skia2/src/core/SkScan_AntiPath.cpp

807 lines
25 KiB
C++
Raw Normal View History

Automatic update of all copyright notices to reflect new license terms. I have manually examined all of these diffs and restored a few files that seem to require manual adjustment. The following files still need to be modified manually, in a separate CL: android_sample/SampleApp/AndroidManifest.xml android_sample/SampleApp/res/layout/layout.xml android_sample/SampleApp/res/menu/sample.xml android_sample/SampleApp/res/values/strings.xml android_sample/SampleApp/src/com/skia/sampleapp/SampleApp.java android_sample/SampleApp/src/com/skia/sampleapp/SampleView.java experimental/CiCarbonSampleMain.c experimental/CocoaDebugger/main.m experimental/FileReaderApp/main.m experimental/SimpleCocoaApp/main.m experimental/iOSSampleApp/Shared/SkAlertPrompt.h experimental/iOSSampleApp/Shared/SkAlertPrompt.m experimental/iOSSampleApp/SkiOSSampleApp-Base.xcconfig experimental/iOSSampleApp/SkiOSSampleApp-Debug.xcconfig experimental/iOSSampleApp/SkiOSSampleApp-Release.xcconfig gpu/src/android/GrGLDefaultInterface_android.cpp gyp/common.gypi gyp_skia include/ports/SkHarfBuzzFont.h include/views/SkOSWindow_wxwidgets.h make.bat make.py src/opts/memset.arm.S src/opts/memset16_neon.S src/opts/memset32_neon.S src/opts/opts_check_arm.cpp src/ports/SkDebug_brew.cpp src/ports/SkMemory_brew.cpp src/ports/SkOSFile_brew.cpp src/ports/SkXMLParser_empty.cpp src/utils/ios/SkImageDecoder_iOS.mm src/utils/ios/SkOSFile_iOS.mm src/utils/ios/SkStream_NSData.mm tests/FillPathTest.cpp Review URL: http://codereview.appspot.com/4816058 git-svn-id: http://skia.googlecode.com/svn/trunk@1982 2bbb7eff-a529-9590-31e7-b0007b416f81
2011-07-28 14:26:00 +00:00
/*
* Copyright 2006 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkScanPriv.h"
#include "SkPath.h"
#include "SkMatrix.h"
#include "SkBlitter.h"
#include "SkRegion.h"
#include "SkAntiRun.h"
#define SHIFT 2
#define SCALE (1 << SHIFT)
#define MASK (SCALE - 1)
/** @file
We have two techniques for capturing the output of the supersampler:
- SUPERMASK, which records a large mask-bitmap
this is often faster for small, complex objects
- RLE, which records a rle-encoded scanline
this is often faster for large objects with big spans
These blitters use two coordinate systems:
- destination coordinates, scale equal to the output - often
abbreviated with 'i' or 'I' in variable names
- supersampled coordinates, scale equal to the output * SCALE
*/
//#define FORCE_SUPERMASK
//#define FORCE_RLE
///////////////////////////////////////////////////////////////////////////////
/// Base class for a single-pass supersampled blitter.
class BaseSuperBlitter : public SkBlitter {
public:
BaseSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkIRect& clipBounds, bool isInverse);
/// Must be explicitly defined on subclasses.
virtual void blitAntiH(int x, int y, const SkAlpha antialias[],
const int16_t runs[]) override {
SkDEBUGFAIL("How did I get here?");
}
/// May not be called on BaseSuperBlitter because it blits out of order.
void blitV(int x, int y, int height, SkAlpha alpha) override {
SkDEBUGFAIL("How did I get here?");
}
protected:
SkBlitter* fRealBlitter;
/// Current y coordinate, in destination coordinates.
int fCurrIY;
/// Widest row of region to be blitted, in destination coordinates.
int fWidth;
/// Leftmost x coordinate in any row, in destination coordinates.
int fLeft;
/// Leftmost x coordinate in any row, in supersampled coordinates.
int fSuperLeft;
SkDEBUGCODE(int fCurrX;)
/// Current y coordinate in supersampled coordinates.
int fCurrY;
/// Initial y coordinate (top of bounds).
