Revert of AVX 2 SrcOver blits: color32, blitmask. (patchset #24 id:450001 of https://codereview.chromium.org/1532613002/ )

Reason for revert:
Bot failures

Original issue's description:
> AVX 2 SrcOver blits: color32, blitmask.
>
> As a follow up to the SSE 4.1 CL, this should look pretty familiar.
>
> I've made some organizational changes around how we load, store, pack, and unpack data that I think makes things clearer and more orthogonal, and it'll make it easier to try out a pmaddubsw lerp.  I have backported these changes to the SSE 4.1 code, and I hope that I can actually get a lot of this code templated for sharing between the two later.
>
> Perf changes (relative to SSE 4.1):
> Xfermode_SrcOver:      1650 -> 1180  (0.71x)  // large opaque blit
> Xfermode_SrcOver_aa:   1794 -> 1653  (0.92x)  // large opaque + small transparent
> text_16_AA_{FF,BK,WT}: 1.72 -> 1.59  (0.92x)  // small opaque blit
> text_16_AA_88:         1.83 -> 1.77  (0.97x)  // small transparent blit
>
> This should be a big throughout win, and a small latency win.
> This should all be pixel-exact to the previous SSE 4.1 code.
>
>
> GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1532613002
> CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;client.skia.compile:Build-Ubuntu-GCC-x86_64-Release-CMake-Trybot,Build-Mac10.9-Clang-x86_64-Release-CMake-Trybot
>
> Committed: https://skia.googlesource.com/skia/+/5d2117015eb271e09faf4a7ddd89093c9d618a36

TBR=herb@google.com,mtklein@google.com,mtklein@chromium.org
# Skipping CQ checks because original CL landed less than 1 days ago.
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true

Review URL: https://codereview.chromium.org/1632713002
This commit is contained in:
msarett 2016-01-25 08:54:50 -08:00 committed by Commit bot
parent 37771c349e
commit 0dfffbeeec
5 changed files with 91 additions and 366 deletions

View File

@ -149,7 +149,7 @@
],
'sources': [ '<@(avx_sources)' ],
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '3' } },
'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx' ] },
'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx' ] },
'conditions': [
[ 'not skia_android_framework', { 'cflags': [ '-mavx' ] }],
],
@ -167,7 +167,7 @@
],
'sources': [ '<@(avx2_sources)' ],
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '5' } },
'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx2' ] },
'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx2' ] },
'conditions': [
[ 'not skia_android_framework', { 'cflags': [ '-mavx2' ] }],
],

View File

@ -60,6 +60,6 @@
'<(skia_src_path)/opts/SkOpts_avx.cpp',
],
'avx2_sources': [
'<(skia_src_path)/opts/SkOpts_avx2.cpp',
'<(skia_src_path)/core/SkForceCPlusPlusLinking.cpp',
],
}

View File

@ -92,7 +92,7 @@ namespace SkOpts {
void Init_sse41();
void Init_sse42() {}
void Init_avx();
void Init_avx2();
void Init_avx2() {}
void Init_neon();
static void init() {

