Remove the non-separable blur because it is no longer used.

R=senorblanco@chromium.org, reed@google.com

Author: arbesfeld@chromium.org

Review URL: https://chromiumcodereview.appspot.com/16750002

git-svn-id: http://skia.googlecode.com/svn/trunk@9503 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
commit-bot@chromium.org 2013-06-11 15:23:42 +00:00
parent 6fbe54c663
commit 0a1c3872de
5 changed files with 31 additions and 573 deletions

View File

@ -140,7 +140,7 @@ protected:
virtual void makeBlurryRect(const SkRect&) SK_OVERRIDE {
SkMask mask;
mask.fImage = NULL;
SkBlurMask::BlurSeparable(&mask, fSrcMask, this->radius(),
SkBlurMask::Blur(&mask, fSrcMask, this->radius(),
SkBlurMask::kNormal_Style,
SkBlurMask::kHigh_Quality);
SkMask::FreeImage(mask.fImage);

View File

@ -243,7 +243,7 @@ protected:
memset(src.fImage, 0xff, src.computeTotalImageSize());
return SkBlurMask::BlurSeparable(m, src, this->radius(), this->style(), this->getQuality());
return SkBlurMask::Blur(m, src, this->radius(), this->style(), this->getQuality());
}
virtual SkBlurMask::Quality getQuality() {

