skia2/samplecode/SampleCCPRGeometry.cpp

464 lines
17 KiB
C++
Raw Normal View History

/*
* Copyright 2017 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkTypes.h"
#if SK_SUPPORT_GPU
#include "GrContextPriv.h"
#include "GrPathUtils.h"
#include "GrRenderTargetContext.h"
#include "GrRenderTargetContextPriv.h"
#include "GrResourceProvider.h"
#include "SampleCode.h"
#include "SkCanvas.h"
#include "SkMakeUnique.h"
#include "SkPaint.h"
#include "SkPath.h"
#include "SkRectPriv.h"
#include "SkView.h"
#include "ccpr/GrCCCoverageProcessor.h"
#include "ccpr/GrCCGeometry.h"
#include "gl/GrGLGpu.cpp"
#include "ops/GrDrawOp.h"
using TriPointInstance = GrCCCoverageProcessor::TriPointInstance;
using QuadPointInstance = GrCCCoverageProcessor::QuadPointInstance;
using PrimitiveType = GrCCCoverageProcessor::PrimitiveType;
static constexpr float kDebugBloat = 40;
/**
* This sample visualizes the AA bloat geometry generated by the ccpr geometry shaders. It
* increases the AA bloat by 50x and outputs color instead of coverage (coverage=+1 -> green,
* coverage=0 -> black, coverage=-1 -> red). Use the keys 1-7 to cycle through the different
* geometry processors.
*/
class CCPRGeometryView : public SampleView {
public:
CCPRGeometryView() { this->updateGpuData(); }
void onDrawContent(SkCanvas*) override;
SkView::Click* onFindClickHandler(SkScalar x, SkScalar y, unsigned) override;
bool onClick(SampleView::Click*) override;
bool onQuery(SkEvent* evt) override;
private:
class Click;
class DrawCoverageCountOp;
class VisualizeCoverageCountFP;
void updateAndInval() { this->updateGpuData(); }
void updateGpuData();
PrimitiveType fPrimitiveType = PrimitiveType::kTriangles;
SkCubicType fCubicType;
SkMatrix fCubicKLM;
SkPoint fPoints[4] = {
{100.05f, 100.05f}, {400.75f, 100.05f}, {400.75f, 300.95f}, {100.05f, 300.95f}};
float fConicWeight = .5;
SkTArray<TriPointInstance> fTriPointInstances;
SkTArray<QuadPointInstance> fQuadPointInstances;
typedef SampleView INHERITED;
};
class CCPRGeometryView::DrawCoverageCountOp : public GrDrawOp {
DEFINE_OP_CLASS_ID
public:
DrawCoverageCountOp(CCPRGeometryView* view) : INHERITED(ClassID()), fView(view) {
this->setBounds(SkRectPriv::MakeLargest(), GrOp::HasAABloat::kNo, GrOp::IsZeroArea::kNo);
}
const char* name() const override {
return "[Testing/Sample code] CCPRGeometryView::DrawCoverageCountOp";
}
private:
FixedFunctionFlags fixedFunctionFlags() const override { return FixedFunctionFlags::kNone; }
RequiresDstTexture finalize(const GrCaps&, const GrAppliedClip*,
GrPixelConfigIsClamped) override {
return RequiresDstTexture::kNo;
}
bool onCombineIfPossible(GrOp* other, const GrCaps& caps) override { return false; }
void onPrepare(GrOpFlushState*) override {}
void onExecute(GrOpFlushState*) override;
CCPRGeometryView* fView;
typedef GrDrawOp INHERITED;
};
class CCPRGeometryView::VisualizeCoverageCountFP : public GrFragmentProcessor {
public:
VisualizeCoverageCountFP() : GrFragmentProcessor(kTestFP_ClassID, kNone_OptimizationFlags) {}
private:
const char* name() const override {
return "[Testing/Sample code] CCPRGeometryView::VisualizeCoverageCountFP";
}
std::unique_ptr<GrFragmentProcessor> clone() const override {
return skstd::make_unique<VisualizeCoverageCountFP>();
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
class Impl : public GrGLSLFragmentProcessor {
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* f = args.fFragBuilder;
f->codeAppendf("half count = %s.a;", args.fInputColor);
f->codeAppendf("%s = half4(clamp(-count, 0, 1), clamp(+count, 0, 1), 0, abs(count));",
args.fOutputColor);
}
};
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { return new Impl; }
};
static void draw_klm_line(int w, int h, SkCanvas* canvas, const SkScalar line[3], SkColor color) {
SkPoint p1, p2;
if (SkScalarAbs(line[1]) > SkScalarAbs(line[0])) {
// Draw from vertical edge to vertical edge.
