Remove gpu shader optimatization for solid white or trans black colors

Running test on the added bench which draws a grid of all white paths, all blue paths, or alternating checkered white/blue paths.

With optimization in (ms):
         White       Blue        Checkered
Linux    ~80         ~80         ~160
N7       ~800        ~1100       ~1500
Moto-e   ~830        ~1100       ~2500

Without optimization in (ms):
         White       Blue        Checkered
Linux    ~80         ~80         ~80
N7       ~1100       ~1100       ~1100
Moto-e   ~1100       ~1100       ~1500

BUG=skia:

Committed: https://skia.googlesource.com/skia/+/5f78d2251a440443c9eaa321dad058d7a32bfef7

R=bsalomon@google.com

Author: egdaniel@google.com

Review URL: https://codereview.chromium.org/375823005
This commit is contained in:
egdaniel 2014-07-21 11:37:28 -07:00 committed by Commit bot
parent 5b7c7c4ed3
commit 02cafcc1bf
11 changed files with 242 additions and 31 deletions

View File

@ -0,0 +1,200 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Benchmark.h"
#include "SkCanvas.h"
#include "SkGradientShader.h"
#include "SkPaint.h"
#include "SkString.h"
enum ColorPattern {
kWhite_ColorPattern,
kBlue_ColorPattern,
kOpaqueBitmap_ColorPattern,
kAlphaBitmap_ColorPattern,
};
static const struct ColorPatternData{
SkColor fColor;
bool fIsBitmap;
const char* fName;
} gColorPatterns[] = {
// Keep this in same order as ColorPattern enum
{ SK_ColorWHITE, false, "white" }, // kWhite_ColorPattern
{ SK_ColorBLUE, false, "blue" }, // kBlue_ColorPattern
{ SK_ColorWHITE, true, "obaqueBitMap" }, // kOpaqueBitmap_ColorPattern
{ 0x10000000, true, "alphaBitmap" }, // kAlphaBitmap_ColorPattern
};
enum DrawType {
kRect_DrawType,
kPath_DrawType,
};
static void makebm(SkBitmap* bm, int w, int h) {
bm->allocN32Pixels(w, h);
bm->eraseColor(SK_ColorTRANSPARENT);
SkCanvas canvas(*bm);
SkScalar s = SkIntToScalar(SkMin32(w, h));
static const SkPoint kPts0[] = { { 0, 0 }, { s, s } };
static const SkPoint kPts1[] = { { s/2, 0 }, { s/2, s } };
static const SkScalar kPos[] = { 0, SK_Scalar1/2, SK_Scalar1 };
static const SkColor kColors0[] = {0x80F00080, 0xF0F08000, 0x800080F0 };
static const SkColor kColors1[] = {0xF08000F0, 0x8080F000, 0xF000F080 };
SkPaint paint;
paint.setShader(SkGradientShader::CreateLinear(kPts0, kColors0, kPos,
SK_ARRAY_COUNT(kColors0), SkShader::kClamp_TileMode))->unref();
canvas.drawPaint(paint);
paint.setShader(SkGradientShader::CreateLinear(kPts1, kColors1, kPos,
SK_ARRAY_COUNT(kColors1), SkShader::kClamp_TileMode))->unref();
canvas.drawPaint(paint);
}
/**
* This bench draws a grid of either rects or filled paths, with two alternating color patterns.
* This color patterns are passed in as enums to the class. The options are:
* 1) solid white color
* 2) solid blue color
* 3) opaque bitmap
* 4) partial alpha bitmap
* The same color pattern can be set for both arguments to create a uniform pattern on all draws.
*
* The bench is used to test a few things. First it can test any optimizations made for a specific
* color pattern (for example drawing an opaque bitmap versus one with partial alpha). Also it can
* be used to test the cost of program switching and/or batching when alternating between different
* patterns when on the gpu.
*/
class AlternatingColorPatternBench : public Benchmark {
public:
enum {
NX = 5,