View File

@ -1,237 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkOpts.h"
#define SK_OPTS_NS sk_avx2
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
namespace sk_avx2 {
// AVX2 has masked loads and stores. We'll use them for N<4 pixels.
static __m128i mask(int n) {
static const int masks[][4] = {
{ 0, 0, 0, 0},
{~0, 0, 0, 0},
{~0,~0, 0, 0},
{~0,~0,~0, 0},
};
return _mm_load_si128((const __m128i*)masks+n);
}
// Load 8, 4, or 1-3 constant pixels or coverages (4x replicated).
static __m256i next8( uint32_t val) { return _mm256_set1_epi32(val); }
static __m128i next4( uint32_t val) { return _mm_set1_epi32(val); }
static __m128i tail(int, uint32_t val) { return _mm_set1_epi32(val); }
static __m256i next8( uint8_t val) { return _mm256_set1_epi8(val); }
static __m128i next4( uint8_t val) { return _mm_set1_epi8(val); }
static __m128i tail(int, uint8_t val) { return _mm_set1_epi8(val); }
// Load 8, 4, or 1-3 variable pixels or coverages (4x replicated).
// next8() and next4() increment their pointer past what they just read. tail() doesn't bother.
static __m256i next8(const uint32_t*& ptr) {
auto r = _mm256_loadu_si256((const __m256i*)ptr);
ptr += 8;
return r;
}
static __m128i next4(const uint32_t*& ptr) {
auto r = _mm_loadu_si128((const __m128i*)ptr);
ptr += 4;
return r;
}
static __m128i tail(int n, const uint32_t* ptr) {
return _mm_maskload_epi32((const int*)ptr, mask(n));
}
static __m256i next8(const uint8_t*& ptr) {
auto r = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)ptr));
r = _mm256_shuffle_epi8(r, _mm256_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12,
0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12));
ptr += 8;
return r;
}
static __m128i next4(const uint8_t*& ptr) {
auto r = _mm_shuffle_epi8(_mm_cvtsi32_si128(*(const uint32_t*)ptr),
_mm_setr_epi8(0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3));
ptr += 4;
return r;
}
static __m128i tail(int n, const uint8_t* ptr) {
uint32_t x = 0;
switch (n) {
case 3: x |= (uint32_t)ptr[2] << 16;
case 2: x |= (uint32_t)ptr[1] << 8;
case 1: x |= (uint32_t)ptr[0] << 0;
}
auto p = (const uint8_t*)&x;
return next4(p);
}
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
template <typename Dst, typename Src, typename Cov, typename Fn>
static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
// We don't want to muck with the callers' pointers, so we make them const and copy here.
Dst d = dst;
Src s = src;
Cov c = cov;
// Writing this as a single while-loop helps hoist loop invariants from fn.
while (n) {
if (n >= 8) {
_mm256_storeu_si256((__m256i*)t, fn(next8(d), next8(s), next8(c)));
t += 8;
n -= 8;
continue;
}
if (n >= 4) {
_mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
t += 4;
n -= 4;
}
if (n) {
_mm_maskstore_epi32((int*)t, mask(n), fn(tail(n,d), tail(n,s), tail(n,c)));
}
return;
}
}
// packed //
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// unpacked //
// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
// e.g [ BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
//
// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
// e.g. [ B_G_ R_A_ b_g_ r_a_ ... ] for pixels or [ C_C_ C_C_ c_c_ c_c_ ... ] for coverage,
// where _ is a zero byte.
//
// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
// by unpacking arguments, calling fn, then packing the results.
//
// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
// and all the packing and unpacking is handled automatically.
template <typename Fn>
struct Adapt {
Fn fn;
__m256i operator()(__m256i d, __m256i s, __m256i c) {
auto lo = [](__m256i x) { return _mm256_unpacklo_epi8(x, _mm256_setzero_si256()); };
