Add basic SVD support to SkMatrix. Allows you to pull out the x- and y-scale factors, sandwiched by two rotations.
R=reed@google.com Author: jvanverth@google.com Review URL: https://chromiumcodereview.appspot.com/19569007 git-svn-id: http://skia.googlecode.com/svn/trunk@10322 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
parent
0449a569b9
commit
08284e4d24
@ -1966,3 +1966,86 @@ bool SkTreatAsSprite(const SkMatrix& mat, int width, int height,
|
||||
dst.round(&idst);
|
||||
return isrc == idst;
|
||||
}
|
||||
|
||||
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
||||
SkScalar* rotation0,
|
||||
SkScalar* xScale, SkScalar* yScale,
|
||||
SkScalar* rotation1) {
|
||||
|
||||
// borrowed from Jim Blinn's article "Consider the Lowly 2x2 Matrix"
|
||||
// Note: he uses row vectors, so we have to do some swapping of terms
|
||||
SkScalar A = matrix[SkMatrix::kMScaleX];
|
||||
SkScalar B = matrix[SkMatrix::kMSkewX];
|
||||
SkScalar C = matrix[SkMatrix::kMSkewY];
|
||||
SkScalar D = matrix[SkMatrix::kMScaleY];
|
||||
|
||||
SkScalar E = SK_ScalarHalf*(A + D);
|
||||
SkScalar F = SK_ScalarHalf*(A - D);
|
||||
SkScalar G = SK_ScalarHalf*(C + B);
|
||||
SkScalar H = SK_ScalarHalf*(C - B);
|
||||
|
||||
SkScalar sqrt0 = SkScalarSqrt(E*E + H*H);
|
||||
SkScalar sqrt1 = SkScalarSqrt(F*F + G*G);
|
||||
|
||||
SkScalar xs, ys, r0, r1;
|
||||
|
||||
// can't have zero yScale, must be degenerate
|
||||
if (SkScalarNearlyEqual(sqrt0, sqrt1)) {
|
||||
return false;
|
||||
}
|
||||
xs = sqrt0 + sqrt1;
|
||||
ys = sqrt0 - sqrt1;
|
||||
|
||||
// uniformly scaled rotation
|
||||
if (SkScalarNearlyZero(F) && SkScalarNearlyZero(G)) {
|
||||
SkASSERT(!SkScalarNearlyZero(E));
|
||||
r0 = SkScalarATan2(H, E);
|
||||
r1 = 0;
|
||||
// uniformly scaled reflection
|
||||
} else if (SkScalarNearlyZero(E) && SkScalarNearlyZero(H)) {
|
||||
SkASSERT(!SkScalarNearlyZero(F));
|
||||
r0 = -SkScalarATan2(G, F);
|
||||
r1 = 0;
|
||||
} else {
|
||||
SkASSERT(!SkScalarNearlyZero(E));
|
||||
SkASSERT(!SkScalarNearlyZero(F));
|
||||
|
||||
SkScalar arctan0 = SkScalarATan2(H, E);
|
||||
SkScalar arctan1 = SkScalarATan2(G, F);
|
||||
r0 = SK_ScalarHalf*(arctan0 - arctan1);
|
||||
r1 = SK_ScalarHalf*(arctan0 + arctan1);
|
||||
|
||||
// simplify the results
|
||||
const SkScalar kHalfPI = SK_ScalarHalf*SK_ScalarPI;
|
||||
if (SkScalarNearlyEqual(SkScalarAbs(r0), kHalfPI)) {
|
||||
SkScalar tmp = xs;
|
||||
xs = ys;
|
||||
ys = tmp;
|
||||
|
||||
r1 += r0;
|
||||
r0 = 0;
|
||||
} else if (SkScalarNearlyEqual(SkScalarAbs(r1), kHalfPI)) {
|
||||
SkScalar tmp = xs;
|
||||
xs = ys;
|
||||
ys = tmp;
|
||||
|
||||
r0 += r1;
|
||||
r1 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
if (NULL != xScale) {
|
||||
*xScale = xs;
|
||||
}
|
||||
if (NULL != yScale) {
|
||||
*yScale = ys;
|
||||
}
|
||||
if (NULL != rotation0) {
|
||||
*rotation0 = r0;
|
||||
}
|
||||
if (NULL != rotation1) {
|
||||
*rotation1 = r1;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
@ -40,4 +40,15 @@ static inline bool SkTreatAsSpriteFilter(const SkMatrix& matrix,
|
||||
return SkTreatAsSprite(matrix, width, height, kSkSubPixelBitsForBilerp);
|
||||
}
|
||||
|
||||
/** Decomposes the upper-left 2x2 of the matrix into a rotation, followed by a non-uniform scale,
|
||||
followed by another rotation. Returns true if successful.