int fTop;
SkIRect fSectBounds;
};
BaseSuperBlitter::BaseSuperBlitter(SkBlitter* realBlit, const SkIRect& ir,
const SkIRect& clipBounds, bool isInverse) {
fRealBlitter = realBlit;
SkIRect sectBounds;
if (isInverse) {
// We use the clip bounds instead of the ir, since we may be asked to
//draw outside of the rect when we're a inverse filltype
sectBounds = clipBounds;
} else {
if (!sectBounds.intersect(ir, clipBounds)) {
sectBounds.setEmpty();
}
}
const int left = sectBounds.left();
const int right = sectBounds.right();
fLeft = left;
fSuperLeft = SkLeftShift(left, SHIFT);
fWidth = right - left;
fTop = sectBounds.top();
fCurrIY = fTop - 1;
fCurrY = SkLeftShift(fTop, SHIFT) - 1;
SkDEBUGCODE(fCurrX = -1;)
}
/// Run-length-encoded supersampling antialiased blitter.
class SuperBlitter : public BaseSuperBlitter {
public:
SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds,
bool isInverse);
~SuperBlitter() override {
this->flush();
}
/// Once fRuns contains a complete supersampled row, flush() blits
/// it out through the wrapped blitter.
void flush();
/// Blits a row of pixels, with location and width specified
/// in supersampled coordinates.
void blitH(int x, int y, int width) override;
/// Blits a rectangle of pixels, with location and size specified
/// in supersampled coordinates.
void blitRect(int x, int y, int width, int height) override;
private:
// The next three variables are used to track a circular buffer that
// contains the values used in SkAlphaRuns. These variables should only
// ever be updated in advanceRuns(), and fRuns should always point to
// a valid SkAlphaRuns...
int fRunsToBuffer;
void* fRunsBuffer;
int fCurrentRun;
SkAlphaRuns fRuns;
// extra one to store the zero at the end
int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
// This function updates the fRuns variable to point to the next buffer space
// with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
// and resets fRuns to point to an empty scanline.
void advanceRuns() {
const size_t kRunsSz = this->getRunsSz();
fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
fRuns.fRuns = reinterpret_cast<int16_t*>(
reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
fRuns.reset(fWidth);
}
int fOffsetX;
};
SuperBlitter::SuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect& clipBounds,
bool isInverse)
: BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse)
{
fRunsToBuffer = realBlitter->requestRowsPreserved();
fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
fCurrentRun = -1;
this->advanceRuns();
fOffsetX = 0;
}
void SuperBlitter::flush() {
if (fCurrIY >= fTop) {
SkASSERT(fCurrentRun < fRunsToBuffer);
if (!fRuns.empty()) {
// SkDEBUGCODE(fRuns.dump();)
fRealBlitter->blitAntiH(fLeft, fCurrIY, fRuns.fAlpha, fRuns.fRuns);
this->advanceRuns();
fOffsetX = 0;
}
fCurrIY = fTop - 1;
SkDEBUGCODE(fCurrX = -1;)
}
}
/** coverage_to_partial_alpha() is being used by SkAlphaRuns, which
*accumulates* SCALE pixels worth of "alpha" in [0,(256/SCALE)]
to produce a final value in [0, 255] and handles clamping 256->255
itself, with the same (alpha - (alpha >> 8)) correction as
coverage_to_exact_alpha().
*/
static inline int coverage_to_partial_alpha(int aa) {
aa <<= 8 - 2*SHIFT;
return aa;
}
/** coverage_to_exact_alpha() is being used by our blitter, which wants
a final value in [0, 255].
