Remove gpu shader optimatization for solid white or trans black colors
Running test on the added bench which draws a grid of all white paths, all blue paths, or alternating checkered white/blue paths. With optimization in (ms): White Blue Checkered Linux ~80 ~80 ~160 N7 ~800 ~1100 ~1500 Moto-e ~830 ~1100 ~2500 Without optimization in (ms): White Blue Checkered Linux ~80 ~80 ~80 N7 ~1100 ~1100 ~1100 Moto-e ~1100 ~1100 ~1500 BUG=skia: Committed: https://skia.googlesource.com/skia/+/5f78d2251a440443c9eaa321dad058d7a32bfef7 R=bsalomon@google.com Author: egdaniel@google.com Review URL: https://codereview.chromium.org/375823005
This commit is contained in:
parent
5b7c7c4ed3
commit
02cafcc1bf
200
bench/AlternatingColorPatternBench.cpp
Normal file
200
bench/AlternatingColorPatternBench.cpp
Normal file
@ -0,0 +1,200 @@
|
||||
/*
|
||||
* Copyright 2014 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include "Benchmark.h"
|
||||
#include "SkCanvas.h"
|
||||
#include "SkGradientShader.h"
|
||||
#include "SkPaint.h"
|
||||
#include "SkString.h"
|
||||
|
||||
enum ColorPattern {
|
||||
kWhite_ColorPattern,
|
||||
kBlue_ColorPattern,
|
||||
kOpaqueBitmap_ColorPattern,
|
||||
kAlphaBitmap_ColorPattern,
|
||||
};
|
||||
|
||||
static const struct ColorPatternData{
|
||||
SkColor fColor;
|
||||
bool fIsBitmap;
|
||||
const char* fName;
|
||||
} gColorPatterns[] = {
|
||||
// Keep this in same order as ColorPattern enum
|
||||
{ SK_ColorWHITE, false, "white" }, // kWhite_ColorPattern
|
||||
{ SK_ColorBLUE, false, "blue" }, // kBlue_ColorPattern
|
||||
{ SK_ColorWHITE, true, "obaqueBitMap" }, // kOpaqueBitmap_ColorPattern
|
||||
{ 0x10000000, true, "alphaBitmap" }, // kAlphaBitmap_ColorPattern
|
||||
};
|
||||
|
||||
enum DrawType {
|
||||
kRect_DrawType,
|
||||
kPath_DrawType,
|
||||
};
|
||||
|
||||
static void makebm(SkBitmap* bm, int w, int h) {
|
||||
bm->allocN32Pixels(w, h);
|
||||
bm->eraseColor(SK_ColorTRANSPARENT);
|
||||
|
||||
SkCanvas canvas(*bm);
|
||||
SkScalar s = SkIntToScalar(SkMin32(w, h));
|
||||
static const SkPoint kPts0[] = { { 0, 0 }, { s, s } };
|
||||
static const SkPoint kPts1[] = { { s/2, 0 }, { s/2, s } };
|
||||
static const SkScalar kPos[] = { 0, SK_Scalar1/2, SK_Scalar1 };
|
||||
static const SkColor kColors0[] = {0x80F00080, 0xF0F08000, 0x800080F0 };
|
||||
static const SkColor kColors1[] = {0xF08000F0, 0x8080F000, 0xF000F080 };
|
||||
|
||||
|
||||
SkPaint paint;
|
||||
|
||||
paint.setShader(SkGradientShader::CreateLinear(kPts0, kColors0, kPos,
|
||||
SK_ARRAY_COUNT(kColors0), SkShader::kClamp_TileMode))->unref();
|
||||
canvas.drawPaint(paint);
|
||||
paint.setShader(SkGradientShader::CreateLinear(kPts1, kColors1, kPos,
|
||||
SK_ARRAY_COUNT(kColors1), SkShader::kClamp_TileMode))->unref();
|
||||
canvas.drawPaint(paint);
|
||||
}
|
||||
|
||||
/**
|
||||
* This bench draws a grid of either rects or filled paths, with two alternating color patterns.
|
||||
* This color patterns are passed in as enums to the class. The options are:
|
||||
* 1) solid white color
|
||||
* 2) solid blue color
|
||||
* 3) opaque bitmap
|
||||
* 4) partial alpha bitmap
|
||||
* The same color pattern can be set for both arguments to create a uniform pattern on all draws.