p1 = {0, -line[2] / line[1]};
p2 = {(SkScalar)w, (-line[2] - w * line[0]) / line[1]};
} else {
// Draw from horizontal edge to horizontal edge.
p1 = {-line[2] / line[0], 0};
p2 = {(-line[2] - h * line[1]) / line[0], (SkScalar)h};
}
SkPaint linePaint;
linePaint.setColor(color);
linePaint.setAlpha(128);
linePaint.setStyle(SkPaint::kStroke_Style);
linePaint.setStrokeWidth(0);
linePaint.setAntiAlias(true);
canvas->drawLine(p1, p2, linePaint);
}
void CCPRGeometryView::onDrawContent(SkCanvas* canvas) {
canvas->clear(SK_ColorBLACK);
SkPath outline;
outline.moveTo(fPoints[0]);
switch (fPrimitiveType) {
case PrimitiveType::kTriangles:
case PrimitiveType::kWeightedTriangles:
outline.lineTo(fPoints[1]);
outline.lineTo(fPoints[3]);
outline.close();
break;
case PrimitiveType::kQuadratics:
outline.quadTo(fPoints[1], fPoints[3]);
break;
case PrimitiveType::kCubics:
outline.cubicTo(fPoints[1], fPoints[2], fPoints[3]);
break;
case PrimitiveType::kConics:
outline.conicTo(fPoints[1], fPoints[3], fConicWeight);
break;
}
SkPaint outlinePaint;
outlinePaint.setColor(0x80ffffff);
outlinePaint.setStyle(SkPaint::kStroke_Style);
outlinePaint.setStrokeWidth(0);
outlinePaint.setAntiAlias(true);
canvas->drawPath(outline, outlinePaint);
#if 0
SkPaint gridPaint;
gridPaint.setColor(0x10000000);
gridPaint.setStyle(SkPaint::kStroke_Style);
gridPaint.setStrokeWidth(0);
gridPaint.setAntiAlias(true);
for (int y = 0; y < this->height(); y += kDebugBloat) {
canvas->drawLine(0, y, this->width(), y, gridPaint);
}
for (int x = 0; x < this->width(); x += kDebugBloat) {
canvas->drawLine(x, 0, x, this->height(), outlinePaint);
}
#endif
SkString caption;
if (GrRenderTargetContext* rtc = canvas->internal_private_accessTopLayerRenderTargetContext()) {
// Render coverage count.
GrContext* ctx = canvas->getGrContext();
SkASSERT(ctx);
sk_sp<GrRenderTargetContext> ccbuff =
ctx->contextPriv().makeDeferredRenderTargetContext(SkBackingFit::kApprox,
this->width(), this->height(),
kAlpha_half_GrPixelConfig,
nullptr);
SkASSERT(ccbuff);
ccbuff->clear(nullptr, 0, GrRenderTargetContext::CanClearFullscreen::kYes);
ccbuff->priv().testingOnly_addDrawOp(skstd::make_unique<DrawCoverageCountOp>(this));
// Visualize coverage count in main canvas.
GrPaint paint;
paint.addColorFragmentProcessor(
GrSimpleTextureEffect::Make(sk_ref_sp(ccbuff->asTextureProxy()), SkMatrix::I()));
paint.addColorFragmentProcessor(
skstd::make_unique<VisualizeCoverageCountFP>());
paint.setPorterDuffXPFactory(SkBlendMode::kSrcOver);
rtc->drawRect(GrNoClip(), std::move(paint), GrAA::kNo, SkMatrix::I(),
SkRect::MakeIWH(this->width(), this->height()));
// Add label.
