Support larger compound types in the interpreter

Field access and array indexing are supported, including
dynamic indices. Larger types (> 4 slots) can be used as
lvalues, rvalues, etc.

Change-Id: I9bb4ed850be4259c05c8952c6c0a17b71f813772
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/214443
Commit-Queue: Brian Osman <brianosman@google.com>
Reviewed-by: Ethan Nicholas <ethannicholas@google.com>
This commit is contained in:
Brian Osman 2019-05-23 12:51:06 -07:00 committed by Skia Commit-Bot
parent bd83231a3a
commit 07c117b6f8
5 changed files with 433 additions and 91 deletions

View File

@ -61,12 +61,18 @@ enum class ByteCodeInstruction : uint16_t {
VECTOR(kDivideU),
// Duplicates the top stack value
VECTOR(kDup),
// All kLoad* are followed by a byte indicating the local/global slot to load
// Followed by count byte. Duplicates that many values
kDupN,
// kLoad/kLoadGlobal are followed by a byte indicating the local/global slot to load
VECTOR(kLoad),
VECTOR(kLoadGlobal),
// As above, then a count byte (1-4), and then one byte per swizzle component (0-3).
// As kLoad/kLoadGlobal, then a count byte (1-4), and then one byte per swizzle component (0-3).
kLoadSwizzle,
kLoadSwizzleGlobal,
// kLoadExtended* are fallback load ops when we lack a specialization. They are followed by a
// count byte, and get the slot to load from the top of the stack.
kLoadExtended,
kLoadExtendedGlobal,
VECTOR(kNegateF),
VECTOR(kNegateI),
VECTOR(kMultiplyF),
@ -75,6 +81,8 @@ enum class ByteCodeInstruction : uint16_t {
VECTOR(kOrB),
VECTOR(kOrI),
VECTOR(kPop),
// Followed by count byte
kPopN,
// Followed by a 32 bit value containing the value to push
kPushImmediate,
// Followed by a byte indicating external value to read
@ -86,14 +94,20 @@ enum class ByteCodeInstruction : uint16_t {
kReturn,
VECTOR(kSin),
VECTOR(kSqrt),
// All kStore* are followed by a byte indicating the local/global slot to store
// kStore/kStoreGlobal are followed by a byte indicating the local/global slot to store
VECTOR(kStore),
VECTOR(kStoreGlobal),
// As above, then a count byte (1-4), and then one byte per swizzle component (0-3).
// Fallback stores. Followed by count byte, and get the slot to store from the top of the stack
kStoreExtended,
kStoreExtendedGlobal,
// As kStore/kStoreGlobal, then a count byte (1-4), then one byte per swizzle component (0-3).
// Expects the stack to look like: ... v1 v2 v3 v4, where the number of 'v's is equal to the
// number of swizzle components. After the store, all v's are popped from the stack.
kStoreSwizzle,
kStoreSwizzleGlobal,
// As above, but gets the store slot from the top of the stack (before values to be stored)
kStoreSwizzleIndirect,
kStoreSwizzleIndirectGlobal,
// Followed by two count bytes (1-4), and then one byte per swizzle component (0-3). The first
// count byte provides the current vector size (the vector is the top n stack elements), and the
// second count byte provides the swizzle component count.

View File

@ -21,8 +21,23 @@ ByteCodeGenerator::ByteCodeGenerator(const Context* context, const Program* prog
fIntrinsics["tan"] = ByteCodeInstruction::kTan;
}
static int slot_count(const Type& type) {
return type.columns() * type.rows();
int ByteCodeGenerator::SlotCount(const Type& type) {
if (type.kind() == Type::kStruct_Kind) {
int slots = 0;
for (const auto& f : type.fields()) {
slots += SlotCount(*f.fType);
}
SkASSERT(slots <= 255);
return slots;
} else if (type.kind() == Type::kArray_Kind) {
int columns = type.columns();
SkASSERT(columns >= 0);
int slots = columns * SlotCount(type.componentType());
SkASSERT(slots <= 255);
return slots;
} else {
return type.columns() * type.rows();
}
}
bool ByteCodeGenerator::generateCode() {
@ -44,11 +59,11 @@ bool ByteCodeGenerator::generateCode() {
continue;
}
if (declVar->fModifiers.fFlags & Modifiers::kIn_Flag) {
for (int i = slot_count(declVar->fType); i > 0; --i) {
for (int i = SlotCount(declVar->fType); i > 0; --i) {
fOutput->fInputSlots.push_back(fOutput->fGlobalCount++);
}
} else {
fOutput->fGlobalCount += slot_count(declVar->fType);