*/
static inline int coverage_to_exact_alpha(int aa) {
int alpha = (256 >> SHIFT) * aa;
// clamp 256->255
return alpha - (alpha >> 8);
}
void SuperBlitter::blitH(int x, int y, int width) {
SkASSERT(width > 0);
int iy = y >> SHIFT;
SkASSERT(iy >= fCurrIY);
x -= fSuperLeft;
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0) {
width += x;
x = 0;
}
#ifdef SK_DEBUG
SkASSERT(y != fCurrY || x >= fCurrX);
#endif
SkASSERT(y >= fCurrY);
if (fCurrY != y) {
fOffsetX = 0;
fCurrY = y;
}
if (iy != fCurrIY) { // new scanline
this->flush();
fCurrIY = iy;
}
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
// integer-pixel-aligned ends of blit, rounded out
int fb = start & MASK;
int fe = stop & MASK;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0) {
fb = fe - fb;
n = 0;
fe = 0;
} else {
if (fb == 0) {
n += 1;
} else {
fb = SCALE - fb;
}
}
fOffsetX = fRuns.add(x >> SHIFT, coverage_to_partial_alpha(fb),
n, coverage_to_partial_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT),
fOffsetX);
#ifdef SK_DEBUG
fRuns.assertValid(y & MASK, (1 << (8 - SHIFT)));
fCurrX = x + width;
#endif
}
#if 0 // UNUSED
static void set_left_rite_runs(SkAlphaRuns& runs, int ileft, U8CPU leftA,
int n, U8CPU riteA) {
SkASSERT(leftA <= 0xFF);
SkASSERT(riteA <= 0xFF);
int16_t* run = runs.fRuns;
uint8_t* aa = runs.fAlpha;
if (ileft > 0) {
run[0] = ileft;
aa[0] = 0;
run += ileft;
aa += ileft;
}
SkASSERT(leftA < 0xFF);
if (leftA > 0) {
*run++ = 1;
*aa++ = leftA;
}
if (n > 0) {
run[0] = n;
aa[0] = 0xFF;
run += n;
aa += n;
}
SkASSERT(riteA < 0xFF);
if (riteA > 0) {
*run++ = 1;
*aa++ = riteA;
}
run[0] = 0;
}
#endif
void SuperBlitter::blitRect(int x, int y, int width, int height) {
SkASSERT(width > 0);
SkASSERT(height > 0);
// blit leading rows
while ((y & MASK)) {
this->blitH(x, y++, width);
if (--height <= 0) {
return;
}
}
SkASSERT(height > 0);
// Since this is a rect, instead of blitting supersampled rows one at a
// time and then resolving to the destination canvas, we can blit
// directly to the destintion canvas one row per SCALE supersampled rows.
int start_y = y >> SHIFT;
int stop_y = (y + height) >> SHIFT;
int count = stop_y - start_y;
if (count > 0) {
y += count << SHIFT;
height -= count << SHIFT;
// save original X for our tail blitH() loop at the bottom
int origX = x;
x -= fSuperLeft;
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0) {
width += x;
x = 0;
}
// There is always a left column, a middle, and a right column.
// ileft is the destination x of the first pixel of the entire rect.
// xleft is (SCALE - # of covered supersampled pixels) in that
// destination pixel.
int ileft = x >> SHIFT;
int xleft = x & MASK;
// irite is the destination x of the last pixel of the OPAQUE section.
// xrite is the number of supersampled pixels extending beyond irite;
// xrite/SCALE should give us alpha.
int irite = (x + width) >> SHIFT;
int xrite = (x + width) & MASK;
if (!xrite) {
xrite = SCALE;
irite--;
}
// Need to call flush() to clean up pending draws before we
// even consider blitV(), since otherwise it can look nonmonotonic.
SkASSERT(start_y > fCurrIY);
this->flush();
int n = irite - ileft - 1;
if (n < 0) {
// If n < 0, we'll only have a single partially-transparent column
// of pixels to render.
xleft = xrite - xleft;
SkASSERT(xleft <= SCALE);
SkASSERT(xleft > 0);
fRealBlitter->blitV(ileft + fLeft, start_y, count,
coverage_to_exact_alpha(xleft));
} else {
// With n = 0, we have two possibly-transparent columns of pixels
// to render; with n > 0, we have opaque columns between them.