auto hi = [](__m256i x) { return _mm256_unpackhi_epi8(x, _mm256_setzero_si256()); };
return _mm256_packus_epi16(fn(lo(d), lo(s), lo(c)),
fn(hi(d), hi(s), hi(c)));
}
__m128i operator()(__m128i d, __m128i s, __m128i c) {
auto unpack = [](__m128i x) { return _mm256_cvtepu8_epi16(x); };
auto pack = [](__m256i x) {
auto x01 = x,
x23 = _mm256_permute4x64_epi64(x, 0xe); // 0b1110
return _mm256_castsi256_si128(_mm256_packus_epi16(x01, x23));
};
return pack(fn(unpack(d), unpack(s), unpack(c)));
}
};
template <typename Fn>
static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
// These helpers all work exclusively with unpacked 8-bit values,
// except div255() which is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
// Divide by 255 with rounding.
// (x+127)/255 == ((x+128)*257)>>16.
// Sometimes we can be more efficient by breaking this into two parts.
static __m256i div255_part1(__m256i x) { return _mm256_add_epi16 (x, _mm256_set1_epi16(128)); }
static __m256i div255_part2(__m256i x) { return _mm256_mulhi_epu16(x, _mm256_set1_epi16(257)); }
static __m256i div255(__m256i x) { return div255_part2(div255_part1(x)); }
// (x*y+127)/255, a byte multiply.
static __m256i scale(__m256i x, __m256i y) { return div255(_mm256_mullo_epi16(x, y)); }
// (255 * x).
static __m256i mul255(__m256i x) { return _mm256_sub_epi16(_mm256_slli_epi16(x, 8), x); }
// (255 - x).
static __m256i inv(__m256i x) { return _mm256_xor_si256(_mm256_set1_epi16(0x00ff), x); }
// ARGB argb ... -> AAAA aaaa ...
static __m256i alphas(__m256i px) {
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
const int _ = ~0;
return _mm256_shuffle_epi8(px, _mm256_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_,
a+8,_,a+8,_,a+8,_,a+8,_,
a+0,_,a+0,_,a+0,_,a+0,_,
a+8,_,a+8,_,a+8,_,a+8,_));
}
// SrcOver, with a constant source and full coverage.
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
// We want to calculate s + (d * inv(alphas(s)) + 127)/255.
// We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
auto s = _mm256_cvtepu8_epi16(_mm_set1_epi32(src)),
s_255_128 = div255_part1(mul255(s)),
A = inv(alphas(s));
const uint8_t cov = 0xff;
loop(n, tgt, dst, src, cov, adapt([=](__m256i d, __m256i, __m256i) {
return div255_part2(_mm256_add_epi16(s_255_128, _mm256_mullo_epi16(d, A)));
}));
}
// SrcOver, with a constant source and variable coverage.
// If the source is opaque, SrcOver becomes Src.
static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
const SkAlpha* cov, size_t covRB,
SkColor color, int w, int h) {
if (SkColorGetA(color) == 0xFF) {
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
while (h --> 0) {
loop(w, dst, (const SkPMColor*)dst, src, cov,
adapt([](__m256i d, __m256i s, __m256i c) {
// Src blend mode: a simple lerp from d to s by c.
// TODO: try a pmaddubsw version?
return div255(_mm256_add_epi16(_mm256_mullo_epi16(inv(c),d),
_mm256_mullo_epi16( c ,s)));
}));
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
} else {
const SkPMColor src = SkPreMultiplyColor(color);
while (h --> 0) {
loop(w, dst, (const SkPMColor*)dst, src, cov,
adapt([](__m256i d, __m256i s, __m256i c) {
// SrcOver blend mode, with coverage folded into source alpha.
auto sc = scale(s,c),
AC = inv(alphas(sc));
return _mm256_add_epi16(sc, scale(d,AC));
}));
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
}
}
} // namespace sk_avx2
#endif
namespace SkOpts {
void Init_avx2() {
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
blit_row_color32 = sk_avx2::blit_row_color32;
blit_mask_d32_a8 = sk_avx2::blit_mask_d32_a8;
#endif
}
}