caption.appendf("PrimitiveType_%s",
GrCCCoverageProcessor::PrimitiveTypeName(fPrimitiveType));
if (PrimitiveType::kCubics == fPrimitiveType) {
caption.appendf(" (%s)", SkCubicTypeName(fCubicType));
} else if (PrimitiveType::kConics == fPrimitiveType) {
caption.appendf(" (w=%f)", fConicWeight);
}
} else {
caption = "Use GPU backend to visualize geometry.";
}
SkPaint pointsPaint;
pointsPaint.setColor(SK_ColorBLUE);
pointsPaint.setStrokeWidth(8);
pointsPaint.setAntiAlias(true);
if (PrimitiveType::kCubics == fPrimitiveType) {
int w = this->width(), h = this->height();
canvas->drawPoints(SkCanvas::kPoints_PointMode, 4, fPoints, pointsPaint);
draw_klm_line(w, h, canvas, &fCubicKLM[0], SK_ColorYELLOW);
draw_klm_line(w, h, canvas, &fCubicKLM[3], SK_ColorBLUE);
draw_klm_line(w, h, canvas, &fCubicKLM[6], SK_ColorRED);
} else {
canvas->drawPoints(SkCanvas::kPoints_PointMode, 2, fPoints, pointsPaint);
canvas->drawPoints(SkCanvas::kPoints_PointMode, 1, fPoints + 3, pointsPaint);
}
SkPaint captionPaint;
captionPaint.setTextSize(20);
captionPaint.setColor(SK_ColorWHITE);
captionPaint.setAntiAlias(true);
canvas->drawText(caption.c_str(), caption.size(), 10, 30, captionPaint);
}
void CCPRGeometryView::updateGpuData() {
fTriPointInstances.reset();
fQuadPointInstances.reset();
if (PrimitiveType::kCubics == fPrimitiveType) {
double t[2], s[2];
fCubicType = GrPathUtils::getCubicKLM(fPoints, &fCubicKLM, t, s);
GrCCGeometry geometry;
geometry.beginContour(fPoints[0]);
geometry.cubicTo(fPoints, kDebugBloat / 2, kDebugBloat / 2);
geometry.endContour();
int ptsIdx = 0;
for (GrCCGeometry::Verb verb : geometry.verbs()) {
switch (verb) {
case GrCCGeometry::Verb::kLineTo:
++ptsIdx;
continue;
case GrCCGeometry::Verb::kMonotonicQuadraticTo:
ptsIdx += 2;
continue;
case GrCCGeometry::Verb::kMonotonicCubicTo:
fQuadPointInstances.push_back().set(&geometry.points()[ptsIdx], 0, 0);
ptsIdx += 3;
continue;
default:
continue;
}
}
} else if (PrimitiveType::kTriangles != fPrimitiveType) {
SkPoint P3[3] = {fPoints[0], fPoints[1], fPoints[3]};
GrCCGeometry geometry;
geometry.beginContour(P3[0]);
if (PrimitiveType::kQuadratics == fPrimitiveType) {
geometry.quadraticTo(P3);
} else {
SkASSERT(PrimitiveType::kConics == fPrimitiveType);
geometry.conicTo(P3, fConicWeight);
}
geometry.endContour();
int ptsIdx = 0, conicWeightIdx = 0;
for (GrCCGeometry::Verb verb : geometry.verbs()) {
if (GrCCGeometry::Verb::kBeginContour == verb ||
GrCCGeometry::Verb::kEndOpenContour == verb ||
GrCCGeometry::Verb::kEndClosedContour == verb) {
continue;
}
if (GrCCGeometry::Verb::kLineTo == verb) {
++ptsIdx;
continue;
}
SkASSERT(GrCCGeometry::Verb::kMonotonicQuadraticTo == verb ||
GrCCGeometry::Verb::kMonotonicConicTo == verb);
if (PrimitiveType::kQuadratics == fPrimitiveType &&
GrCCGeometry::Verb::kMonotonicQuadraticTo == verb) {
fTriPointInstances.push_back().set(&geometry.points()[ptsIdx], Sk2f(0, 0));
} else if (PrimitiveType::kConics == fPrimitiveType &&
GrCCGeometry::Verb::kMonotonicConicTo == verb) {
fQuadPointInstances.push_back().setW(&geometry.points()[ptsIdx], Sk2f(0, 0),
geometry.getConicWeight(conicWeightIdx++));
}
ptsIdx += 2;
}
} else {
fTriPointInstances.push_back().set(fPoints[0], fPoints[1], fPoints[3], Sk2f(0, 0));
}
}
void CCPRGeometryView::DrawCoverageCountOp::onExecute(GrOpFlushState* state) {
GrResourceProvider* rp = state->resourceProvider();
GrContext* context = state->gpu()->getContext();
GrGLGpu* glGpu = kOpenGL_GrBackend == context->contextPriv().getBackend()
? static_cast<GrGLGpu*>(state->gpu())
: nullptr;
GrCCCoverageProcessor proc(rp, fView->fPrimitiveType);
SkDEBUGCODE(proc.enableDebugBloat(kDebugBloat));