fOutput->fGlobalCount += SlotCount(declVar->fType);
}
}
break;
@ -70,7 +85,7 @@ std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const Functio
std::unique_ptr<ByteCodeFunction> result(new ByteCodeFunction(&f.fDeclaration));
fParameterCount = 0;
for (const auto& p : f.fDeclaration.fParameters) {
fParameterCount += p->fType.columns() * p->fType.rows();
fParameterCount += SlotCount(p->fType);
}
fCode = &result->fCode;
this->writeStatement(*f.fBody);
@ -80,7 +95,7 @@ std::unique_ptr<ByteCodeFunction> ByteCodeGenerator::writeFunction(const Functio
result->fLocalCount = fLocals.size();
const Type& returnType = f.fDeclaration.fReturnType;
if (returnType != *fContext.fVoid_Type) {
result->fReturnCount = returnType.columns() * returnType.rows();
result->fReturnCount = SlotCount(returnType);
}
fLocals.clear();
fFunction = nullptr;
@ -127,7 +142,7 @@ int ByteCodeGenerator::getLocation(const Variable& var) {
}
int result = fParameterCount + fLocals.size();
fLocals.push_back(&var);
for (int i = 0; i < slot_count(var.fType) - 1; ++i) {
for (int i = 0; i < SlotCount(var.fType) - 1; ++i) {
fLocals.push_back(nullptr);
}
SkASSERT(result <= 255);
@ -140,7 +155,7 @@ int ByteCodeGenerator::getLocation(const Variable& var) {
SkASSERT(offset <= 255);
return offset;
}
offset += slot_count(p->fType);
offset += SlotCount(p->fType);
}
SkASSERT(false);
return 0;
@ -159,7 +174,7 @@ int ByteCodeGenerator::getLocation(const Variable& var) {
SkASSERT(offset <= 255);
return offset;
}
offset += slot_count(declVar->fType);
offset += SlotCount(declVar->fType);
}
}
}
@ -172,6 +187,62 @@ int ByteCodeGenerator::getLocation(const Variable& var) {
}
}
int ByteCodeGenerator::getLocation(const Expression& expr, Variable::Storage* storage) {
switch (expr.fKind) {
case Expression::kFieldAccess_Kind: {
const FieldAccess& f = (const FieldAccess&)expr;
int baseAddr = this->getLocation(*f.fBase, storage);
int offset = 0;
for (int i = 0; i < f.fFieldIndex; ++i) {
offset += SlotCount(*f.fBase->fType.fields()[i].fType);
}
if (baseAddr < 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(offset);
this->write(ByteCodeInstruction::kAddI);
return -1;
} else {
return baseAddr + offset;
}
}
case Expression::kIndex_Kind: {
const IndexExpression& i = (const IndexExpression&)expr;
int stride = SlotCount(i.fType);
int offset = -1;
if (i.fIndex->isConstant()) {
offset = i.fIndex->getConstantInt() * stride;
} else {
this->writeExpression(*i.fIndex);
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(stride);
this->write(ByteCodeInstruction::kMultiplyI);
}
int baseAddr = this->getLocation(*i.fBase, storage);
if (baseAddr >= 0 && offset >= 0) {
return baseAddr + offset;
}
if (baseAddr >= 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(baseAddr);
}
if (offset >= 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(offset);
}
this->write(ByteCodeInstruction::kAddI);
return -1;
}
case Expression::kVariableReference_Kind: {
const Variable& var = ((const VariableReference&)expr).fVariable;
*storage = var.fStorage;
return this->getLocation(var);
}
default:
SkASSERT(false);
return 0;
}
}
void ByteCodeGenerator::write8(uint8_t b) {
fCode->push_back(b);
}
@ -193,6 +264,7 @@ void ByteCodeGenerator::write(ByteCodeInstruction i) {
}
static ByteCodeInstruction vector_instruction(ByteCodeInstruction base, int count) {
SkASSERT(count >= 1 && count <= 4);
return ((ByteCodeInstruction) ((int) base + count - 1));
}
@ -244,7 +316,7 @@ void ByteCodeGenerator::writeBinaryExpression(const BinaryExpression& b) {
this->write(ByteCodeInstruction::kDup);
}
}
int count = slot_count(b.fType);
int count = SlotCount(b.fType);
switch (op) {
case Token::Kind::EQEQ:
this->writeTypedInstruction(b.fLeft->fType, ByteCodeInstruction::kCompareIEQ,
@ -364,12 +436,12 @@ void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f)
int argumentCount = 0;
for (const auto& arg : f.fArguments) {
this->writeExpression(*arg);
argumentCount += slot_count(arg->fType);
argumentCount += SlotCount(arg->fType);
}
this->write(ByteCodeInstruction::kCallExternal);
SkASSERT(argumentCount <= 255);
