Revert of AVX 2 SrcOver blits: color32, blitmask. (patchset #24 id:450001 of https://codereview.chromium.org/1532613002/ )
Reason for revert: Bot failures Original issue's description: > AVX 2 SrcOver blits: color32, blitmask. > > As a follow up to the SSE 4.1 CL, this should look pretty familiar. > > I've made some organizational changes around how we load, store, pack, and unpack data that I think makes things clearer and more orthogonal, and it'll make it easier to try out a pmaddubsw lerp. I have backported these changes to the SSE 4.1 code, and I hope that I can actually get a lot of this code templated for sharing between the two later. > > Perf changes (relative to SSE 4.1): > Xfermode_SrcOver: 1650 -> 1180 (0.71x) // large opaque blit > Xfermode_SrcOver_aa: 1794 -> 1653 (0.92x) // large opaque + small transparent > text_16_AA_{FF,BK,WT}: 1.72 -> 1.59 (0.92x) // small opaque blit > text_16_AA_88: 1.83 -> 1.77 (0.97x) // small transparent blit > > This should be a big throughout win, and a small latency win. > This should all be pixel-exact to the previous SSE 4.1 code. > > > GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1532613002 > CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot;client.skia.compile:Build-Ubuntu-GCC-x86_64-Release-CMake-Trybot,Build-Mac10.9-Clang-x86_64-Release-CMake-Trybot > > Committed: https://skia.googlesource.com/skia/+/5d2117015eb271e09faf4a7ddd89093c9d618a36 TBR=herb@google.com,mtklein@google.com,mtklein@chromium.org # Skipping CQ checks because original CL landed less than 1 days ago. NOPRESUBMIT=true NOTREECHECKS=true NOTRY=true Review URL: https://codereview.chromium.org/1632713002
This commit is contained in:
parent
37771c349e
commit
0dfffbeeec
@ -149,7 +149,7 @@
|
||||
],
|
||||
'sources': [ '<@(avx_sources)' ],
|
||||
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '3' } },
|
||||
'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx' ] },
|
||||
'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx' ] },
|
||||
'conditions': [
|
||||
[ 'not skia_android_framework', { 'cflags': [ '-mavx' ] }],
|
||||
],
|
||||
@ -167,7 +167,7 @@
|
||||
],
|
||||
'sources': [ '<@(avx2_sources)' ],
|
||||
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '5' } },
|
||||
'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx2' ] },
|
||||
'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx2' ] },
|
||||
'conditions': [
|
||||
[ 'not skia_android_framework', { 'cflags': [ '-mavx2' ] }],
|
||||
],
|
||||
|
@ -60,6 +60,6 @@
|
||||
'<(skia_src_path)/opts/SkOpts_avx.cpp',
|
||||
],
|
||||
'avx2_sources': [
|
||||
'<(skia_src_path)/opts/SkOpts_avx2.cpp',
|
||||
'<(skia_src_path)/core/SkForceCPlusPlusLinking.cpp',
|
||||
],
|
||||
}
|
||||
|
@ -92,7 +92,7 @@ namespace SkOpts {
|
||||
void Init_sse41();
|
||||
void Init_sse42() {}
|
||||
void Init_avx();
|
||||
void Init_avx2();
|
||||
void Init_avx2() {}
|
||||
void Init_neon();
|
||||
|
||||
static void init() {
|
||||
|
@ -1,237 +0,0 @@
|
||||
/*
|
||||
* Copyright 2015 Google Inc.
|
||||
*
|
||||
* Use of this source code is governed by a BSD-style license that can be
|
||||
* found in the LICENSE file.
|
||||
*/
|
||||
|
||||
#include "SkOpts.h"
|
||||
#define SK_OPTS_NS sk_avx2
|
||||
|
||||
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
|
||||
|
||||
namespace sk_avx2 {
|
||||
|
||||
// AVX2 has masked loads and stores. We'll use them for N<4 pixels.
|
||||
static __m128i mask(int n) {
|
||||
static const int masks[][4] = {
|
||||
{ 0, 0, 0, 0},
|
||||
{~0, 0, 0, 0},
|
||||
{~0,~0, 0, 0},
|
||||
{~0,~0,~0, 0},
|
||||
};
|
||||
return _mm_load_si128((const __m128i*)masks+n);
|
||||
}
|
||||
|
||||
// Load 8, 4, or 1-3 constant pixels or coverages (4x replicated).
|
||||
static __m256i next8( uint32_t val) { return _mm256_set1_epi32(val); }
|
||||
static __m128i next4( uint32_t val) { return _mm_set1_epi32(val); }
|
||||
static __m128i tail(int, uint32_t val) { return _mm_set1_epi32(val); }
|
||||
|
||||
static __m256i next8( uint8_t val) { return _mm256_set1_epi8(val); }
|
||||
static __m128i next4( uint8_t val) { return _mm_set1_epi8(val); }
|
||||
static __m128i tail(int, uint8_t val) { return _mm_set1_epi8(val); }
|
||||
|
||||
// Load 8, 4, or 1-3 variable pixels or coverages (4x replicated).
|
||||
// next8() and next4() increment their pointer past what they just read. tail() doesn't bother.