View File

@ -412,482 +412,6 @@ static void get_adjusted_radii(SkScalar passRadius, int *loRadius, int *hiRadius
}
}
// Unrolling the integer blur kernel seems to give us a ~15% speedup on Windows,
// breakeven on Mac, and ~15% slowdown on Linux.
// Reading a word at a time when bulding the sum buffer seems to give
// us no appreciable speedup on Windows or Mac, and 2% slowdown on Linux.
#if defined(SK_BUILD_FOR_WIN32)
#define UNROLL_KERNEL_LOOP 1
#endif
/** The sum buffer is an array of u32 to hold the accumulated sum of all of the
src values at their position, plus all values above and to the left.
When we sample into this buffer, we need an initial row and column of 0s,
so we have an index correspondence as follows:
src[i, j] == sum[i+1, j+1]
sum[0, j] == sum[i, 0] == 0
We assume that the sum buffer's stride == its width
*/
static void build_sum_buffer(uint32_t sum[], int srcW, int srcH,
const uint8_t src[], int srcRB) {
int sumW = srcW + 1;
SkASSERT(srcRB >= srcW);
// mod srcRB so we can apply it after each row
srcRB -= srcW;
int x, y;
// zero out the top row and column
memset(sum, 0, sumW * sizeof(sum[0]));
sum += sumW;
// special case first row
uint32_t X = 0;
*sum++ = 0; // initialze the first column to 0
for (x = srcW - 1; x >= 0; --x) {
X = *src++ + X;
*sum++ = X;
}
src += srcRB;
// now do the rest of the rows
for (y = srcH - 1; y > 0; --y) {
uint32_t L = 0;
uint32_t C = 0;
*sum++ = 0; // initialze the first column to 0
for (x = srcW - 1; !SkIsAlign4((intptr_t) src) && x >= 0; x--) {
uint32_t T = sum[-sumW];
X = *src++ + L + T - C;
*sum++ = X;
L = X;
C = T;
}
for (; x >= 4; x-=4) {
uint32_t T = sum[-sumW];
X = *src++ + L + T - C;
*sum++ = X;
L = X;
C = T;
T = sum[-sumW];
X = *src++ + L + T - C;
*sum++ = X;
L = X;
C = T;
T = sum[-sumW];
X = *src++ + L + T - C;
*sum++ = X;
L = X;
C = T;
T = sum[-sumW];
X = *src++ + L + T - C;
*sum++ = X;
L = X;
C = T;
}
for (; x >= 0; --x) {
uint32_t T = sum[-sumW];
X = *src++ + L + T - C;
*sum++ = X;
L = X;
C = T;
}
src += srcRB;
}
}
/**
* This is the path for apply_kernel() to be taken when the kernel
* is wider than the source image.
*/
static void kernel_clamped(uint8_t dst[], int rx, int ry, const uint32_t sum[],
int sw, int sh) {
SkASSERT(2*rx > sw);
uint32_t scale = (1 << 24) / ((2*rx + 1)*(2*ry + 1));
int sumStride = sw + 1;
int dw = sw + 2*rx;
int dh = sh + 2*ry;
int prev_y = -2*ry;
int next_y = 1;
for (int y = 0; y < dh; ++y) {
int py = SkClampPos(prev_y) * sumStride;
int ny = SkFastMin32(next_y, sh) * sumStride;
int prev_x = -2*rx;
int next_x = 1;
for (int x = 0; x < dw; ++x) {
int px = SkClampPos(prev_x);
int nx = SkFastMin32(next_x, sw);
// TODO: should we be adding 1/2 (1 << 23) to round to the
// nearest integer here?
uint32_t tmp = sum[px+py] + sum[nx+ny] - sum[nx+py] - sum[px+ny];
*dst++ = SkToU8(tmp * scale >> 24);
prev_x += 1;
next_x += 1;
}
prev_y += 1;
next_y += 1;
}
}
/**
* sw and sh are the width and height of the src. Since the sum buffer
* matches that, but has an extra row and col at the beginning (with zeros),
* we can just use sw and sh as our "max" values for pinning coordinates
* when sampling into sum[][]
*
* The inner loop is conceptually simple; we break it into several sections
* to improve performance. Here's the original version:
for (int x = 0; x < dw; ++x) {
int px = SkClampPos(prev_x);
int nx = SkFastMin32(next_x, sw);
uint32_t tmp = sum[px+py] + sum[nx+ny] - sum[nx+py] - sum[px+ny];
*dst++ = SkToU8(tmp * scale >> 24);
prev_x += 1;
next_x += 1;
}
* The sections are:
* left-hand section, where prev_x is clamped to 0
* center section, where neither prev_x nor next_x is clamped
* right-hand section, where next_x is clamped to sw
* On some operating systems, the center section is unrolled for additional
* speedup.
*/
static void apply_kernel(uint8_t dst[], int rx, int ry, const uint32_t sum[],
int sw, int sh) {
if (2*rx > sw) {
kernel_clamped(dst, rx, ry, sum, sw, sh);
return;
}
uint32_t scale = (1 << 24) / ((2*rx + 1)*(2*ry + 1));
int sumStride = sw + 1;
int dw = sw + 2*rx;
int dh = sh + 2*ry;
int prev_y = -2*ry;
int next_y = 1;
SkASSERT(2*rx <= dw - 2*rx);
for (int y = 0; y < dh; ++y) {
int py = SkClampPos(prev_y) * sumStride;
int ny = SkFastMin32(next_y, sh) * sumStride;
int prev_x = -2*rx;
int next_x = 1;
int x = 0;
for (; x < 2*rx; ++x) {
SkASSERT(prev_x <= 0);
SkASSERT(next_x <= sw);
int px = 0;
int nx = next_x;
uint32_t tmp = sum[px+py] + sum[nx+ny] - sum[nx+py] - sum[px+ny];
*dst++ = SkToU8(tmp * scale >> 24);
prev_x += 1;
next_x += 1;
}
int i0 = prev_x + py;
int i1 = next_x + ny;