|
||||
If the scale factors are uniform, then rotation1 will be 0.
|
||||
If there is a reflection, yScale will be negative.
|
||||
Returns false if the matrix is degenerate.
|
||||
*/
|
||||
bool SkDecomposeUpper2x2(const SkMatrix& matrix,
|
||||
SkScalar* rotation0,
|
||||
SkScalar* xScale, SkScalar* yScale,
|
||||
SkScalar* rotation1);
|
||||
|
||||
#endif
|
||||
|
@ -8,6 +8,7 @@
|
||||
#include "Test.h"
|
||||
#include "SkMath.h"
|
||||
#include "SkMatrix.h"
|
||||
#include "SkMatrixUtils.h"
|
||||
#include "SkRandom.h"
|
||||
|
||||
static bool nearly_equal_scalar(SkScalar a, SkScalar b) {
|
||||
@ -345,6 +346,252 @@ static void test_matrix_is_similarity(skiatest::Reporter* reporter) {
|
||||
REPORTER_ASSERT(reporter, mat.isSimilarity());
|
||||
}
|
||||
|
||||
// For test_matrix_decomposition, below.
|
||||
static bool scalar_nearly_equal_relative(SkScalar a, SkScalar b,
|
||||
SkScalar tolerance = SK_ScalarNearlyZero) {
|
||||
// from Bruce Dawson
|
||||
SkScalar diff = SkScalarAbs(a - b);
|
||||
if (diff < tolerance) {
|
||||
return true;
|
||||
}
|
||||
|
||||
a = SkScalarAbs(a);
|
||||
b = SkScalarAbs(b);
|
||||
SkScalar largest = (b > a) ? b : a;
|
||||
|
||||
if (diff <= largest*tolerance) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
static void test_matrix_decomposition(skiatest::Reporter* reporter) {
|
||||
SkMatrix mat;
|
||||
SkScalar rotation0, scaleX, scaleY, rotation1;
|
||||
|
||||
const float kRotation0 = 15.5f;
|
||||
const float kRotation1 = -50.f;
|
||||
const float kScale0 = 5000.f;
|
||||
const float kScale1 = 0.001f;
|
||||
|
||||
// identity
|
||||
mat.reset();
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
// make sure it doesn't crash if we pass in NULLs
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, NULL, NULL, NULL, NULL));
|
||||
|
||||
// rotation only
|
||||
mat.setRotate(kRotation0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, SK_Scalar1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// uniform scale only
|
||||
mat.setScale(kScale0, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// anisotropic scale only
|
||||
mat.setScale(kScale1, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// rotation then uniform scale
|
||||
mat.setRotate(kRotation1);
|
||||
mat.postScale(kScale0, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// uniform scale then rotation
|
||||
mat.setScale(kScale0, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// rotation then uniform scale+reflection
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(kScale1, -kScale1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation0)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// uniform scale+reflection, then rotate
|
||||
mat.setScale(kScale0, -kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(-kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, -kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// rotation then anisotropic scale
|
||||
mat.setRotate(kRotation1);
|
||||
mat.postScale(kScale1, kScale0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0, SkDegreesToRadians(kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// anisotropic scale then rotation
|
||||
mat.setScale(kScale1, kScale0);
|
||||
mat.postRotate(kRotation0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation1, SkDegreesToRadians(kRotation0)));
|
||||
|
||||
// rotation, uniform scale, then different rotation
|
||||
mat.setRotate(kRotation1);
|
||||
mat.postScale(kScale0, kScale0);
|
||||
mat.postRotate(kRotation0);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(rotation0,
|
||||
SkDegreesToRadians(kRotation0 + kRotation1)));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleX, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyEqual(scaleY, kScale0));
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(rotation1));
|
||||
|
||||
// rotation, anisotropic scale, then different rotation
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(kScale1, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
// Because of the shear/skew we won't get the same results, so we need to multiply it out.
|
||||
// Generating the matrices requires doing a radian-to-degree calculation, then degree-to-radian
|
||||
// calculation (in setRotate()), which adds error, so this just computes the matrix elements
|
||||
// directly.