xleft = SCALE - xleft;
// Using coverage_to_exact_alpha is not consistent with blitH()
const int coverageL = coverage_to_exact_alpha(xleft);
const int coverageR = coverage_to_exact_alpha(xrite);
SkASSERT(coverageL > 0 || n > 0 || coverageR > 0);
SkASSERT((coverageL != 0) + n + (coverageR != 0) <= fWidth);
fRealBlitter->blitAntiRect(ileft + fLeft, start_y, n, count,
coverageL, coverageR);
}
// preamble for our next call to blitH()
fCurrIY = stop_y - 1;
fOffsetX = 0;
fCurrY = y - 1;
fRuns.reset(fWidth);
x = origX;
}
// catch any remaining few rows
SkASSERT(height <= MASK);
while (--height >= 0) {
this->blitH(x, y++, width);
}
}
///////////////////////////////////////////////////////////////////////////////
/// Masked supersampling antialiased blitter.
class MaskSuperBlitter : public BaseSuperBlitter {
public:
MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkIRect&, bool isInverse);
~MaskSuperBlitter() override {
fRealBlitter->blitMask(fMask, fClipRect);
}
void blitH(int x, int y, int width) override;
static bool CanHandleRect(const SkIRect& bounds) {
#ifdef FORCE_RLE
return false;
#endif
int width = bounds.width();
int64_t rb = SkAlign4(width);
// use 64bits to detect overflow
int64_t storage = rb * bounds.height();
return (width <= MaskSuperBlitter::kMAX_WIDTH) &&
(storage <= MaskSuperBlitter::kMAX_STORAGE);
}
private:
enum {
#ifdef FORCE_SUPERMASK
kMAX_WIDTH = 2048,
kMAX_STORAGE = 1024 * 1024 * 2
#else
kMAX_WIDTH = 32, // so we don't try to do very wide things, where the RLE blitter would be faster
kMAX_STORAGE = 1024
#endif
};
SkMask fMask;
SkIRect fClipRect;
// we add 1 because add_aa_span can write (unchanged) 1 extra byte at the end, rather than
// perform a test to see if stopAlpha != 0
uint32_t fStorage[(kMAX_STORAGE >> 2) + 1];
};
MaskSuperBlitter::MaskSuperBlitter(SkBlitter* realBlitter, const SkIRect& ir,
const SkIRect& clipBounds, bool isInverse)
: BaseSuperBlitter(realBlitter, ir, clipBounds, isInverse)
{
SkASSERT(CanHandleRect(ir));
SkASSERT(!isInverse);
fMask.fImage = (uint8_t*)fStorage;
fMask.fBounds = ir;
fMask.fRowBytes = ir.width();
fMask.fFormat = SkMask::kA8_Format;
fClipRect = ir;
if (!fClipRect.intersect(clipBounds)) {
SkASSERT(0);
fClipRect.setEmpty();
}
// For valgrind, write 1 extra byte at the end so we don't read
// uninitialized memory. See comment in add_aa_span and fStorage[].
memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 1);
}
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha) {
/* I should be able to just add alpha[x] + startAlpha.
However, if the trailing edge of the previous span and the leading
edge of the current span round to the same super-sampled x value,
I might overflow to 256 with this add, hence the funny subtract.
*/
unsigned tmp = *alpha + startAlpha;
SkASSERT(tmp <= 256);
*alpha = SkToU8(tmp - (tmp >> 8));
}
static inline uint32_t quadplicate_byte(U8CPU value) {
uint32_t pair = (value << 8) | value;
return (pair << 16) | pair;
}
// Perform this tricky subtract, to avoid overflowing to 256. Our caller should
// only ever call us with at most enough to hit 256 (never larger), so it is
// enough to just subtract the high-bit. Actually clamping with a branch would
// be slower (e.g. if (tmp > 255) tmp = 255;)
//
static inline void saturated_add(uint8_t* ptr, U8CPU add) {
unsigned tmp = *ptr + add;
SkASSERT(tmp <= 256);
*ptr = SkToU8(tmp - (tmp >> 8));
}