NY = 5,
NUM_DRAWS = NX * NY,
};
SkShader* fBmShader;
SkPath fPaths[NUM_DRAWS];
SkRect fRects[NUM_DRAWS];
SkColor fColors[NUM_DRAWS];
SkShader* fShaders[NUM_DRAWS];
SkString fName;
ColorPatternData fPattern1;
ColorPatternData fPattern2;
DrawType fDrawType;
SkBitmap fBmp;
AlternatingColorPatternBench(ColorPattern pattern1, ColorPattern pattern2, DrawType drawType)
: fBmShader(NULL) {
fPattern1 = gColorPatterns[pattern1];
fPattern2 = gColorPatterns[pattern2];
fName.printf("colorPattern_%s_%s_%s",
fPattern1.fName, fPattern2.fName,
kRect_DrawType == drawType ? "rect" : "path");
fDrawType = drawType;
}
virtual ~AlternatingColorPatternBench() {
SkSafeUnref(fBmShader);
}
protected:
virtual const char* onGetName() SK_OVERRIDE {
return fName.c_str();
}
virtual void onPreDraw() {
int w = 40;
int h = 40;
makebm(&fBmp, w, h);
fBmShader = SkShader::CreateBitmapShader(fBmp,
SkShader::kRepeat_TileMode,
SkShader::kRepeat_TileMode);
int offset = 2;
int count = 0;
for (int j = 0; j < NY; ++j) {
for (int i = 0; i < NX; ++i) {
int x = (w + offset) * i;
int y = (h * offset) * j;
if (kRect_DrawType == fDrawType) {
fRects[count].set(SkIntToScalar(x), SkIntToScalar(y),
SkIntToScalar(x + w), SkIntToScalar(y + h));
} else {
fPaths[count].moveTo(SkIntToScalar(x), SkIntToScalar(y));
fPaths[count].rLineTo(SkIntToScalar(w), 0);
fPaths[count].rLineTo(0, SkIntToScalar(h));
fPaths[count].rLineTo(SkIntToScalar(-w + 1), 0);
}
if (0 == count % 2) {
fColors[count] = fPattern1.fColor;
fShaders[count] = fPattern1.fIsBitmap ? fBmShader : NULL;
} else {
fColors[count] = fPattern2.fColor;
fShaders[count] = fPattern2.fIsBitmap ? fBmShader : NULL;
}
++count;
}
}
}
virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
SkPaint paint;
paint.setAntiAlias(false);
paint.setFilterLevel(SkPaint::kLow_FilterLevel);
for (int i = 0; i < loops; ++i) {
for (int j = 0; j < NUM_DRAWS; ++j) {
paint.setColor(fColors[j]);
paint.setShader(fShaders[j]);
if (kRect_DrawType == fDrawType) {
canvas->drawRect(fRects[j], paint);
} else {
canvas->drawPath(fPaths[j], paint);
}
}
}
}
private:
typedef Benchmark INHERITED;
};
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kWhite_ColorPattern, kWhite_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kBlue_ColorPattern, kBlue_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kWhite_ColorPattern, kBlue_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kPath_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
kRect_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kRect_DrawType)); )
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
(kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
kRect_DrawType)); )

View File

@ -33,6 +33,18 @@
## epoger will rebaseline by 25 Dec 2013
#gradtext
# egdaniel: removing a gpu shader optimization causes some single pixel changes in gm
# cl: https://codereview.chromium.org/375823005/#ps210001
coloremoji
complexclip2
complexclip2_path_bw
complexclip2_rrect_bw
gradients_view_perspective
imagefiltersbase
inverse_paths
xfermodes3
verylargebitmap
# reed: bitmapfilters changed (labels) with hide_config CL, just need rebaselines
bitmapfilters

View File

@ -23,6 +23,7 @@
'../bench/Benchmark.h',
'../bench/AAClipBench.cpp',
'../bench/AlternatingColorPatternBench.cpp',
'../bench/BitmapBench.cpp',
'../bench/BitmapRectBench.cpp',
'../bench/BitmapScaleBench.cpp',