this->write8(argumentCount);
this->write8(slot_count(f.fType));
this->write8(SlotCount(f.fType));
int index = fOutput->fExternalValues.size();
fOutput->fExternalValues.push_back(f.fFunction);
SkASSERT(index <= 255);
@ -378,16 +450,32 @@ void ByteCodeGenerator::writeExternalFunctionCall(const ExternalFunctionCall& f)
void ByteCodeGenerator::writeExternalValue(const ExternalValueReference& e) {
this->write(vector_instruction(ByteCodeInstruction::kReadExternal,
slot_count(e.fValue->type())));
SlotCount(e.fValue->type())));
int index = fOutput->fExternalValues.size();
fOutput->fExternalValues.push_back(e.fValue);
SkASSERT(index <= 255);
this->write8(index);
}
void ByteCodeGenerator::writeFieldAccess(const FieldAccess& f) {
// not yet implemented
abort();
void ByteCodeGenerator::writeVariableExpression(const Expression& expr) {
Variable::Storage storage;
int location = this->getLocation(expr, &storage);
bool isGlobal = storage == Variable::kGlobal_Storage;
int count = SlotCount(expr.fType);
if (location < 0 || count > 4) {
if (location >= 0) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(location);
}
this->write(isGlobal ? ByteCodeInstruction::kLoadExtendedGlobal
: ByteCodeInstruction::kLoadExtended);
this->write8(count);
} else {
this->write(vector_instruction(isGlobal ? ByteCodeInstruction::kLoadGlobal
: ByteCodeInstruction::kLoad,
count));
this->write8(location);
}
}
void ByteCodeGenerator::writeFloatLiteral(const FloatLiteral& f) {
@ -408,7 +496,7 @@ void ByteCodeGenerator::writeIntrinsicCall(const FunctionCall& c) {
case ByteCodeInstruction::kTan:
SkASSERT(c.fArguments.size() == 1);
this->write((ByteCodeInstruction) ((int) found->second +
slot_count(c.fArguments[0]->fType) - 1));
SlotCount(c.fArguments[0]->fType) - 1));
break;
default:
SkASSERT(false);
@ -427,11 +515,6 @@ void ByteCodeGenerator::writeFunctionCall(const FunctionCall& f) {
fCallTargets.emplace_back(this, f.fFunction);
}
void ByteCodeGenerator::writeIndexExpression(const IndexExpression& i) {
// not yet implemented
abort();
}
void ByteCodeGenerator::writeIntLiteral(const IntLiteral& i) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(i.fValue);
@ -446,7 +529,7 @@ void ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p) {
switch (p.fOperator) {
case Token::Kind::PLUSPLUS: // fall through
case Token::Kind::MINUSMINUS: {
SkASSERT(slot_count(p.fOperand->fType) == 1);
SkASSERT(SlotCount(p.fOperand->fType) == 1);
std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand);
lvalue->load();
this->write(ByteCodeInstruction::kPushImmediate);
@ -474,7 +557,7 @@ void ByteCodeGenerator::writePrefixExpression(const PrefixExpression& p) {
ByteCodeInstruction::kNegateI,
ByteCodeInstruction::kNegateI,
ByteCodeInstruction::kNegateF,
slot_count(p.fOperand->fType));
SlotCount(p.fOperand->fType));
break;
}
default:
@ -486,7 +569,7 @@ void ByteCodeGenerator::writePostfixExpression(const PostfixExpression& p) {
switch (p.fOperator) {
case Token::Kind::PLUSPLUS: // fall through
case Token::Kind::MINUSMINUS: {
SkASSERT(slot_count(p.fOperand->fType) == 1);
SkASSERT(SlotCount(p.fOperand->fType) == 1);
std::unique_ptr<LValue> lvalue = this->getLValue(*p.fOperand);
lvalue->load();
this->write(ByteCodeInstruction::kDup);
@ -540,14 +623,6 @@ void ByteCodeGenerator::writeSwizzle(const Swizzle& s) {
}
}
void ByteCodeGenerator::writeVariableReference(const VariableReference& v) {
this->write(vector_instruction(v.fVariable.fStorage == Variable::kGlobal_Storage
? ByteCodeInstruction::kLoadGlobal
: ByteCodeInstruction::kLoad,
slot_count(v.fType)));
this->write8(this->getLocation(v.fVariable));
}
void ByteCodeGenerator::writeTernaryExpression(const TernaryExpression& t) {
this->writeExpression(*t.fTest);
this->write(ByteCodeInstruction::kConditionalBranch);
@ -578,7 +653,9 @@ void ByteCodeGenerator::writeExpression(const Expression& e) {
this->writeExternalValue((ExternalValueReference&) e);
break;
case Expression::kFieldAccess_Kind:
this->writeFieldAccess((FieldAccess&) e);
case Expression::kIndex_Kind:
case Expression::kVariableReference_Kind:
this->writeVariableExpression(e);
break;
case Expression::kFloatLiteral_Kind:
this->writeFloatLiteral((FloatLiteral&) e);
@ -586,9 +663,6 @@ void ByteCodeGenerator::writeExpression(const Expression& e) {
case Expression::kFunctionCall_Kind:
this->writeFunctionCall((FunctionCall&) e);
break;
case Expression::kIndex_Kind:
this->writeIndexExpression((IndexExpression&) e);
break;
case Expression::kIntLiteral_Kind:
this->writeIntLiteral((IntLiteral&) e);
break;
@ -604,9 +678,6 @@ void ByteCodeGenerator::writeExpression(const Expression& e) {
case Expression::kSwizzle_Kind:
this->writeSwizzle((Swizzle&) e);
break;
case Expression::kVariableReference_Kind:
this->writeVariableReference((VariableReference&) e);
break;
case Expression::kTernary_Kind:
this->writeTernaryExpression((TernaryExpression&) e);
break;
@ -620,7 +691,7 @@ class ByteCodeExternalValueLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeExternalValueLValue(ByteCodeGenerator* generator, ExternalValue& value, int index)
: INHERITED(*generator)
, fCount(slot_count(value.type()))
, fCount(ByteCodeGenerator::SlotCount(value.type()))
, fIndex(index) {}
void load() override {
@ -646,22 +717,26 @@ class ByteCodeSwizzleLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeSwizzleLValue(ByteCodeGenerator* generator, const Swizzle& swizzle)
: INHERITED(*generator)
, fSwizzle(swizzle) {
SkASSERT(fSwizzle.fBase->fKind == Expression::kVariableReference_Kind);
}
, fSwizzle(swizzle) {}
void load() override {
fGenerator.writeSwizzle(fSwizzle);
}
void store() override {
const Variable& var = ((VariableReference&)*fSwizzle.fBase).fVariable;
fGenerator.write(vector_instruction(ByteCodeInstruction::kDup,
fSwizzle.fComponents.size()));
fGenerator.write(var.fStorage == Variable::kGlobal_Storage
? ByteCodeInstruction::kStoreSwizzleGlobal
: ByteCodeInstruction::kStoreSwizzle);
fGenerator.write8(fGenerator.getLocation(var));
Variable::Storage storage;
int location = fGenerator.getLocation(*fSwizzle.fBase, &storage);
bool isGlobal = storage == Variable::kGlobal_Storage;
if (location < 0) {
fGenerator.write(isGlobal ? ByteCodeInstruction::kStoreSwizzleIndirectGlobal
: ByteCodeInstruction::kStoreSwizzleIndirect);
} else {
fGenerator.write(isGlobal ? ByteCodeInstruction::kStoreSwizzleGlobal
: ByteCodeInstruction::kStoreSwizzle);
fGenerator.write8(location);
}
fGenerator.write8(fSwizzle.fComponents.size());
for (int c : fSwizzle.fComponents) {
fGenerator.write8(c);
@ -674,36 +749,47 @@ private:
typedef LValue INHERITED;
};
class ByteCodeVariableLValue : public ByteCodeGenerator::LValue {
class ByteCodeExpressionLValue : public ByteCodeGenerator::LValue {
public:
ByteCodeVariableLValue(ByteCodeGenerator* generator, const Variable& var)
ByteCodeExpressionLValue(ByteCodeGenerator* generator, const Expression& expr)
: INHERITED(*generator)
, fCount(slot_count(var.fType))
, fLocation(generator->getLocation(var))
, fIsGlobal(var.fStorage == Variable::kGlobal_Storage) {
}
, fExpression(expr) {}
void load() override {
fGenerator.write(vector_instruction(fIsGlobal ? ByteCodeInstruction::kLoadGlobal
: ByteCodeInstruction::kLoad,
fCount));
fGenerator.write8(fLocation);
fGenerator.writeVariableExpression(fExpression);
}
void store() override {
fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, fCount));
fGenerator.write(vector_instruction(fIsGlobal ? ByteCodeInstruction::kStoreGlobal
: ByteCodeInstruction::kStore,
fCount));
fGenerator.write8(fLocation);
int count = ByteCodeGenerator::SlotCount(fExpression.fType);
if (count > 4) {
fGenerator.write(ByteCodeInstruction::kDupN);
fGenerator.write8(count);
} else {
fGenerator.write(vector_instruction(ByteCodeInstruction::kDup, count));
}
Variable::Storage storage;
int location = fGenerator.getLocation(fExpression, &storage);
bool isGlobal = storage == Variable::kGlobal_Storage;
if (location < 0 || count > 4) {
if (location >= 0) {
fGenerator.write(ByteCodeInstruction::kPushImmediate);
fGenerator.write32(location);
}
fGenerator.write(isGlobal ? ByteCodeInstruction::kStoreExtendedGlobal
: ByteCodeInstruction::kStoreExtended);