// minimum count before we want to setup an inner loop, adding 4-at-a-time
#define MIN_COUNT_FOR_QUAD_LOOP 16
static void add_aa_span(uint8_t* alpha, U8CPU startAlpha, int middleCount,
U8CPU stopAlpha, U8CPU maxValue) {
SkASSERT(middleCount >= 0);
saturated_add(alpha, startAlpha);
alpha += 1;
if (middleCount >= MIN_COUNT_FOR_QUAD_LOOP) {
// loop until we're quad-byte aligned
while (SkTCast<intptr_t>(alpha) & 0x3) {
alpha[0] = SkToU8(alpha[0] + maxValue);
alpha += 1;
middleCount -= 1;
}
int bigCount = middleCount >> 2;
uint32_t* qptr = reinterpret_cast<uint32_t*>(alpha);
uint32_t qval = quadplicate_byte(maxValue);
do {
*qptr++ += qval;
} while (--bigCount > 0);
middleCount &= 3;
alpha = reinterpret_cast<uint8_t*> (qptr);
// fall through to the following while-loop
}
while (--middleCount >= 0) {
alpha[0] = SkToU8(alpha[0] + maxValue);
alpha += 1;
}
// potentially this can be off the end of our "legal" alpha values, but that
// only happens if stopAlpha is also 0. Rather than test for stopAlpha != 0
// every time (slow), we just do it, and ensure that we've allocated extra space
// (see the + 1 comment in fStorage[]
saturated_add(alpha, stopAlpha);
}
void MaskSuperBlitter::blitH(int x, int y, int width) {
int iy = (y >> SHIFT);
SkASSERT(iy >= fMask.fBounds.fTop && iy < fMask.fBounds.fBottom);
iy -= fMask.fBounds.fTop; // make it relative to 0
// This should never happen, but it does. Until the true cause is
// discovered, let's skip this span instead of crashing.
// See http://crbug.com/17569.
if (iy < 0) {
return;
}
#ifdef SK_DEBUG
{
int ix = x >> SHIFT;
SkASSERT(ix >= fMask.fBounds.fLeft && ix < fMask.fBounds.fRight);
}
#endif
x -= SkLeftShift(fMask.fBounds.fLeft, SHIFT);
// hack, until I figure out why my cubics (I think) go beyond the bounds
if (x < 0) {
width += x;
x = 0;
}
uint8_t* row = fMask.fImage + iy * fMask.fRowBytes + (x >> SHIFT);
int start = x;
int stop = x + width;
SkASSERT(start >= 0 && stop > start);
int fb = start & MASK;
int fe = stop & MASK;
int n = (stop >> SHIFT) - (start >> SHIFT) - 1;
if (n < 0) {
SkASSERT(row >= fMask.fImage);
SkASSERT(row < fMask.fImage + kMAX_STORAGE + 1);
add_aa_span(row, coverage_to_partial_alpha(fe - fb));
} else {
fb = SCALE - fb;
SkASSERT(row >= fMask.fImage);
SkASSERT(row + n + 1 < fMask.fImage + kMAX_STORAGE + 1);
add_aa_span(row, coverage_to_partial_alpha(fb),
n, coverage_to_partial_alpha(fe),
(1 << (8 - SHIFT)) - (((y & MASK) + 1) >> SHIFT));
}
#ifdef SK_DEBUG
fCurrX = x + width;
#endif
}
///////////////////////////////////////////////////////////////////////////////
static bool ShouldUseDAA(const SkPath& path) {
if (gSkForceDeltaAA) {
return true;
}
if (!gSkUseDeltaAA) {
return false;
}
const SkRect& bounds = path.getBounds();
return !path.isConvex() && path.countPoints() >= SkTMax(bounds.width(), bounds.height()) / 8;
}
static bool ShouldUseAAA(const SkPath& path) {
if (gSkForceAnalyticAA) {
return true;
}
if (!gSkUseAnalyticAA) {
return false;
}
if (path.isRect(nullptr)) {
return true;
}
const SkRect& bounds = path.getBounds();
// When the path have so many points compared to the size of its bounds/resolution,
// it indicates that the path is not quite smooth in the current resolution:
// the expected number of turning points in every pixel row/column is significantly greater than
// zero. Hence Aanlytic AA is not likely to produce visible quality improvements, and Analytic
// AA might be slower than supersampling.