|
||||
*
|
||||
* The bench is used to test a few things. First it can test any optimizations made for a specific
|
||||
* color pattern (for example drawing an opaque bitmap versus one with partial alpha). Also it can
|
||||
* be used to test the cost of program switching and/or batching when alternating between different
|
||||
* patterns when on the gpu.
|
||||
*/
|
||||
class AlternatingColorPatternBench : public Benchmark {
|
||||
public:
|
||||
enum {
|
||||
NX = 5,
|
||||
NY = 5,
|
||||
NUM_DRAWS = NX * NY,
|
||||
};
|
||||
SkShader* fBmShader;
|
||||
|
||||
SkPath fPaths[NUM_DRAWS];
|
||||
SkRect fRects[NUM_DRAWS];
|
||||
SkColor fColors[NUM_DRAWS];
|
||||
SkShader* fShaders[NUM_DRAWS];
|
||||
|
||||
SkString fName;
|
||||
ColorPatternData fPattern1;
|
||||
ColorPatternData fPattern2;
|
||||
DrawType fDrawType;
|
||||
SkBitmap fBmp;
|
||||
|
||||
|
||||
AlternatingColorPatternBench(ColorPattern pattern1, ColorPattern pattern2, DrawType drawType)
|
||||
: fBmShader(NULL) {
|
||||
fPattern1 = gColorPatterns[pattern1];
|
||||
fPattern2 = gColorPatterns[pattern2];
|
||||
fName.printf("colorPattern_%s_%s_%s",
|
||||
fPattern1.fName, fPattern2.fName,
|
||||
kRect_DrawType == drawType ? "rect" : "path");
|
||||
fDrawType = drawType;
|
||||
}
|
||||
|
||||
virtual ~AlternatingColorPatternBench() {
|
||||
SkSafeUnref(fBmShader);
|
||||
}
|
||||
|
||||
protected:
|
||||
virtual const char* onGetName() SK_OVERRIDE {
|
||||
return fName.c_str();
|
||||
}
|
||||
|
||||
virtual void onPreDraw() {
|
||||
int w = 40;
|
||||
int h = 40;
|
||||
makebm(&fBmp, w, h);
|
||||
fBmShader = SkShader::CreateBitmapShader(fBmp,
|
||||
SkShader::kRepeat_TileMode,
|
||||
SkShader::kRepeat_TileMode);
|
||||
int offset = 2;
|
||||
int count = 0;
|
||||
for (int j = 0; j < NY; ++j) {
|
||||
for (int i = 0; i < NX; ++i) {
|
||||
int x = (w + offset) * i;
|
||||
int y = (h * offset) * j;
|
||||
if (kRect_DrawType == fDrawType) {
|
||||
fRects[count].set(SkIntToScalar(x), SkIntToScalar(y),
|
||||
SkIntToScalar(x + w), SkIntToScalar(y + h));
|
||||
} else {
|
||||
fPaths[count].moveTo(SkIntToScalar(x), SkIntToScalar(y));
|
||||
fPaths[count].rLineTo(SkIntToScalar(w), 0);
|
||||
fPaths[count].rLineTo(0, SkIntToScalar(h));
|
||||
fPaths[count].rLineTo(SkIntToScalar(-w + 1), 0);
|
||||
}
|
||||
if (0 == count % 2) {
|
||||
fColors[count] = fPattern1.fColor;
|
||||
fShaders[count] = fPattern1.fIsBitmap ? fBmShader : NULL;
|
||||
} else {
|
||||
fColors[count] = fPattern2.fColor;
|
||||
fShaders[count] = fPattern2.fIsBitmap ? fBmShader : NULL;
|
||||
}
|
||||
++count;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual void onDraw(const int loops, SkCanvas* canvas) SK_OVERRIDE {
|
||||
SkPaint paint;
|
||||
paint.setAntiAlias(false);
|
||||
paint.setFilterLevel(SkPaint::kLow_FilterLevel);
|
||||
|
||||
for (int i = 0; i < loops; ++i) {
|
||||
for (int j = 0; j < NUM_DRAWS; ++j) {
|
||||
paint.setColor(fColors[j]);
|
||||
paint.setShader(fShaders[j]);
|
||||
if (kRect_DrawType == fDrawType) {
|
||||
canvas->drawRect(fRects[j], paint);
|
||||
} else {
|
||||
canvas->drawPath(fPaths[j], paint);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
typedef Benchmark INHERITED;
|
||||
};
|
||||
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kWhite_ColorPattern, kWhite_ColorPattern,
|
||||
kPath_DrawType)); )
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kBlue_ColorPattern, kBlue_ColorPattern,