fGenerator.write8(count);
} else {
fGenerator.write(vector_instruction(isGlobal ? ByteCodeInstruction::kStoreGlobal
: ByteCodeInstruction::kStore,
count));
fGenerator.write8(location);
}
}
private:
typedef LValue INHERITED;
int fCount;
int fLocation;
bool fIsGlobal;
const Expression& fExpression;
};
std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Expression& e) {
@ -715,12 +801,10 @@ std::unique_ptr<ByteCodeGenerator::LValue> ByteCodeGenerator::getLValue(const Ex
SkASSERT(index <= 255);
return std::unique_ptr<LValue>(new ByteCodeExternalValueLValue(this, *value, index));
}
case Expression::kFieldAccess_Kind:
case Expression::kIndex_Kind:
// not yet implemented
abort();
case Expression::kVariableReference_Kind:
return std::unique_ptr<LValue>(new ByteCodeVariableLValue(this,
((VariableReference&) e).fVariable));
return std::unique_ptr<LValue>(new ByteCodeExpressionLValue(this, e));
case Expression::kSwizzle_Kind:
return std::unique_ptr<LValue>(new ByteCodeSwizzleLValue(this, (Swizzle&) e));
case Expression::kTernary_Kind:
@ -790,7 +874,7 @@ void ByteCodeGenerator::writeForStatement(const ForStatement& f) {
this->setContinueTargets();
if (f.fNext) {
this->writeExpression(*f.fNext);
this->write(vector_instruction(ByteCodeInstruction::kPop, slot_count(f.fNext->fType)));
this->write(vector_instruction(ByteCodeInstruction::kPop, SlotCount(f.fNext->fType)));
}
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
@ -800,7 +884,7 @@ void ByteCodeGenerator::writeForStatement(const ForStatement& f) {
this->setContinueTargets();
if (f.fNext) {
this->writeExpression(*f.fNext);
this->write(vector_instruction(ByteCodeInstruction::kPop, slot_count(f.fNext->fType)));
this->write(vector_instruction(ByteCodeInstruction::kPop, SlotCount(f.fNext->fType)));
}
this->write(ByteCodeInstruction::kBranch);
this->write16(start);
@ -834,7 +918,7 @@ void ByteCodeGenerator::writeIfStatement(const IfStatement& i) {
void ByteCodeGenerator::writeReturnStatement(const ReturnStatement& r) {
this->writeExpression(*r.fExpression);
this->write(ByteCodeInstruction::kReturn);
this->write8(r.fExpression->fType.columns() * r.fExpression->fType.rows());
this->write8(SlotCount(r.fExpression->fType));
}
void ByteCodeGenerator::writeSwitchStatement(const SwitchStatement& r) {
@ -850,9 +934,16 @@ void ByteCodeGenerator::writeVarDeclarations(const VarDeclarations& v) {
int location = getLocation(*decl.fVar);
if (decl.fValue) {
this->writeExpression(*decl.fValue);
this->write(vector_instruction(ByteCodeInstruction::kStore,
slot_count(decl.fValue->fType)));
this->write8(location);
int count = SlotCount(decl.fValue->fType);
if (count > 4) {
this->write(ByteCodeInstruction::kPushImmediate);
this->write32(location);
this->write(ByteCodeInstruction::kStoreExtended);
this->write8(count);
} else {
this->write(vector_instruction(ByteCodeInstruction::kStore, count));
this->write8(location);
}
}
}
}
@ -893,7 +984,13 @@ void ByteCodeGenerator::writeStatement(const Statement& s) {
case Statement::kExpression_Kind: {
const Expression& expr = *((ExpressionStatement&) s).fExpression;
this->writeExpression(expr);
this->write(vector_instruction(ByteCodeInstruction::kPop, slot_count(expr.fType)));
int count = SlotCount(expr.fType);
if (count > 4) {
this->write(ByteCodeInstruction::kPopN);
this->write8(count);
} else {
this->write(vector_instruction(ByteCodeInstruction::kPop, count));
}
break;
}
case Statement::kFor_Kind:

View File

@ -96,6 +96,8 @@ public:
void writeTypedInstruction(const Type& type, ByteCodeInstruction s, ByteCodeInstruction u,
ByteCodeInstruction f, int count);
static int SlotCount(const Type& type);
private:
// reserves 16 bits in the output code, to be filled in later with an address once we determine
// it
@ -171,11 +173,18 @@ private:
*/
int getLocation(const Variable& var);
/**
* As above, but computes the (possibly dynamic) address of an expression involving indexing &
* field access. If the address is known, it's returned. If not, -1 is returned, and the
* location will be left on the top of the stack.