View File

@ -12,67 +12,88 @@
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
namespace sk_sse41 {
// This file deals mostly with unpacked 8-bit values,
// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
// An SSE register holding at most 64 bits of useful data in the low lanes.
struct m64i {
__m128i v;
/*implicit*/ m64i(__m128i v) : v(v) {}
operator __m128i() const { return v; }
};
// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4.
struct m128ix2 { __m128i lo, hi; };
// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels.
static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); }
static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }
static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
// pack() converts back, from 4 unpacked pixels to 4 packed pixels.
static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); }
// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
// incrementing the pointer past what we read.
static __m128i next4(const uint32_t*& ptr) {
auto r = _mm_loadu_si128((const __m128i*)ptr);
ptr += 4;
return r;
// These nextN() functions abstract over the difference between iterating over
// an array of values and returning a constant value, for uint8_t and uint32_t.
// The nextN() taking pointers increment that pointer past where they read.
//
// nextN() returns N unpacked pixels or 4N unpacked coverage values.
static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); }
static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); }
static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); }
static inline __m128i next2(const uint8_t*& ptr) {
auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
ptr += 2;
const int _ = ~0;
return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
}
static m64i next2(const uint32_t*& ptr) {
auto r = _mm_loadl_epi64((const __m128i*)ptr);
static inline m128ix2 next4(const uint8_t*& ptr) {
auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr);
ptr += 4;
const int _ = ~0;
auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)),
hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_));
return { lo, hi };
}
static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); }
static inline __m128i next2(const uint32_t*& ptr) {
auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
ptr += 2;
return r;
}
static m64i next1(const uint32_t*& ptr) {
auto r = _mm_cvtsi32_si128(*ptr);
ptr += 1;
return r;
}
// xyzw -> xxxx yyyy zzzz wwww
static __m128i replicate_coverage(__m128i xyzw) {
const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
}
static __m128i next4(const uint8_t*& ptr) {
auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
static inline m128ix2 next4(const uint32_t*& ptr) {
auto packed = _mm_loadu_si128((const __m128i*)ptr);
ptr += 4;
return r;
return { unpacklo(packed), unpackhi(packed) };
}
static m64i next2(const uint8_t*& ptr) {
auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
ptr += 2;
return r;
// Divide by 255 with rounding.
// (x+127)/255 == ((x+128)*257)>>16.
// Sometimes we can be more efficient by breaking this into two parts.
static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
// (x*y+127)/255, a byte multiply.
static inline __m128i scale(__m128i x, __m128i y) {
return div255(_mm_mullo_epi16(x, y));
}
static m64i next1(const uint8_t*& ptr) {
auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
ptr += 1;
return r;
// (255 - x).
static inline __m128i inv(__m128i x) {
return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16.
}
// ARGB argb -> AAAA aaaa
static inline __m128i alphas(__m128i px) {
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
const int _ = ~0;
return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
}
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
template <typename Dst, typename Src, typename Cov, typename Fn>
static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
// We don't want to muck with the callers' pointers, so we make them const and copy here.
Dst d = dst;
Src s = src;
@ -81,85 +102,30 @@ static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov
// Writing this as a single while-loop helps hoist loop invariants from fn.
while (n) {
if (n >= 4) {
_mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
auto d4 = next4(d),
s4 = next4(s),
c4 = next4(c);
auto lo = fn(d4.lo, s4.lo, c4.lo),
hi = fn(d4.hi, s4.hi, c4.hi);
_mm_storeu_si128((__m128i*)t, pack(lo,hi));
t += 4;
n -= 4;
continue;
}
if (n & 2) {
_mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
auto r = fn(next2(d), next2(s), next2(c));
_mm_storel_epi64((__m128i*)t, pack(r,r));
t += 2;
}
if (n & 1) {
*t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
auto r = fn(next1(d), next1(s), next1(c));
*t = _mm_cvtsi128_si32(pack(r,r));
}
return;
}
}
// packed
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// unpacked
// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
//
// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
// where _ is a zero byte.
//
// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
// by unpacking arguments, calling fn, then packing the results.
//
// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
// and all the packing and unpacking is handled automatically.
template <typename Fn>
struct Adapt {
Fn fn;
__m128i operator()(__m128i d, __m128i s, __m128i c) {
auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
fn(hi(d), hi(s), hi(c)));
}
m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
auto r = fn(lo(d), lo(s), lo(c));
return _mm_packus_epi16(r, r);
}
};
template <typename Fn>
static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
// These helpers all work exclusively with unpacked 8-bit values,
// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
// Divide by 255 with rounding.
// (x+127)/255 == ((x+128)*257)>>16.
// Sometimes we can be more efficient by breaking this into two parts.
static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
// (x*y+127)/255, a byte multiply.
static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
// (255 * x).
static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
// (255 - x).
static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
// ARGB argb -> AAAA aaaa
static __m128i alphas(__m128i px) {
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
const int _ = ~0;
return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
}
namespace sk_sse41 {
// SrcOver, with a constant source and full coverage.
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
@ -168,14 +134,14 @@ static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
__m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
s_255_128 = div255_part1(mul255(s)),
__m128i s = next2(src),
s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))),
A = inv(alphas(s));
const uint8_t cov = 0xff;
loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) {
return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
}));
});
}
// SrcOver, with a constant source and variable coverage.
@ -186,26 +152,23 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
if (SkColorGetA(color) == 0xFF) {
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
while (h --> 0) {
loop(w, dst, (const SkPMColor*)dst, src, cov,
adapt([](__m128i d, __m128i s, __m128i c) {
loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
// Src blend mode: a simple lerp from d to s by c.
// TODO: try a pmaddubsw version?
return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
_mm_mullo_epi16( c ,s)));
}));
return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s)));
});
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
} else {
const SkPMColor src = SkPreMultiplyColor(color);
while (h --> 0) {
loop(w, dst, (const SkPMColor*)dst, src, cov,
adapt([](__m128i d, __m128i s, __m128i c) {
loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
// SrcOver blend mode, with coverage folded into source alpha.
__m128i sc = scale(s,c),
AC = inv(alphas(sc));
return _mm_add_epi16(sc, scale(d,AC));
}));
});
dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov);
}
@ -213,7 +176,6 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
}
} // namespace sk_sse41
#endif
namespace SkOpts {