|
||||
kPath_DrawType)); )
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kWhite_ColorPattern, kBlue_ColorPattern,
|
||||
kPath_DrawType)); )
|
||||
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
|
||||
kPath_DrawType)); )
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
||||
kPath_DrawType)); )
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
||||
kPath_DrawType)); )
|
||||
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kOpaqueBitmap_ColorPattern, kOpaqueBitmap_ColorPattern,
|
||||
kRect_DrawType)); )
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kAlphaBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
||||
kRect_DrawType)); )
|
||||
DEF_BENCH( return SkNEW_ARGS(AlternatingColorPatternBench,
|
||||
(kOpaqueBitmap_ColorPattern, kAlphaBitmap_ColorPattern,
|
||||
kRect_DrawType)); )
|
||||
|
@ -33,6 +33,18 @@
|
||||
## epoger will rebaseline by 25 Dec 2013
|
||||
#gradtext
|
||||
|
||||
# egdaniel: removing a gpu shader optimization causes some single pixel changes in gm
|
||||
# cl: https://codereview.chromium.org/375823005/#ps210001
|
||||
coloremoji
|
||||
complexclip2
|
||||
complexclip2_path_bw
|
||||
complexclip2_rrect_bw
|
||||
gradients_view_perspective
|
||||
imagefiltersbase
|
||||
inverse_paths
|
||||
xfermodes3
|
||||
verylargebitmap
|
||||
|
||||
# reed: bitmapfilters changed (labels) with hide_config CL, just need rebaselines
|
||||
bitmapfilters
|
||||
|
||||
|
@ -23,6 +23,7 @@
|
||||
'../bench/Benchmark.h',
|
||||
|
||||
'../bench/AAClipBench.cpp',
|
||||
'../bench/AlternatingColorPatternBench.cpp',
|
||||
'../bench/BitmapBench.cpp',
|
||||
'../bench/BitmapRectBench.cpp',
|
||||
'../bench/BitmapScaleBench.cpp',
|
||||
|
@ -409,6 +409,15 @@ GrDrawState::BlendOptFlags GrDrawState::calcBlendOpts(bool forceCoverage,
|
||||
return kNone_BlendOpt;
|
||||
}
|
||||
|
||||
bool GrDrawState::canIgnoreColorAttribute() const {
|
||||
if (fBlendOptFlags & kInvalid_BlendOptFlag) {
|
||||
this->getBlendOpts();
|
||||
}
|
||||
return SkToBool(fBlendOptFlags & (GrDrawState::kEmitTransBlack_BlendOptFlag |
|
||||
GrDrawState::kEmitCoverage_BlendOptFlag));
|
||||
}
|
||||
|
||||
|
||||
////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
void GrDrawState::AutoViewMatrixRestore::restore() {
|
||||
|
@ -550,6 +550,12 @@ public:
|
||||
fBlendOptFlags = kInvalid_BlendOptFlag;
|
||||
}
|
||||
|
||||
/**
|
||||
* We don't use suplied vertex color attributes if our blend mode is EmitCoverage or
|
||||
* EmitTransBlack
|
||||
*/
|
||||
bool canIgnoreColorAttribute() const;
|
||||
|
||||
/**
|
||||
* Determines what optimizations can be applied based on the blend. The coefficients may have
|
||||
* to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional
|
||||
|
@ -154,7 +154,7 @@ void GrGLProgram::setColor(const GrDrawState& drawState,
|
||||
GrColor color,
|
||||
SharedGLState* sharedState) {
|
||||
const GrGLProgramDesc::KeyHeader& header = fDesc.getHeader();
|
||||
if (!drawState.hasColorVertexAttribute()) {
|
||||
if (!drawState.hasColorVertexAttribute() || drawState.canIgnoreColorAttribute()) {
|
||||
switch (header.fColorInput) {
|
||||
case GrGLProgramDesc::kAttribute_ColorInput:
|
||||
SkASSERT(-1 != header.fColorAttributeIndex);
|
||||
@ -178,12 +178,8 @@ void GrGLProgram::setColor(const GrDrawState& drawState,
|
||||
}
|
||||