*/
int getLocation(const Expression& expr, Variable::Storage* storage);
std::unique_ptr<ByteCodeFunction> writeFunction(const FunctionDefinition& f);
void writeVarDeclarations(const VarDeclarations& decl);
void writeVariableReference(const VariableReference& ref);
void writeVariableExpression(const Expression& expr);
void writeExpression(const Expression& expr);
@ -195,16 +204,12 @@ private:
void writeExternalValue(const ExternalValueReference& r);
void writeFieldAccess(const FieldAccess& f);
void writeSwizzle(const Swizzle& swizzle);
void writeBinaryExpression(const BinaryExpression& b);
void writeTernaryExpression(const TernaryExpression& t);
void writeIndexExpression(const IndexExpression& expr);
void writeLogicalAnd(const BinaryExpression& b);
void writeLogicalOr(const BinaryExpression& o);
@ -268,7 +273,7 @@ private:
std::unordered_map<String, ByteCodeInstruction> fIntrinsics;
friend class DeferredLocation;
friend class ByteCodeVariableLValue;
friend class ByteCodeExpressionLValue;
friend class ByteCodeSwizzleLValue;
typedef CodeGenerator INHERITED;

View File

@ -8,6 +8,7 @@
#ifndef SKSL_STANDALONE
#include "src/core/SkRasterPipeline.h"
#include "src/sksl/SkSLByteCodeGenerator.h"
#include "src/sksl/SkSLExternalValue.h"
#include "src/sksl/SkSLInterpreter.h"
#include "src/sksl/ir/SkSLBinaryExpression.h"
@ -64,8 +65,7 @@ void Interpreter::run(const ByteCodeFunction& f, Interpreter::Value args[],
this->innerRun(f, stack, outReturn);
for (const Variable* p : f.fDeclaration.fParameters) {
const int nvalues = p->fType.columns()
* p->fType.rows();
const int nvalues = ByteCodeGenerator::SlotCount(p->fType);
if (p->fModifiers.fFlags & Modifiers::kOut_Flag) {
memcpy(args, stack, nvalues * sizeof(Value));
}
@ -137,6 +137,7 @@ void Interpreter::disassemble(const ByteCodeFunction& f) {
VECTOR_DISASSEMBLE(kDivideS, "divideS")
VECTOR_DISASSEMBLE(kDivideU, "divideu")
VECTOR_DISASSEMBLE(kDup, "dup")
case ByteCodeInstruction::kDupN: printf("dupN %d", READ8()); break;
case ByteCodeInstruction::kLoad: printf("load %d", READ8()); break;
case ByteCodeInstruction::kLoad2: printf("load2 %d", READ8()); break;
case ByteCodeInstruction::kLoad3: printf("load3 %d", READ8()); break;
@ -163,6 +164,9 @@ void Interpreter::disassemble(const ByteCodeFunction& f) {
}
break;
}
case ByteCodeInstruction::kLoadExtended: printf("loadextended %d", READ8()); break;
case ByteCodeInstruction::kLoadExtendedGlobal: printf("loadextendedglobal %d", READ8());
break;
VECTOR_DISASSEMBLE(kMultiplyF, "multiplyf")
VECTOR_DISASSEMBLE(kMultiplyI, "multiplyi")
VECTOR_DISASSEMBLE(kNegateF, "negatef")
@ -171,6 +175,7 @@ void Interpreter::disassemble(const ByteCodeFunction& f) {
VECTOR_DISASSEMBLE(kOrB, "orb")
VECTOR_DISASSEMBLE(kOrI, "ori")
VECTOR_DISASSEMBLE(kPop, "pop")
case ByteCodeInstruction::kPopN: printf("popN %d", READ8()); break;
case ByteCodeInstruction::kPushImmediate: {
uint32_t v = READ32();
union { uint32_t u; float f; } pun = { v };
@ -213,6 +218,26 @@ void Interpreter::disassemble(const ByteCodeFunction& f) {
}
break;
}
case ByteCodeInstruction::kStoreSwizzleIndirect: {
int count = READ8();
printf("storeswizzleindirect %d", count);
for (int i = 0; i < count; ++i) {
printf(", %d", READ8());
}
break;
}
case ByteCodeInstruction::kStoreSwizzleIndirectGlobal: {
int count = READ8();
printf("storeswizzleindirectglobal %d", count);
for (int i = 0; i < count; ++i) {
printf(", %d", READ8());
}
break;
}
case ByteCodeInstruction::kStoreExtended: printf("storeextended %d", READ8()); break;
case ByteCodeInstruction::kStoreExtendedGlobal:
printf("storeextendedglobal %d", READ8());