int i2 = next_x + py;
int i3 = prev_x + ny;
#if UNROLL_KERNEL_LOOP
for (; x < dw - 2*rx - 4; x += 4) {
SkASSERT(prev_x >= 0);
SkASSERT(next_x <= sw);
uint32_t tmp = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
*dst++ = SkToU8(tmp * scale >> 24);
tmp = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
*dst++ = SkToU8(tmp * scale >> 24);
tmp = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
*dst++ = SkToU8(tmp * scale >> 24);
tmp = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
*dst++ = SkToU8(tmp * scale >> 24);
prev_x += 4;
next_x += 4;
}
#endif
for (; x < dw - 2*rx; ++x) {
SkASSERT(prev_x >= 0);
SkASSERT(next_x <= sw);
uint32_t tmp = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
*dst++ = SkToU8(tmp * scale >> 24);
prev_x += 1;
next_x += 1;
}
for (; x < dw; ++x) {
SkASSERT(prev_x >= 0);
SkASSERT(next_x > sw);
int px = prev_x;
int nx = sw;
uint32_t tmp = sum[px+py] + sum[nx+ny] - sum[nx+py] - sum[px+ny];
*dst++ = SkToU8(tmp * scale >> 24);
prev_x += 1;
next_x += 1;
}
prev_y += 1;
next_y += 1;
}
}
/**
* This is the path for apply_kernel_interp() to be taken when the kernel
* is wider than the source image.
*/
static void kernel_interp_clamped(uint8_t dst[], int rx, int ry,
const uint32_t sum[], int sw, int sh, U8CPU outerWeight) {
SkASSERT(2*rx > sw);
int innerWeight = 255 - outerWeight;
// round these guys up if they're bigger than 127
outerWeight += outerWeight >> 7;
innerWeight += innerWeight >> 7;
uint32_t outerScale = (outerWeight << 16) / ((2*rx + 1)*(2*ry + 1));
uint32_t innerScale = (innerWeight << 16) / ((2*rx - 1)*(2*ry - 1));
int sumStride = sw + 1;
int dw = sw + 2*rx;
int dh = sh + 2*ry;
int prev_y = -2*ry;
int next_y = 1;
for (int y = 0; y < dh; ++y) {
int py = SkClampPos(prev_y) * sumStride;
int ny = SkFastMin32(next_y, sh) * sumStride;
int ipy = SkClampPos(prev_y + 1) * sumStride;
int iny = SkClampMax(next_y - 1, sh) * sumStride;
int prev_x = -2*rx;
int next_x = 1;
for (int x = 0; x < dw; ++x) {
int px = SkClampPos(prev_x);
int nx = SkFastMin32(next_x, sw);
int ipx = SkClampPos(prev_x + 1);
int inx = SkClampMax(next_x - 1, sw);
uint32_t outerSum = sum[px+py] + sum[nx+ny]
- sum[nx+py] - sum[px+ny];
uint32_t innerSum = sum[ipx+ipy] + sum[inx+iny]
- sum[inx+ipy] - sum[ipx+iny];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
prev_x += 1;
next_x += 1;
}
prev_y += 1;
next_y += 1;
}
}
/**
* sw and sh are the width and height of the src. Since the sum buffer
* matches that, but has an extra row and col at the beginning (with zeros),
* we can just use sw and sh as our "max" values for pinning coordinates
* when sampling into sum[][]
*
* The inner loop is conceptually simple; we break it into several variants
* to improve performance. Here's the original version:
for (int x = 0; x < dw; ++x) {
int px = SkClampPos(prev_x);
int nx = SkFastMin32(next_x, sw);
int ipx = SkClampPos(prev_x + 1);
int inx = SkClampMax(next_x - 1, sw);
uint32_t outerSum = sum[px+py] + sum[nx+ny]
- sum[nx+py] - sum[px+ny];
uint32_t innerSum = sum[ipx+ipy] + sum[inx+iny]
- sum[inx+ipy] - sum[ipx+iny];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
prev_x += 1;
next_x += 1;
}
* The sections are:
* left-hand section, where prev_x is clamped to 0
* center section, where neither prev_x nor next_x is clamped
* right-hand section, where next_x is clamped to sw
* On some operating systems, the center section is unrolled for additional
* speedup.
*/
static void apply_kernel_interp(uint8_t dst[], int rx, int ry,
const uint32_t sum[], int sw, int sh, U8CPU outerWeight) {
SkASSERT(rx > 0 && ry > 0);
SkASSERT(outerWeight <= 255);
if (2*rx > sw) {
kernel_interp_clamped(dst, rx, ry, sum, sw, sh, outerWeight);
return;
}
int innerWeight = 255 - outerWeight;
// round these guys up if they're bigger than 127
outerWeight += outerWeight >> 7;
innerWeight += innerWeight >> 7;
uint32_t outerScale = (outerWeight << 16) / ((2*rx + 1)*(2*ry + 1));
uint32_t innerScale = (innerWeight << 16) / ((2*rx - 1)*(2*ry - 1));
int sumStride = sw + 1;
int dw = sw + 2*rx;
int dh = sh + 2*ry;
int prev_y = -2*ry;
int next_y = 1;
SkASSERT(2*rx <= dw - 2*rx);
for (int y = 0; y < dh; ++y) {
int py = SkClampPos(prev_y) * sumStride;
int ny = SkFastMin32(next_y, sh) * sumStride;
int ipy = SkClampPos(prev_y + 1) * sumStride;
int iny = SkClampMax(next_y - 1, sh) * sumStride;
int prev_x = -2*rx;
int next_x = 1;
int x = 0;
for (; x < 2*rx; ++x) {
SkASSERT(prev_x < 0);
SkASSERT(next_x <= sw);
int px = 0;
int nx = next_x;
int ipx = 0;
int inx = next_x - 1;
uint32_t outerSum = sum[px+py] + sum[nx+ny]
