindow::updateTitle() {
SkString title;
if (!this->getRawTitle(&title)) {
title.set("<unknown>");
}
title.prepend(gDeviceTypePrefix[fDeviceType]);
if (gSampleWindow->getThreads()) {
title.prependf("[T%d] ", gSampleWindow->getThreads());
}
if (gSkUseAnalyticAA) {
if (gSkForceAnalyticAA) {
title.prepend("<FAAA> ");
} else {
title.prepend("<AAA> ");
}
}
if (fTilingMode != kNo_Tiling) {
title.prependf("<T: %s> ", gTilingInfo[fTilingMode].label);
}
if (fAnimating) {
title.prepend("<A> ");
}
if (fRotate) {
title.prepend("<R> ");
}
if (fPerspAnim) {
title.prepend("<K> ");
}
if (this->getSurfaceProps().flags() & SkSurfaceProps::kUseDeviceIndependentFonts_Flag) {
title.prepend("<DIF> ");
}
if (fUsePicture) {
title.prepend("<P> ");
}
if (fUseDeferredCanvas) {
title.prepend("<E> ");
}
title.prepend(trystate_str(fLCDState, "LCD ", "lcd "));
title.prepend(trystate_str(fAAState, "AA ", "aa "));
title.prepend(gFilterQualityStates[fFilterQualityIndex].fLabel);
title.prepend(trystate_str(fSubpixelState, "S ", "s "));
title.prepend(fFlipAxis & kFlipAxis_X ? "X " : nullptr);
title.prepend(fFlipAxis & kFlipAxis_Y ? "Y " : nullptr);
title.prepend(gHintingStates[fHintingState].label);
title.prepend(gPixelGeometryStates[fPixelGeometryIndex].label);
if (fOffset.fX || fOffset.fY) {
title.prependf("(%.2f, %.2f) ", SkScalarToFloat(fOffset.fX), SkScalarToFloat(fOffset.fY));
}
if (fZoomLevel) {
title.prependf("{%.2f} ", SkScalarToFloat(fZoomLevel));
}
if (fMeasureFPS) {
title.appendf(" %8.4f ms", fMeasureFPS_Time / (float)FPS_REPEAT_COUNT);
}
#if SK_SUPPORT_GPU
if (IsGpuDeviceType(fDeviceType) &&
fDevManager &&
fDevManager->numColorSamples() > 0) {
title.appendf(" [MSAA: %d]",
fDevManager->numColorSamples());
}
#endif
title.appendf(" %s", gConfig[fColorConfigIndex].fName);
if (fDevManager && fDevManager->getColorBits() > 24) {
title.appendf(" %d bpc", fDevManager->getColorBits());
}
this->setTitle(title.c_str());
}
void SampleWindow::onSizeChange() {
this->INHERITED::onSizeChange();
SkView::F2BIter iter(this);
SkView* view = iter.next();
view->setSize(this->width(), this->height());
// rebuild our clippath
{
const SkScalar W = this->width();
const SkScalar H = this->height();
fClipPath.reset();
#if 0
for (SkScalar y = SK_Scalar1; y < H; y += SkIntToScalar(32)) {
SkRect r;
r.set(SK_Scalar1, y, SkIntToScalar(30), y + SkIntToScalar(30));
for (; r.fLeft < W; r.offset(SkIntToScalar(32), 0))
fClipPath.addRect(r);
}
#else
SkRect r;
r.set(0, 0, W, H);
fClipPath.addRect(r, SkPath::kCCW_Direction);
r.set(W/4, H/4, W*3/4, H*3/4);
fClipPath.addRect(r, SkPath::kCW_Direction);
#endif
}
fZoomCenterX = SkScalarHalf(this->width());
fZoomCenterY = SkScalarHalf(this->height());
#ifdef SK_BUILD_FOR_ANDROID
// FIXME: The first draw after a size change does not work on Android, so
// we post an invalidate.