break;
VECTOR_DISASSEMBLE(kSubtractF, "subtractf")
VECTOR_DISASSEMBLE(kSubtractI, "subtracti")
case ByteCodeInstruction::kSwizzle: {
@ -404,6 +429,13 @@ void Interpreter::innerRun(const ByteCodeFunction& f, Value* stack, Value* outRe
case ByteCodeInstruction::kDup : PUSH(sp[(int)ByteCodeInstruction::kDup - (int)inst]);
break;
case ByteCodeInstruction::kDupN: {
int count = READ8();
memcpy(sp + 1, sp - count + 1, count * sizeof(Value));
sp += count;
break;
}
case ByteCodeInstruction::kLoad4: sp[4] = stack[*ip + 3];
case ByteCodeInstruction::kLoad3: sp[3] = stack[*ip + 2];
case ByteCodeInstruction::kLoad2: sp[2] = stack[*ip + 1];
@ -417,9 +449,27 @@ void Interpreter::innerRun(const ByteCodeFunction& f, Value* stack, Value* outRe
case ByteCodeInstruction::kLoadGlobal2: sp[2] = fGlobals[*ip + 1];
case ByteCodeInstruction::kLoadGlobal : sp[1] = fGlobals[*ip + 0];
++ip;
sp += (int)inst - (int)ByteCodeInstruction::kLoadGlobal + 1;
sp += (int)inst -
(int)ByteCodeInstruction::kLoadGlobal + 1;
break;
case ByteCodeInstruction::kLoadExtended: {
int count = READ8();
int src = POP().fSigned;
memcpy(sp + 1, &stack[src], count * sizeof(Value));
sp += count;
break;
}
case ByteCodeInstruction::kLoadExtendedGlobal: {
int count = READ8();
int src = POP().fSigned;
SkASSERT(src + count <= (int) fGlobals.size());
memcpy(sp + 1, &fGlobals[src], count * sizeof(Value));
sp += count;
break;
}
case ByteCodeInstruction::kLoadSwizzle: {
int src = READ8();
int count = READ8();
@ -466,6 +516,10 @@ void Interpreter::innerRun(const ByteCodeFunction& f, Value* stack, Value* outRe
case ByteCodeInstruction::kPop : POP();
break;
case ByteCodeInstruction::kPopN:
sp -= READ8();
break;
case ByteCodeInstruction::kPushImmediate:
PUSH(READ32());
break;
@ -525,6 +579,22 @@ void Interpreter::innerRun(const ByteCodeFunction& f, Value* stack, Value* outRe
++ip;
break;
case ByteCodeInstruction::kStoreExtended: {
int count = READ8();
int target = POP().fSigned;
memcpy(&stack[target], sp - count + 1, count * sizeof(Value));
sp -= count;
break;
}
case ByteCodeInstruction::kStoreExtendedGlobal: {
int count = READ8();
int target = POP().fSigned;
SkASSERT(target + count <= (int) fGlobals.size());
memcpy(&fGlobals[target], sp - count + 1, count * sizeof(Value));
sp -= count;
break;
}
case ByteCodeInstruction::kStoreSwizzle: {
int target = READ8();
int count = READ8();
@ -544,6 +614,24 @@ void Interpreter::innerRun(const ByteCodeFunction& f, Value* stack, Value* outRe
ip += count;
break;
}
case ByteCodeInstruction::kStoreSwizzleIndirect: {
int target = POP().fSigned;
int count = READ8();
for (int i = count - 1; i >= 0; --i) {
stack[target + *(ip + i)] = POP();
}
ip += count;
break;
}
case ByteCodeInstruction::kStoreSwizzleIndirectGlobal: {
int target = POP().fSigned;
int count = READ8();
for (int i = count - 1; i >= 0; --i) {
fGlobals[target + *(ip + i)] = POP();
}
ip += count;
break;
}
VECTOR_BINARY_OP(kSubtractI, fSigned, -)
VECTOR_BINARY_OP(kSubtractF, fFloat, -)

View File

@ -348,6 +348,144 @@ DEF_TEST(SkSLInterpreterSetInputs, r) {
REPORTER_ASSERT(r, out == 5.0f);
}
DEF_TEST(SkSLInterpreterCompound, r) {
struct RectAndColor { SkIRect fRect; SkColor4f fColor; };
struct ManyRects { int fNumRects; RectAndColor fRects[4]; };
const char* src =
// Some struct definitions
"struct Point { int x; int y; };\n"
"struct Rect { Point p0; Point p1; };\n"
"struct RectAndColor { Rect r; float4 color; };\n"
// Structs as globals, parameters, return values
"RectAndColor temp;\n"
"int rect_height(Rect r) { return r.p1.y - r.p0.y; }\n"
"RectAndColor make_blue_rect(int w, int h) {\n"