View File

@ -409,6 +409,15 @@ GrDrawState::BlendOptFlags GrDrawState::calcBlendOpts(bool forceCoverage,
return kNone_BlendOpt;
}
bool GrDrawState::canIgnoreColorAttribute() const {
if (fBlendOptFlags & kInvalid_BlendOptFlag) {
this->getBlendOpts();
}
return SkToBool(fBlendOptFlags & (GrDrawState::kEmitTransBlack_BlendOptFlag |
GrDrawState::kEmitCoverage_BlendOptFlag));
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::AutoViewMatrixRestore::restore() {

View File

@ -550,6 +550,12 @@ public:
fBlendOptFlags = kInvalid_BlendOptFlag;
}
/**
* We don't use suplied vertex color attributes if our blend mode is EmitCoverage or
* EmitTransBlack
*/
bool canIgnoreColorAttribute() const;
/**
* Determines what optimizations can be applied based on the blend. The coefficients may have
* to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional

View File

@ -154,7 +154,7 @@ void GrGLProgram::setColor(const GrDrawState& drawState,
GrColor color,
SharedGLState* sharedState) {
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
if (!drawState.hasColorVertexAttribute()) {
if (!drawState.hasColorVertexAttribute() || drawState.canIgnoreColorAttribute()) {
switch (header.fColorInput) {
case GrGLProgramDesc::kAttribute_ColorInput:
SkASSERT(-1 != header.fColorAttributeIndex);
@ -178,12 +178,8 @@ void GrGLProgram::setColor(const GrDrawState& drawState,
}
sharedState->fConstAttribColorIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribColorIndex = -1;
break;
default:
SkFAIL("Unknown color type.");
SkFAIL("Unexpected color type.");
}
} else {
sharedState->fConstAttribColorIndex = -1;
@ -218,11 +214,10 @@ void GrGLProgram::setCoverage(const GrDrawState& drawState,
sharedState->fConstAttribCoverageIndex = -1;
break;
case GrGLProgramDesc::kSolidWhite_ColorInput:
case GrGLProgramDesc::kTransBlack_ColorInput:
sharedState->fConstAttribCoverageIndex = -1;
break;
default:
SkFAIL("Unknown coverage type.");
SkFAIL("Unexpected coverage type.");
}
} else {
sharedState->fConstAttribCoverageIndex = -1;

View File

@ -66,6 +66,7 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
bool skipColor = SkToBool(blendOpts & (GrDrawState::kEmitTransBlack_BlendOptFlag |
GrDrawState::kEmitCoverage_BlendOptFlag));
int firstEffectiveColorStage = 0;
bool inputColorIsUsed = true;
if (!skipColor) {
@ -99,11 +100,6 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
bool requiresLocalCoordAttrib = !(skipCoverage && skipColor) &&
drawState.hasLocalCoordAttribute();
bool colorIsTransBlack = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
bool colorIsSolidWhite = (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) ||
(!requiresColorAttrib && 0xffffffff == drawState.getColor()) ||
(!inputColorIsUsed);
bool readsDst = false;
bool readFragPosition = false;
// We use vertexshader-less shader programs only when drawing paths.
@ -192,11 +188,7 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
#endif
bool defaultToUniformInputs = GR_GL_NO_CONSTANT_ATTRIBUTES || gpu->caps()->pathRenderingSupport();
if (colorIsTransBlack) {
header->fColorInput = kTransBlack_ColorInput;
} else if (colorIsSolidWhite) {
header->fColorInput = kSolidWhite_ColorInput;
} else if (defaultToUniformInputs && !requiresColorAttrib) {
if (defaultToUniformInputs && !requiresColorAttrib && inputColorIsUsed) {
header->fColorInput = kUniform_ColorInput;
} else {
header->fColorInput = kAttribute_ColorInput;
@ -205,11 +197,9 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
bool covIsSolidWhite = !requiresCoverageAttrib && 0xffffffff == drawState.getCoverageColor();
if (skipCoverage) {
header->fCoverageInput = kTransBlack_ColorInput;
} else if (covIsSolidWhite || !inputCoverageIsUsed) {
if ((covIsSolidWhite || !inputCoverageIsUsed) && !skipCoverage) {
header->fCoverageInput = kSolidWhite_ColorInput;
} else if (defaultToUniformInputs && !requiresCoverageAttrib) {
} else if (defaultToUniformInputs && !requiresCoverageAttrib && inputCoverageIsUsed) {
header->fCoverageInput = kUniform_ColorInput;
} else {
header->fCoverageInput = kAttribute_ColorInput;

