2012-02-03 22:07:47 +00:00
|
|
|
#include "CurveIntersection.h"
|
2012-01-10 21:46:10 +00:00
|
|
|
#include "Extrema.h"
|
|
|
|
#include "IntersectionUtilities.h"
|
|
|
|
#include "LineParameters.h"
|
|
|
|
|
|
|
|
static double interp_quad_coords(double a, double b, double c, double t)
|
|
|
|
{
|
|
|
|
double ab = interp(a, b, t);
|
|
|
|
double bc = interp(b, c, t);
|
|
|
|
return interp(ab, bc, t);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int coincident_line(const Quadratic& quad, Quadratic& reduction) {
|
|
|
|
reduction[0] = reduction[1] = quad[0];
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int vertical_line(const Quadratic& quad, Quadratic& reduction) {
|
|
|
|
double tValue;
|
|
|
|
reduction[0] = quad[0];
|
|
|
|
reduction[1] = quad[2];
|
|
|
|
int smaller = reduction[1].y > reduction[0].y;
|
|
|
|
int larger = smaller ^ 1;
|
|
|
|
if (SkFindQuadExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue)) {
|
|
|
|
double yExtrema = interp_quad_coords(quad[0].y, quad[1].y, quad[2].y, tValue);
|
|
|
|
if (reduction[smaller].y > yExtrema) {
|
|
|
|
reduction[smaller].y = yExtrema;
|
|
|
|
} else if (reduction[larger].y < yExtrema) {
|
|
|
|
reduction[larger].y = yExtrema;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int horizontal_line(const Quadratic& quad, Quadratic& reduction) {
|
|
|
|
double tValue;
|
|
|
|
reduction[0] = quad[0];
|
|
|
|
reduction[1] = quad[2];
|
|
|
|
int smaller = reduction[1].x > reduction[0].x;
|
|
|
|
int larger = smaller ^ 1;
|
|
|
|
if (SkFindQuadExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue)) {
|
|
|
|
double xExtrema = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
|
|
|
|
if (reduction[smaller].x > xExtrema) {
|
|
|
|
reduction[smaller].x = xExtrema;
|
|
|
|
} else if (reduction[larger].x < xExtrema) {
|
|
|
|
reduction[larger].x = xExtrema;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int check_linear(const Quadratic& quad, Quadratic& reduction,
|
|
|
|
int minX, int maxX, int minY, int maxY) {
|
|
|
|
int startIndex = 0;
|
|
|
|
int endIndex = 2;
|
|
|
|
while (quad[startIndex].approximatelyEqual(quad[endIndex])) {
|
|
|
|
--endIndex;
|
|
|
|
if (endIndex == 0) {
|
|
|
|
printf("%s shouldn't get here if all four points are about equal", __FUNCTION__);
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
LineParameters lineParameters;
|
|
|
|
lineParameters.quadEndPoints(quad, startIndex, endIndex);
|
|
|
|
double normalSquared = lineParameters.normalSquared();
|
|
|
|
double distance = lineParameters.controlPtDistance(quad); // not normalized
|
|
|
|
double limit = normalSquared * SquaredEpsilon;
|
|
|
|
double distSq = distance * distance;
|
|
|
|
if (distSq > limit) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
// four are colinear: return line formed by outside
|
|
|
|
reduction[0] = quad[0];
|
|
|
|
reduction[1] = quad[2];
|
|
|
|
int sameSide;
|
|
|
|
bool useX = quad[maxX].x - quad[minX].x >= quad[maxY].y - quad[minY].y;
|
|
|
|
if (useX) {
|
|
|
|
sameSide = sign(quad[0].x - quad[1].x) + sign(quad[2].x - quad[1].x);
|
|
|
|
} else {
|
|
|
|
sameSide = sign(quad[0].y - quad[1].y) + sign(quad[2].y - quad[1].y);
|
|
|
|
}
|
|
|
|
if ((sameSide & 3) != 2) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
double tValue;
|
|
|
|
int root;
|
|
|
|
if (useX) {
|
|
|
|
root = SkFindQuadExtrema(quad[0].x, quad[1].x, quad[2].x, &tValue);
|
|
|
|
} else {
|
|
|
|
root = SkFindQuadExtrema(quad[0].y, quad[1].y, quad[2].y, &tValue);
|
|
|
|
}
|
|
|
|
if (root) {
|
|
|
|
_Point extrema;
|
|
|
|
extrema.x = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
|
|
|
|
extrema.y = interp_quad_coords(quad[0].x, quad[1].x, quad[2].x, tValue);
|
|
|
|
// sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller
|
|
|
|
int replace;
|
|
|
|
if (useX) {
|
|
|
|
if (extrema.x < quad[0].x ^ extrema.x < quad[2].x) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
replace = (extrema.x < quad[0].x | extrema.x < quad[2].x)
|
|
|
|
^ quad[0].x < quad[2].x;
|
|
|
|
} else {
|
|
|
|
if (extrema.y < quad[0].y ^ extrema.y < quad[2].y) {
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
replace = (extrema.y < quad[0].y | extrema.y < quad[2].y)
|
|
|
|
^ quad[0].y < quad[2].y;
|
|
|
|
}
|
|
|
|
reduction[replace] = extrema;
|
|
|
|
}
|
|
|
|
return 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
// reduce to a quadratic or smaller
|
|
|
|
// look for identical points
|
|
|
|
// look for all four points in a line
|
|
|
|
// note that three points in a line doesn't simplify a cubic
|
|
|
|
// look for approximation with single quadratic
|
|
|
|
// save approximation with multiple quadratics for later
|
|
|
|
int reduceOrder(const Quadratic& quad, Quadratic& reduction) {
|
|
|
|
int index, minX, maxX, minY, maxY;
|
|
|
|
int minXSet, minYSet;
|
|
|
|
minX = maxX = minY = maxY = 0;
|
|
|
|
minXSet = minYSet = 0;
|
|
|
|
for (index = 1; index < 3; ++index) {
|
|
|
|
if (quad[minX].x > quad[index].x) {
|
|
|
|
minX = index;
|
|
|
|
}
|
|
|
|
if (quad[minY].y > quad[index].y) {
|
|
|
|
minY = index;
|
|
|
|
}
|
|
|
|
if (quad[maxX].x < quad[index].x) {
|
|
|
|
maxX = index;
|
|
|
|
}
|
|
|
|
if (quad[maxY].y < quad[index].y) {
|
|
|
|
maxY = index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
for (index = 0; index < 3; ++index) {
|
|
|
|
if (approximately_equal(quad[index].x, quad[minX].x)) {
|
|
|
|
minXSet |= 1 << index;
|
|
|
|
}
|
|
|
|
if (approximately_equal(quad[index].y, quad[minY].y)) {
|
|
|
|
minYSet |= 1 << index;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (minXSet == 0xF) { // test for vertical line
|
|
|
|
if (minYSet == 0xF) { // return 1 if all four are coincident
|
|
|
|
return coincident_line(quad, reduction);
|
|
|
|
}
|
|
|
|
return vertical_line(quad, reduction);
|
|
|
|
}
|
|
|
|
if (minYSet == 0xF) { // test for horizontal line
|
|
|
|
return horizontal_line(quad, reduction);
|
|
|
|
}
|
|
|
|
int result = check_linear(quad, reduction, minX, maxX, minY, maxY);
|
|
|
|
if (result) {
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
memcpy(reduction, quad, sizeof(Quadratic));
|
|
|
|
return 3;
|
|
|
|
}
|