" temp.r.p0.x = temp.r.p0.y = 0;\n"
" temp.r.p1.x = w; temp.r.p1.y = h;\n"
" temp.color = float4(0, 1, 0, 1);\n"
" return temp;\n"
"}\n"
// Initialization and assignment of types larger than 4 slots
"RectAndColor init_big(RectAndColor r) { RectAndColor s = r; return s; }\n"
"RectAndColor copy_big(RectAndColor r) { RectAndColor s; s = r; return s; }\n"
// Same for arrays, including some non-constant indexing
"float tempFloats[8];\n"
"int median(int a[15]) { return a[7]; }\n"
"float[8] sums(float a[8]) {\n"
" float tempFloats[8];\n"
" tempFloats[0] = a[0];\n"
" for (int i = 1; i < 8; ++i) { tempFloats[i] = tempFloats[i - 1] + a[i]; }\n"
" return tempFloats;\n"
"}\n"
// Uniforms, array-of-structs, dynamic indices
"in uniform Rect gRects[4];\n"
"Rect get_rect(int i) { return gRects[i]; }\n"
// Kitchen sink (swizzles, inout, SoAoS)
"struct ManyRects { int numRects; RectAndColor rects[4]; };\n"
"void fill_rects(inout ManyRects mr) {\n"
" for (int i = 0; i < mr.numRects; ++i) {\n"
" mr.rects[i].r = gRects[i];\n"
" float b = mr.rects[i].r.p1.y;\n"
" mr.rects[i].color = float4(b, b, b, b);\n"
" }\n"
"}\n";
SkSL::Compiler compiler;
SkSL::Program::Settings settings;
std::unique_ptr<SkSL::Program> program = compiler.convertProgram(
SkSL::Program::kGeneric_Kind,
SkSL::String(src), settings);
REPORTER_ASSERT(r, program);
std::unique_ptr<SkSL::ByteCode> byteCode = compiler.toByteCode(*program);
REPORTER_ASSERT(r, !compiler.errorCount());
auto rect_height = byteCode->getFunction("rect_height"),
make_blue_rect = byteCode->getFunction("make_blue_rect"),
median = byteCode->getFunction("median"),
sums = byteCode->getFunction("sums"),
get_rect = byteCode->getFunction("get_rect"),
fill_rects = byteCode->getFunction("fill_rects");
SkIRect gRects[4] = { { 1,2,3,4 }, { 5,6,7,8 }, { 9,10,11,12 }, { 13,14,15,16 } };
SkSL::Interpreter interpreter(std::move(program), std::move(byteCode),
(SkSL::Interpreter::Value*)gRects);
{
SkIRect in = SkIRect::MakeXYWH(10, 10, 20, 30);
int out = 0;
interpreter.run(*rect_height,
(SkSL::Interpreter::Value*)&in,
(SkSL::Interpreter::Value*)&out);
REPORTER_ASSERT(r, out == 30);
}
{
int in[2] = { 15, 25 };
RectAndColor out;
interpreter.run(*make_blue_rect,
(SkSL::Interpreter::Value*)in,
(SkSL::Interpreter::Value*)&out);
REPORTER_ASSERT(r, out.fRect.width() == 15);
REPORTER_ASSERT(r, out.fRect.height() == 25);
SkColor4f blue = { 0.0f, 1.0f, 0.0f, 1.0f };
REPORTER_ASSERT(r, out.fColor == blue);
}
{
int in[15] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 };
int out = 0;
interpreter.run(*median,
(SkSL::Interpreter::Value*)in,
(SkSL::Interpreter::Value*)&out);
REPORTER_ASSERT(r, out == 8);
}
{
float in[8] = { 1, 2, 3, 4, 5, 6, 7, 8 };
float out[8] = { 0 };
interpreter.run(*sums,
(SkSL::Interpreter::Value*)in,
(SkSL::Interpreter::Value*)out);
for (int i = 0; i < 8; ++i) {
REPORTER_ASSERT(r, out[i] == static_cast<float>((i + 1) * (i + 2) / 2));
}
}
{
int in = 2;
SkIRect out = SkIRect::MakeEmpty();
interpreter.run(*get_rect,
(SkSL::Interpreter::Value*)&in,
(SkSL::Interpreter::Value*)&out);
REPORTER_ASSERT(r, out == gRects[2]);
}
{
ManyRects in;
memset(&in, 0, sizeof(in));
in.fNumRects = 2;
interpreter.run(*fill_rects,
(SkSL::Interpreter::Value*)&in,
nullptr);
ManyRects expected;
memset(&expected, 0, sizeof(expected));
expected.fNumRects = 2;
for (int i = 0; i < 2; ++i) {
expected.fRects[i].fRect = gRects[i];
float c = gRects[i].fBottom;
expected.fRects[i].fColor = { c, c, c, c };
}
REPORTER_ASSERT(r, memcmp(&in, &expected, sizeof(in)) == 0);
}
}
DEF_TEST(SkSLInterpreterFunctions, r) {
const char* src =