- sum[nx+py] - sum[px+ny];
uint32_t innerSum = sum[ipx+ipy] + sum[inx+iny]
- sum[inx+ipy] - sum[ipx+iny];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
prev_x += 1;
next_x += 1;
}
int i0 = prev_x + py;
int i1 = next_x + ny;
int i2 = next_x + py;
int i3 = prev_x + ny;
int i4 = prev_x + 1 + ipy;
int i5 = next_x - 1 + iny;
int i6 = next_x - 1 + ipy;
int i7 = prev_x + 1 + iny;
#if UNROLL_KERNEL_LOOP
for (; x < dw - 2*rx - 4; x += 4) {
SkASSERT(prev_x >= 0);
SkASSERT(next_x <= sw);
uint32_t outerSum = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
uint32_t innerSum = sum[i4++] + sum[i5++] - sum[i6++] - sum[i7++];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
outerSum = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
innerSum = sum[i4++] + sum[i5++] - sum[i6++] - sum[i7++];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
outerSum = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
innerSum = sum[i4++] + sum[i5++] - sum[i6++] - sum[i7++];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
outerSum = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
innerSum = sum[i4++] + sum[i5++] - sum[i6++] - sum[i7++];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
prev_x += 4;
next_x += 4;
}
#endif
for (; x < dw - 2*rx; ++x) {
SkASSERT(prev_x >= 0);
SkASSERT(next_x <= sw);
uint32_t outerSum = sum[i0++] + sum[i1++] - sum[i2++] - sum[i3++];
uint32_t innerSum = sum[i4++] + sum[i5++] - sum[i6++] - sum[i7++];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
prev_x += 1;
next_x += 1;
}
for (; x < dw; ++x) {
SkASSERT(prev_x >= 0);
SkASSERT(next_x > sw);
int px = prev_x;
int nx = sw;
int ipx = prev_x + 1;
int inx = sw;
uint32_t outerSum = sum[px+py] + sum[nx+ny]
- sum[nx+py] - sum[px+ny];
uint32_t innerSum = sum[ipx+ipy] + sum[inx+iny]
- sum[inx+ipy] - sum[ipx+iny];
*dst++ = SkToU8((outerSum * outerScale
+ innerSum * innerScale) >> 24);
prev_x += 1;
next_x += 1;
}
prev_y += 1;
next_y += 1;
}
}
#include "SkColorPriv.h"
static void merge_src_with_blur(uint8_t dst[], int dstRB,
@ -955,7 +479,7 @@ void SkMask_FreeImage(uint8_t* image) {
bool SkBlurMask::Blur(SkMask* dst, const SkMask& src,
SkScalar radius, Style style, Quality quality,
SkIPoint* margin, bool separable)
SkIPoint* margin)
{
if (src.fFormat != SkMask::kA8_Format) {
@ -1011,7 +535,6 @@ bool SkBlurMask::Blur(SkMask* dst, const SkMask& src,
SkAutoTCallVProc<uint8_t, SkMask_FreeImage> autoCall(dp);
// build the blurry destination
if (separable) {
SkAutoTMalloc<uint8_t> tmpBuffer(dstSize);
uint8_t* tp = tmpBuffer.get();
int w = sw, h = sh;
@ -1047,43 +570,6 @@ bool SkBlurMask::Blur(SkMask* dst, const SkMask& src,
h = boxBlurInterp(tp, h, dp, ry, h, w, true, outerWeight);
}
}
} else {
const size_t storageW = sw + 2 * (passCount - 1) * rx + 1;
const size_t storageH = sh + 2 * (passCount - 1) * ry + 1;
SkAutoTMalloc<uint32_t> storage(storageW * storageH);
uint32_t* sumBuffer = storage.get();
//pass1: sp is source, dp is destination
build_sum_buffer(sumBuffer, sw, sh, sp, src.fRowBytes);
if (outerWeight == 255) {
apply_kernel(dp, rx, ry, sumBuffer, sw, sh);
} else {
apply_kernel_interp(dp, rx, ry, sumBuffer, sw, sh, outerWeight);
}
if (kHigh_Quality == quality) {
//pass2: dp is source, tmpBuffer is destination
int tmp_sw = sw + 2 * rx;
int tmp_sh = sh + 2 * ry;
SkAutoTMalloc<uint8_t> tmpBuffer(dstSize);
build_sum_buffer(sumBuffer, tmp_sw, tmp_sh, dp, tmp_sw);
if (outerWeight == 255)
apply_kernel(tmpBuffer.get(), rx, ry, sumBuffer, tmp_sw, tmp_sh);
else
apply_kernel_interp(tmpBuffer.get(), rx, ry, sumBuffer,
tmp_sw, tmp_sh, outerWeight);
//pass3: tmpBuffer is source, dp is destination
tmp_sw += 2 * rx;
tmp_sh += 2 * ry;
build_sum_buffer(sumBuffer, tmp_sw, tmp_sh, tmpBuffer.get(), tmp_sw);
if (outerWeight == 255)
apply_kernel(dp, rx, ry, sumBuffer, tmp_sw, tmp_sh);
else
apply_kernel_interp(dp, rx, ry, sumBuffer, tmp_sw, tmp_sh,
outerWeight);
}
}
dst->fImage = dp;
// if need be, alloc the "real" dst (same size as src) and copy/merge
@ -1115,20 +601,6 @@ bool SkBlurMask::Blur(SkMask* dst, const SkMask& src,
return true;
}
bool SkBlurMask::BlurSeparable(SkMask* dst, const SkMask& src,
SkScalar radius, Style style, Quality quality,
SkIPoint* margin)
{
return SkBlurMask::Blur(dst, src, radius, style, quality, margin, true);
}
bool SkBlurMask::Blur(SkMask* dst, const SkMask& src,
SkScalar radius, Style style, Quality quality,
SkIPoint* margin)
{
return SkBlurMask::Blur(dst, src, radius, style, quality, margin, false);
}
/* Convolving a box with itself three times results in a piecewise
quadratic function:

View File

@ -36,10 +36,6 @@ public:
static bool Blur(SkMask* dst, const SkMask& src,
SkScalar radius, Style style, Quality quality,
SkIPoint* margin = NULL);
static bool BlurSeparable(SkMask* dst, const SkMask& src,
SkScalar radius, Style style, Quality quality,
SkIPoint* margin = NULL);
// the "ground truth" blur does a gaussian convolution; it's slow
// but useful for comparison purposes.
@ -47,11 +43,6 @@ public:
static bool BlurGroundTruth(SkMask* dst, const SkMask& src,
SkScalar provided_radius, Style style,
SkIPoint* margin = NULL);
private:
static bool Blur(SkMask* dst, const SkMask& src,
SkScalar radius, Style style, Quality quality,
SkIPoint* margin, bool separable);
};
#endif

View File

@ -106,13 +106,8 @@ bool SkBlurMaskFilterImpl::filterMask(SkMask* dst, const SkMask& src,
(fBlurFlags & SkBlurMaskFilter::kHighQuality_BlurFlag) ?
SkBlurMask::kHigh_Quality : SkBlurMask::kLow_Quality;
#ifndef SK_DISABLE_SEPARABLE_MASK_BLUR
return SkBlurMask::BlurSeparable(dst, src, radius, (SkBlurMask::Style)fBlurStyle,
blurQuality, margin);
#else
return SkBlurMask::Blur(dst, src, radius, (SkBlurMask::Style)fBlurStyle,
blurQuality, margin);
#endif
}
bool SkBlurMaskFilterImpl::filterRectMask(SkMask* dst, const SkRect& r,