sharedState->fConstAttribColorIndex = -1;
|
||||
break;
|
||||
case GrGLProgramDesc::kSolidWhite_ColorInput:
|
||||
case GrGLProgramDesc::kTransBlack_ColorInput:
|
||||
sharedState->fConstAttribColorIndex = -1;
|
||||
break;
|
||||
default:
|
||||
SkFAIL("Unknown color type.");
|
||||
SkFAIL("Unexpected color type.");
|
||||
}
|
||||
} else {
|
||||
sharedState->fConstAttribColorIndex = -1;
|
||||
@ -218,11 +214,10 @@ void GrGLProgram::setCoverage(const GrDrawState& drawState,
|
||||
sharedState->fConstAttribCoverageIndex = -1;
|
||||
break;
|
||||
case GrGLProgramDesc::kSolidWhite_ColorInput:
|
||||
case GrGLProgramDesc::kTransBlack_ColorInput:
|
||||
sharedState->fConstAttribCoverageIndex = -1;
|
||||
break;
|
||||
default:
|
||||
SkFAIL("Unknown coverage type.");
|
||||
SkFAIL("Unexpected coverage type.");
|
||||
}
|
||||
} else {
|
||||
sharedState->fConstAttribCoverageIndex = -1;
|
||||
|
@ -66,6 +66,7 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
|
||||
|
||||
bool skipColor = SkToBool(blendOpts & (GrDrawState::kEmitTransBlack_BlendOptFlag |
|
||||
GrDrawState::kEmitCoverage_BlendOptFlag));
|
||||
|
||||
int firstEffectiveColorStage = 0;
|
||||
bool inputColorIsUsed = true;
|
||||
if (!skipColor) {
|
||||
@ -99,11 +100,6 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
|
||||
bool requiresLocalCoordAttrib = !(skipCoverage && skipColor) &&
|
||||
drawState.hasLocalCoordAttribute();
|
||||
|
||||
bool colorIsTransBlack = SkToBool(blendOpts & GrDrawState::kEmitTransBlack_BlendOptFlag);
|
||||
bool colorIsSolidWhite = (blendOpts & GrDrawState::kEmitCoverage_BlendOptFlag) ||
|
||||
(!requiresColorAttrib && 0xffffffff == drawState.getColor()) ||
|
||||
(!inputColorIsUsed);
|
||||
|
||||
bool readsDst = false;
|
||||
bool readFragPosition = false;
|
||||
// We use vertexshader-less shader programs only when drawing paths.
|
||||
@ -192,11 +188,7 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
|
||||
#endif
|
||||
bool defaultToUniformInputs = GR_GL_NO_CONSTANT_ATTRIBUTES || gpu->caps()->pathRenderingSupport();
|
||||
|
||||
if (colorIsTransBlack) {
|
||||
header->fColorInput = kTransBlack_ColorInput;
|
||||
} else if (colorIsSolidWhite) {
|
||||
header->fColorInput = kSolidWhite_ColorInput;
|
||||
} else if (defaultToUniformInputs && !requiresColorAttrib) {
|
||||
if (defaultToUniformInputs && !requiresColorAttrib && inputColorIsUsed) {
|
||||
header->fColorInput = kUniform_ColorInput;
|
||||
} else {
|
||||
header->fColorInput = kAttribute_ColorInput;
|
||||
@ -205,11 +197,9 @@ bool GrGLProgramDesc::Build(const GrDrawState& drawState,
|
||||
|
||||
bool covIsSolidWhite = !requiresCoverageAttrib && 0xffffffff == drawState.getCoverageColor();
|
||||
|
||||
if (skipCoverage) {
|
||||
header->fCoverageInput = kTransBlack_ColorInput;
|
||||
} else if (covIsSolidWhite || !inputCoverageIsUsed) {
|
||||
if ((covIsSolidWhite || !inputCoverageIsUsed) && !skipCoverage) {
|
||||
header->fCoverageInput = kSolidWhite_ColorInput;
|
||||
} else if (defaultToUniformInputs && !requiresCoverageAttrib) {
|
||||
} else if (defaultToUniformInputs && !requiresCoverageAttrib && inputCoverageIsUsed) {
|
||||
header->fCoverageInput = kUniform_ColorInput;
|
||||
} else {
|
||||
header->fCoverageInput = kAttribute_ColorInput;
|
||||
|
@ -100,7 +100,6 @@ private:
|
||||
// Specifies where the initial color comes from before the stages are applied.