SkSTArray<1, GrMesh> mesh;
if (PrimitiveType::kCubics == fView->fPrimitiveType ||
PrimitiveType::kConics == fView->fPrimitiveType) {
sk_sp<GrBuffer> instBuff(rp->createBuffer(
fView->fQuadPointInstances.count() * sizeof(QuadPointInstance),
kVertex_GrBufferType, kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag | GrResourceProvider::kRequireGpuMemory_Flag,
fView->fQuadPointInstances.begin()));
if (!fView->fQuadPointInstances.empty() && instBuff) {
proc.appendMesh(instBuff.get(), fView->fQuadPointInstances.count(), 0, &mesh);
}
} else {
sk_sp<GrBuffer> instBuff(rp->createBuffer(
fView->fTriPointInstances.count() * sizeof(TriPointInstance), kVertex_GrBufferType,
kDynamic_GrAccessPattern,
GrResourceProvider::kNoPendingIO_Flag | GrResourceProvider::kRequireGpuMemory_Flag,
fView->fTriPointInstances.begin()));
if (!fView->fTriPointInstances.empty() && instBuff) {
proc.appendMesh(instBuff.get(), fView->fTriPointInstances.count(), 0, &mesh);
}
}
GrPipeline pipeline(state->drawOpArgs().fProxy, GrPipeline::ScissorState::kDisabled,
SkBlendMode::kPlus);
if (glGpu) {
glGpu->handleDirtyContext();
// GR_GL_CALL(glGpu->glInterface(), PolygonMode(GR_GL_FRONT_AND_BACK, GR_GL_LINE));
GR_GL_CALL(glGpu->glInterface(), Enable(GR_GL_LINE_SMOOTH));
}
if (!mesh.empty()) {
SkASSERT(1 == mesh.count());
proc.draw(state, pipeline, mesh.begin(), nullptr, 1, this->bounds());
}
if (glGpu) {
context->resetContext(kMisc_GrGLBackendState);
}
}
class CCPRGeometryView::Click : public SampleView::Click {
public:
Click(SkView* target, int ptIdx) : SampleView::Click(target), fPtIdx(ptIdx) {}
void doClick(SkPoint points[]) {
if (fPtIdx >= 0) {
this->dragPoint(points, fPtIdx);
} else {
for (int i = 0; i < 4; ++i) {
this->dragPoint(points, i);
}
}
}
private:
void dragPoint(SkPoint points[], int idx) {
SkIPoint delta = fICurr - fIPrev;
points[idx] += SkPoint::Make(delta.x(), delta.y());
}
int fPtIdx;
};
SkView::Click* CCPRGeometryView::onFindClickHandler(SkScalar x, SkScalar y, unsigned) {
for (int i = 0; i < 4; ++i) {
if (PrimitiveType::kCubics != fPrimitiveType && 2 == i) {
continue;
}
if (fabs(x - fPoints[i].x()) < 20 && fabsf(y - fPoints[i].y()) < 20) {
return new Click(this, i);
}
}
return new Click(this, -1);
}
bool CCPRGeometryView::onClick(SampleView::Click* click) {
Click* myClick = (Click*)click;
myClick->doClick(fPoints);
this->updateAndInval();
return true;
}
bool CCPRGeometryView::onQuery(SkEvent* evt) {
if (SampleCode::TitleQ(*evt)) {
SampleCode::TitleR(evt, "CCPRGeometry");
return true;
}
SkUnichar unichar;
if (SampleCode::CharQ(*evt, &unichar)) {
if (unichar >= '1' && unichar <= '4') {
fPrimitiveType = PrimitiveType(unichar - '1');
if (fPrimitiveType >= PrimitiveType::kWeightedTriangles) {
fPrimitiveType = (PrimitiveType) ((int)fPrimitiveType + 1);
}
this->updateAndInval();
return true;
}
if (PrimitiveType::kConics == fPrimitiveType) {
if (unichar == '+') {
fConicWeight *= 2;
this->updateAndInval();
return true;
}
if (unichar == '+' || unichar == '=') {
fConicWeight *= 5/4.f;
this->updateAndInval();
return true;
}
if (unichar == '-') {
fConicWeight *= 4/5.f;
this->updateAndInval();
return true;
}
if (unichar == '_') {
fConicWeight *= .5f;
this->updateAndInval();
return true;
}
}
if (unichar == 'D') {
SkDebugf(" SkPoint fPoints[4] = {\n");
SkDebugf(" {%ff, %ff},\n", fPoints[0].x(), fPoints[0].y());
SkDebugf(" {%ff, %ff},\n", fPoints[1].x(), fPoints[1].y());
SkDebugf(" {%ff, %ff},\n", fPoints[2].x(), fPoints[2].y());
SkDebugf(" {%ff, %ff}\n", fPoints[3].x(), fPoints[3].y());
SkDebugf(" };\n");
return true;
}
}
return this->INHERITED::onQuery(evt);
}
DEF_SAMPLE(return new CCPRGeometryView;)
#endif // SK_SUPPORT_GPU