View File

@ -100,7 +100,6 @@ private:
// Specifies where the initial color comes from before the stages are applied.
enum ColorInput {
kSolidWhite_ColorInput,
kTransBlack_ColorInput,
kAttribute_ColorInput,
kUniform_ColorInput,

View File

@ -164,10 +164,6 @@ bool GrGLShaderBuilder::genProgram(const GrEffectStage* colorStages[],
this->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec4f_GrSLType, "Color",
&name);
inputColor = GrGLSLExpr4(name);
} else if (GrGLProgramDesc::kSolidWhite_ColorInput == header.fColorInput) {
inputColor = GrGLSLExpr4(1);
} else if (GrGLProgramDesc::kTransBlack_ColorInput == header.fColorInput) {
inputColor = GrGLSLExpr4(0);
}
if (GrGLProgramDesc::kUniform_ColorInput == header.fCoverageInput) {
@ -178,8 +174,6 @@ bool GrGLShaderBuilder::genProgram(const GrEffectStage* colorStages[],
inputCoverage = GrGLSLExpr4(name);
} else if (GrGLProgramDesc::kSolidWhite_ColorInput == header.fCoverageInput) {
inputCoverage = GrGLSLExpr4(1);
} else if (GrGLProgramDesc::kTransBlack_ColorInput == header.fCoverageInput) {
inputCoverage = GrGLSLExpr4(0);
}
if (k110_GrGLSLGeneration != fGpu->glslGeneration()) {

View File

@ -353,9 +353,12 @@ void GrGpuGL::setupGeometry(const DrawInfo& info, size_t* indexOffsetInBytes) {
uint32_t usedAttribArraysMask = 0;
const GrVertexAttrib* vertexAttrib = this->getDrawState().getVertexAttribs();
bool canIgnoreColorAttrib = this->getDrawState().canIgnoreColorAttribute();
for (int vertexAttribIndex = 0; vertexAttribIndex < vertexAttribCount;
++vertexAttribIndex, ++vertexAttrib) {
if (kColor_GrVertexAttribBinding != vertexAttrib->fBinding || !canIgnoreColorAttrib) {
usedAttribArraysMask |= (1 << vertexAttribIndex);
GrVertexAttribType attribType = vertexAttrib->fType;
attribState->set(this,
@ -367,6 +370,7 @@ void GrGpuGL::setupGeometry(const DrawInfo& info, size_t* indexOffsetInBytes) {
stride,
reinterpret_cast<GrGLvoid*>(
vertexOffsetInBytes + vertexAttrib->fOffset));
}
}
attribState->disableUnusedArrays(this, usedAttribArraysMask);
}

View File

@ -73,8 +73,9 @@ bool GrGLProgramDesc::setRandom(SkRandom* random,
// if the effects have used up all off the available attributes,
// don't try to use color or coverage attributes as input
do {
header->fColorInput = static_cast<GrGLProgramDesc::ColorInput>(
random->nextULessThan(kColorInputCnt));
uint32_t colorRand = random->nextULessThan(2);
header->fColorInput = (0 == colorRand) ? GrGLProgramDesc::kAttribute_ColorInput :
GrGLProgramDesc::kUniform_ColorInput;
} while (GrDrawState::kMaxVertexAttribCnt <= currAttribIndex &&
kAttribute_ColorInput == header->fColorInput);