|
||||
enum ColorInput {
|
||||
kSolidWhite_ColorInput,
|
||||
kTransBlack_ColorInput,
|
||||
kAttribute_ColorInput,
|
||||
kUniform_ColorInput,
|
||||
|
||||
|
@ -164,10 +164,6 @@ bool GrGLShaderBuilder::genProgram(const GrEffectStage* colorStages[],
|
||||
this->addUniform(GrGLShaderBuilder::kFragment_Visibility, kVec4f_GrSLType, "Color",
|
||||
&name);
|
||||
inputColor = GrGLSLExpr4(name);
|
||||
} else if (GrGLProgramDesc::kSolidWhite_ColorInput == header.fColorInput) {
|
||||
inputColor = GrGLSLExpr4(1);
|
||||
} else if (GrGLProgramDesc::kTransBlack_ColorInput == header.fColorInput) {
|
||||
inputColor = GrGLSLExpr4(0);
|
||||
}
|
||||
|
||||
if (GrGLProgramDesc::kUniform_ColorInput == header.fCoverageInput) {
|
||||
@ -178,8 +174,6 @@ bool GrGLShaderBuilder::genProgram(const GrEffectStage* colorStages[],
|
||||
inputCoverage = GrGLSLExpr4(name);
|
||||
} else if (GrGLProgramDesc::kSolidWhite_ColorInput == header.fCoverageInput) {
|
||||
inputCoverage = GrGLSLExpr4(1);
|
||||
} else if (GrGLProgramDesc::kTransBlack_ColorInput == header.fCoverageInput) {
|
||||
inputCoverage = GrGLSLExpr4(0);
|
||||
}
|
||||
|
||||
if (k110_GrGLSLGeneration != fGpu->glslGeneration()) {
|
||||
|
@ -353,9 +353,12 @@ void GrGpuGL::setupGeometry(const DrawInfo& info, size_t* indexOffsetInBytes) {
|
||||
uint32_t usedAttribArraysMask = 0;
|
||||
const GrVertexAttrib* vertexAttrib = this->getDrawState().getVertexAttribs();
|
||||
|
||||
bool canIgnoreColorAttrib = this->getDrawState().canIgnoreColorAttribute();
|
||||
|
||||
for (int vertexAttribIndex = 0; vertexAttribIndex < vertexAttribCount;
|
||||
++vertexAttribIndex, ++vertexAttrib) {
|
||||
|
||||
if (kColor_GrVertexAttribBinding != vertexAttrib->fBinding || !canIgnoreColorAttrib) {
|
||||
usedAttribArraysMask |= (1 << vertexAttribIndex);
|
||||
GrVertexAttribType attribType = vertexAttrib->fType;
|
||||
attribState->set(this,
|
||||
@ -367,6 +370,7 @@ void GrGpuGL::setupGeometry(const DrawInfo& info, size_t* indexOffsetInBytes) {
|
||||
stride,
|
||||
reinterpret_cast<GrGLvoid*>(
|
||||
vertexOffsetInBytes + vertexAttrib->fOffset));
|
||||
}
|
||||
}
|
||||
attribState->disableUnusedArrays(this, usedAttribArraysMask);
|
||||
}
|
||||
|
@ -73,8 +73,9 @@ bool GrGLProgramDesc::setRandom(SkRandom* random,
|
||||
// if the effects have used up all off the available attributes,
|
||||
// don't try to use color or coverage attributes as input
|
||||
do {
|
||||
header->fColorInput = static_cast<GrGLProgramDesc::ColorInput>(
|
||||
random->nextULessThan(kColorInputCnt));
|
||||
uint32_t colorRand = random->nextULessThan(2);
|
||||
header->fColorInput = (0 == colorRand) ? GrGLProgramDesc::kAttribute_ColorInput :
|
||||
GrGLProgramDesc::kUniform_ColorInput;
|
||||
} while (GrDrawState::kMaxVertexAttribCnt <= currAttribIndex &&
|
||||
kAttribute_ColorInput == header->fColorInput);
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user