return path.countPoints() < SkTMax(bounds.width(), bounds.height()) / 2 - 10;
}
void SkScan::SAAFillPath(const SkPath& path, SkBlitter* blitter, const SkIRect& ir,
const SkIRect& clipBounds, bool forceRLE) {
bool isInverse = path.isInverseFillType();
bool containedInClip = clipBounds.contains(ir);
// MaskSuperBlitter can't handle drawing outside of ir, so we can't use it
// if we're an inverse filltype
if (!isInverse && MaskSuperBlitter::CanHandleRect(ir) && !forceRLE) {
MaskSuperBlitter superBlit(blitter, ir, clipBounds, isInverse);
SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip);
} else {
SuperBlitter superBlit(blitter, ir, clipBounds, isInverse);
sk_fill_path(path, clipBounds, &superBlit, ir.fTop, ir.fBottom, SHIFT, containedInClip);
}
}
static bool fitsInsideLimit(const SkRect& r, SkScalar max) {
const SkScalar min = -max;
return r.fLeft > min && r.fTop > min &&
r.fRight < max && r.fBottom < max;
}
static int overflows_short_shift(int value, int shift) {
const int s = 16 + shift;
return (SkLeftShift(value, s) >> s) - value;
}
/**
Would any of the coordinates of this rectangle not fit in a short,
when left-shifted by shift?
*/
static int rect_overflows_short_shift(SkIRect rect, int shift) {
SkASSERT(!overflows_short_shift(8191, shift));
SkASSERT(overflows_short_shift(8192, shift));
SkASSERT(!overflows_short_shift(32767, 0));
SkASSERT(overflows_short_shift(32768, 0));
// Since we expect these to succeed, we bit-or together
// for a tiny extra bit of speed.
return overflows_short_shift(rect.fLeft, shift) |
overflows_short_shift(rect.fRight, shift) |
overflows_short_shift(rect.fTop, shift) |
overflows_short_shift(rect.fBottom, shift);
}
static bool safeRoundOut(const SkRect& src, SkIRect* dst, int32_t maxInt) {
const SkScalar maxScalar = SkIntToScalar(maxInt);
if (fitsInsideLimit(src, maxScalar)) {
src.roundOut(dst);
return true;
}
return false;
}
void SkScan::AntiFillPath(const SkPath& path, const SkRegion& origClip,
SkBlitter* blitter, bool forceRLE) {
if (origClip.isEmpty()) {
return;
}
const bool isInverse = path.isInverseFillType();
SkIRect ir;
if (!safeRoundOut(path.getBounds(), &ir, SK_MaxS32 >> SHIFT)) {
// Bounds can't fit in SkIRect; we'll return without drawing
return;
}
if (ir.isEmpty()) {
if (isInverse) {
blitter->blitRegion(origClip);
}
return;
}
// If the intersection of the path bounds and the clip bounds
// will overflow 32767 when << by SHIFT, we can't supersample,
// so draw without antialiasing.
SkIRect clippedIR;
if (isInverse) {
// If the path is an inverse fill, it's going to fill the entire
// clip, and we care whether the entire clip exceeds our limits.
clippedIR = origClip.getBounds();
} else {
if (!clippedIR.intersect(ir, origClip.getBounds())) {
return;
}
}
if (rect_overflows_short_shift(clippedIR, SHIFT)) {
SkScan::FillPath(path, origClip, blitter);
return;
}
// Our antialiasing can't handle a clip larger than 32767, so we restrict
// the clip to that limit here. (the runs[] uses int16_t for its index).
//
// A more general solution (one that could also eliminate the need to
// disable aa based on ir bounds (see overflows_short_shift) would be
// to tile the clip/target...
SkRegion tmpClipStorage;
const SkRegion* clipRgn = &origClip;
{
static const int32_t kMaxClipCoord = 32767;
const SkIRect& bounds = origClip.getBounds();
if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
clipRgn = &tmpClipStorage;
}
}
// for here down, use clipRgn, not origClip
SkScanClipper clipper(blitter, clipRgn, ir);
if (clipper.getBlitter() == nullptr) { // clipped out
if (isInverse) {
blitter->blitRegion(*clipRgn);
}
return;
}
SkASSERT(clipper.getClipRect() == nullptr ||
*clipper.getClipRect() == clipRgn->getBounds());
// now use the (possibly wrapped) blitter
blitter = clipper.getBlitter();
if (isInverse) {
sk_blit_above(blitter, ir, *clipRgn);
}
SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
if (ShouldUseDAA(path)) {
SkScan::DAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
} else if (ShouldUseAAA(path)) {
// Do not use AAA if path is too complicated:
// there won't be any speedup or significant visual improvement.