|
||||
SkScalar c0;
|
||||
SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
||||
SkScalar c1;
|
||||
SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
||||
// We do a relative check here because large scale factors cause problems with an absolute check
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
|
||||
// try some random matrices
|
||||
SkMWCRandom rand;
|
||||
for (int m = 0; m < 1000; ++m) {
|
||||
SkScalar rot0 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
||||
SkScalar sx = rand.nextRangeF(-3000.f, 3000.f);
|
||||
SkScalar sy = rand.nextRangeF(-3000.f, 3000.f);
|
||||
SkScalar rot1 = rand.nextRangeF(-SK_ScalarPI, SK_ScalarPI);
|
||||
mat.setRotate(rot0);
|
||||
mat.postScale(sx, sy);
|
||||
mat.postRotate(rot1);
|
||||
|
||||
if (SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1)) {
|
||||
SkScalar c0;
|
||||
SkScalar s0 = SkScalarSinCos(rotation0, &c0);
|
||||
SkScalar c1;
|
||||
SkScalar s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
} else {
|
||||
// if the matrix is degenerate, the basis vectors should be near-parallel or near-zero
|
||||
SkScalar perpdot = mat[SkMatrix::kMScaleX]*mat[SkMatrix::kMScaleY] -
|
||||
mat[SkMatrix::kMSkewX]*mat[SkMatrix::kMSkewY];
|
||||
REPORTER_ASSERT(reporter, SkScalarNearlyZero(perpdot));
|
||||
}
|
||||
}
|
||||
|
||||
// translation shouldn't affect this
|
||||
mat.postTranslate(-1000.f, 1000.f);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
s0 = SkScalarSinCos(rotation0, &c0);
|
||||
s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
|
||||
// perspective shouldn't affect this
|
||||
mat[SkMatrix::kMPersp0] = 12.0;
|
||||
mat[SkMatrix::kMPersp1] = 4.0;
|
||||
mat[SkMatrix::kMPersp2] = 1872.0;
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
s0 = SkScalarSinCos(rotation0, &c0);
|
||||
s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
|
||||
// rotation, anisotropic scale + reflection, then different rotation
|
||||
mat.setRotate(kRotation0);
|
||||
mat.postScale(-kScale1, kScale0);
|
||||
mat.postRotate(kRotation1);
|
||||
REPORTER_ASSERT(reporter, SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
s0 = SkScalarSinCos(rotation0, &c0);
|
||||
s1 = SkScalarSinCos(rotation1, &c1);
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleX],
|
||||
scaleX*c0*c1 - scaleY*s0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewX],
|
||||
-scaleX*s0*c1 - scaleY*c0*s1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMSkewY],
|
||||
scaleX*c0*s1 + scaleY*s0*c1));
|
||||
REPORTER_ASSERT(reporter, scalar_nearly_equal_relative(mat[SkMatrix::kMScaleY],
|
||||
-scaleX*s0*s1 + scaleY*c0*c1));
|
||||
|
||||
// degenerate matrices
|
||||
// mostly zero entries
|
||||
mat.reset();
|
||||
mat[SkMatrix::kMScaleX] = 0.f;
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
mat.reset();
|
||||
mat[SkMatrix::kMScaleY] = 0.f;
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
mat.reset();
|
||||
// linearly dependent entries
|
||||
mat[SkMatrix::kMScaleX] = 1.f;
|
||||
mat[SkMatrix::kMSkewX] = 2.f;
|
||||
mat[SkMatrix::kMSkewY] = 4.f;
|
||||
mat[SkMatrix::kMScaleY] = 8.f;
|
||||
REPORTER_ASSERT(reporter, !SkDecomposeUpper2x2(mat, &rotation0, &scaleX, &scaleY, &rotation1));
|
||||
}
|
||||
|
||||
static void TestMatrix(skiatest::Reporter* reporter) {
|
||||
SkMatrix mat, inverse, iden1, iden2;
|
||||
|
||||
@ -465,6 +712,7 @@ static void TestMatrix(skiatest::Reporter* reporter) {
|
||||
test_matrix_max_stretch(reporter);
|
||||
test_matrix_is_similarity(reporter);
|
||||
test_matrix_recttorect(reporter);
|
||||
test_matrix_decomposition(reporter);
|
||||
}
|
||||
|
||||
#include "TestClassDef.h"
|
||||
|
Loading…
Reference in New Issue
Block a user