this->postInvalDelay();
#endif
this->updateTitle(); // to refresh our config
fDevManager->windowSizeChanged(this);
if (fTilingMode != kNo_Tiling && SampleView::IsSampleView(view)) {
((SampleView*)view)->onTileSizeChanged(this->tileSize());
}
}
///////////////////////////////////////////////////////////////////////////////
template <typename T> void SkTBSort(T array[], int count) {
for (int i = 1; i < count - 1; i++) {
bool didSwap = false;
for (int j = count - 1; j > i; --j) {
if (array[j] < array[j-1]) {
T tmp(array[j-1]);
array[j-1] = array[j];
array[j] = tmp;
didSwap = true;
}
}
if (!didSwap) {
break;
}
}
for (int k = 0; k < count - 1; k++) {
SkASSERT(!(array[k+1] < array[k]));
}
}
#include "SkRandom.h"
static void rand_rect(SkIRect* rect, SkRandom& rand) {
int bits = 8;
int shift = 32 - bits;
rect->set(rand.nextU() >> shift, rand.nextU() >> shift,
rand.nextU() >> shift, rand.nextU() >> shift);
rect->sort();
}
static void dumpRect(const SkIRect& r) {
SkDebugf(" { %d, %d, %d, %d },\n",
r.fLeft, r.fTop,
r.fRight, r.fBottom);
}
static void test_rects(const SkIRect rect[], int count) {
SkRegion rgn0, rgn1;
for (int i = 0; i < count; i++) {
rgn0.op(rect[i], SkRegion::kUnion_Op);
// dumpRect(rect[i]);
}
rgn1.setRects(rect, count);
if (rgn0 != rgn1) {
SkDebugf("\n");
for (int i = 0; i < count; i++) {
dumpRect(rect[i]);
}
SkDebugf("\n");
}
}
static void test() {
size_t i;
const SkIRect r0[] = {
{ 0, 0, 1, 1 },
{ 2, 2, 3, 3 },
};
const SkIRect r1[] = {
{ 0, 0, 1, 3 },
{ 1, 1, 2, 2 },
{ 2, 0, 3, 3 },
};
const SkIRect r2[] = {
{ 0, 0, 1, 2 },
{ 2, 1, 3, 3 },
{ 4, 0, 5, 1 },
{ 6, 0, 7, 4 },
};
static const struct {
const SkIRect* fRects;
int fCount;
} gRecs[] = {
{ r0, SK_ARRAY_COUNT(r0) },
{ r1, SK_ARRAY_COUNT(r1) },
{ r2, SK_ARRAY_COUNT(r2) },
};
for (i = 0; i < SK_ARRAY_COUNT(gRecs); i++) {
test_rects(gRecs[i].fRects, gRecs[i].fCount);
}
SkRandom rand;
for (i = 0; i < 10000; i++) {
SkRegion rgn0, rgn1;
const int N = 8;
SkIRect rect[N];
for (int j = 0; j < N; j++) {
rand_rect(&rect[j], rand);
}
test_rects(rect, N);
}
}
// FIXME: this should be in a header
SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv);
SkOSWindow* create_sk_window(void* hwnd, int argc, char** argv) {
if (false) { // avoid bit rot, suppress warning
test();
}
return new SampleWindow(hwnd, argc, argv, nullptr);
}
// FIXME: this should be in a header
void get_preferred_size(int* x, int* y, int* width, int* height);
void get_preferred_size(int* x, int* y, int* width, int* height) {
*x = 10;
*y = 50;
*width = 640;
*height = 480;
}
#ifdef SK_BUILD_FOR_IOS
#include "SkApplication.h"
IOS_launch_type set_cmd_line_args(int , char *[], const char* resourceDir) {
SetResourcePath(resourceDir);
return kApplication__iOSLaunchType;
}
#endif
void application_init() {
// setenv("ANDROID_ROOT", "../../../data", 0);
#ifdef SK_BUILD_FOR_MAC
setenv("ANDROID_ROOT", "/android/device/data", 0);
#endif
SkGraphics::Init();
SkEvent::Init();
}
void application_term() {
SkEvent::Term();
}