SkScan::AAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
} else {
SkScan::SAAFillPath(path, blitter, ir, clipRgn->getBounds(), forceRLE);
}
if (isInverse) {
sk_blit_below(blitter, ir, *clipRgn);
}
}
///////////////////////////////////////////////////////////////////////////////
#include "SkRasterClip.h"
void SkScan::FillPath(const SkPath& path, const SkRasterClip& clip,
SkBlitter* blitter) {
if (clip.isEmpty()) {
return;
}
if (clip.isBW()) {
FillPath(path, clip.bwRgn(), blitter);
} else {
SkRegion tmp;
SkAAClipBlitter aaBlitter;
tmp.setRect(clip.getBounds());
aaBlitter.init(blitter, &clip.aaRgn());
SkScan::FillPath(path, tmp, &aaBlitter);
}
}
void SkScan::AntiFillPath(const SkPath& path, const SkRasterClip& clip,
SkBlitter* blitter) {
if (clip.isEmpty()) {
return;
}
using FillPathProc = void(*)(const SkPath&, const SkRegion&, SkBlitter*, bool);
FillPathProc fillPathProc = &SkScan::AntiFillPath;
if (clip.isBW()) {
fillPathProc(path, clip.bwRgn(), blitter, false);
} else {
SkRegion tmp;
SkAAClipBlitter aaBlitter;
tmp.setRect(clip.getBounds());
aaBlitter.init(blitter, &clip.aaRgn());
New analytic AA scan converter using delta (I call it DAA for now) DAA is: 1. Much simpler than AAA. SkScan_AAAPath.cpp is about 1700 lines. SkScan_DAAPath.cpp is about 300 lines. The whole DAA CL is only about 800 lines. 2. Much faster than AAA for complicated paths. The speedup applies to GL backend (including ccpr)! Here's the frame time of 'SampleApp --slide Chart' on macbook pro: AAA-raster: 33ms DAA-raster: 21ms AAA-gl: 30ms DAA-gl: 20ms AAA-ccpr: 18ms DAA-ccpr: 12ms My linux desktop doesn't have SSE3 so the speedup is smaller (~25% for Chart). I believe that DAA is so fast that I can enable it for any paths (AAA is not enabled by default for complicated paths because it is slow; hence our older supersampling scan converter is used for stroking on Chart for AAA-xxx config.) 3. The SkCoverageDelta is suitable for threaded backend with out-of-order concurrent scan conversion as commented in the source code. Maybe we can also just send deltas to GPU. 4. Similar to most analytic path renderers, the quality is on the best ground-truth level, unless there are intersections within a pixel. The intersections look good to my eyes although theoretically that could be arbitrary far from the ground truth (see my AAA slides). 5. For simple paths, such as circle, triangle, rrect, etc., DAA is slower than AAA. But DAA is faster than our older supersampling scan converter in most cases. As those simple paths usually don't constitute the bottleneck of a picture (skp or svg), I strongly recommend use DAA. 6. DAA also heavily favors blitMask so it may work quite well with SkRasterPipeline and SkRasterPipelineBlitter. Finally, please check https://skia-review.googlesource.com/c/22420/ which accelerate DAA by specializing blitCoverageDeltas for SkARGB32_Blitter and SkARGB32_Black_Blitter. It brings a little(<5%) speedup. But I couldn't figure out how to reduce the duplicate code so I don't intend to land it. Bug: skia: Change-Id: I3b7ed6a727447922e645b1acb737a506e7c09a4c Reviewed-on: https://skia-review.googlesource.com/19666 Reviewed-by: Mike Reed <reed@google.com> Reviewed-by: Cary Clark <caryclark@google.com> Commit-Queue: Yuqian Li <liyuqian@google.com>
2017-07-25 15:26:31 +00:00
fillPathProc(path, tmp, &aaBlitter, true); // SkAAClipBlitter can blitMask, why forceRLE?
}
}