|
||||
static __m256i next8(const uint32_t*& ptr) {
|
||||
auto r = _mm256_loadu_si256((const __m256i*)ptr);
|
||||
ptr += 8;
|
||||
return r;
|
||||
}
|
||||
static __m128i next4(const uint32_t*& ptr) {
|
||||
auto r = _mm_loadu_si128((const __m128i*)ptr);
|
||||
ptr += 4;
|
||||
return r;
|
||||
}
|
||||
static __m128i tail(int n, const uint32_t* ptr) {
|
||||
return _mm_maskload_epi32((const int*)ptr, mask(n));
|
||||
}
|
||||
|
||||
static __m256i next8(const uint8_t*& ptr) {
|
||||
auto r = _mm256_cvtepu8_epi32(_mm_loadl_epi64((const __m128i*)ptr));
|
||||
r = _mm256_shuffle_epi8(r, _mm256_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12,
|
||||
0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12));
|
||||
ptr += 8;
|
||||
return r;
|
||||
}
|
||||
static __m128i next4(const uint8_t*& ptr) {
|
||||
auto r = _mm_shuffle_epi8(_mm_cvtsi32_si128(*(const uint32_t*)ptr),
|
||||
_mm_setr_epi8(0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3));
|
||||
ptr += 4;
|
||||
return r;
|
||||
}
|
||||
static __m128i tail(int n, const uint8_t* ptr) {
|
||||
uint32_t x = 0;
|
||||
switch (n) {
|
||||
case 3: x |= (uint32_t)ptr[2] << 16;
|
||||
case 2: x |= (uint32_t)ptr[1] << 8;
|
||||
case 1: x |= (uint32_t)ptr[0] << 0;
|
||||
}
|
||||
auto p = (const uint8_t*)&x;
|
||||
return next4(p);
|
||||
}
|
||||
|
||||
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
|
||||
template <typename Dst, typename Src, typename Cov, typename Fn>
|
||||
static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
|
||||
// We don't want to muck with the callers' pointers, so we make them const and copy here.
|
||||
Dst d = dst;
|
||||
Src s = src;
|
||||
Cov c = cov;
|
||||
|
||||
// Writing this as a single while-loop helps hoist loop invariants from fn.
|
||||
while (n) {
|
||||
if (n >= 8) {
|
||||
_mm256_storeu_si256((__m256i*)t, fn(next8(d), next8(s), next8(c)));
|
||||
t += 8;
|
||||
n -= 8;
|
||||
continue;
|
||||
}
|
||||
if (n >= 4) {
|
||||
_mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
|
||||
t += 4;
|
||||
n -= 4;
|
||||
}
|
||||
if (n) {
|
||||
_mm_maskstore_epi32((int*)t, mask(n), fn(tail(n,d), tail(n,s), tail(n,c)));
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// packed //
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
||||
// unpacked //
|
||||
|
||||
// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
|
||||
// e.g [ BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
|
||||
//
|
||||
// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
|
||||
// e.g. [ B_G_ R_A_ b_g_ r_a_ ... ] for pixels or [ C_C_ C_C_ c_c_ c_c_ ... ] for coverage,
|
||||
// where _ is a zero byte.
|
||||
//
|
||||
// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
|
||||
// by unpacking arguments, calling fn, then packing the results.
|
||||
//
|
||||
// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
|
||||
// and all the packing and unpacking is handled automatically.
|
||||
|
||||
template <typename Fn>
|
||||
struct Adapt {
|
||||
Fn fn;
|
||||
|
||||
__m256i operator()(__m256i d, __m256i s, __m256i c) {
|
||||
auto lo = [](__m256i x) { return _mm256_unpacklo_epi8(x, _mm256_setzero_si256()); };
|
||||
auto hi = [](__m256i x) { return _mm256_unpackhi_epi8(x, _mm256_setzero_si256()); };
|
||||
return _mm256_packus_epi16(fn(lo(d), lo(s), lo(c)),
|
||||
fn(hi(d), hi(s), hi(c)));
|
||||
}
|
||||
|
||||
__m128i operator()(__m128i d, __m128i s, __m128i c) {
|
||||
auto unpack = [](__m128i x) { return _mm256_cvtepu8_epi16(x); };
|
||||
auto pack = [](__m256i x) {
|
||||
auto x01 = x,
|
||||
x23 = _mm256_permute4x64_epi64(x, 0xe); // 0b1110
|
||||
return _mm256_castsi256_si128(_mm256_packus_epi16(x01, x23));
|
||||
};
|
||||
return pack(fn(unpack(d), unpack(s), unpack(c)));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Fn>
|
||||
static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
|
||||
|
||||
// These helpers all work exclusively with unpacked 8-bit values,
|
||||
// except div255() which is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
|
||||
|
||||
// Divide by 255 with rounding.
|
||||
// (x+127)/255 == ((x+128)*257)>>16.
|
||||
// Sometimes we can be more efficient by breaking this into two parts.
|
||||
static __m256i div255_part1(__m256i x) { return _mm256_add_epi16 (x, _mm256_set1_epi16(128)); }
|
||||
static __m256i div255_part2(__m256i x) { return _mm256_mulhi_epu16(x, _mm256_set1_epi16(257)); }
|
||||
static __m256i div255(__m256i x) { return div255_part2(div255_part1(x)); }
|
||||
|
||||
// (x*y+127)/255, a byte multiply.
|
||||
static __m256i scale(__m256i x, __m256i y) { return div255(_mm256_mullo_epi16(x, y)); }
|
||||
|
||||
// (255 * x).
|
||||
static __m256i mul255(__m256i x) { return _mm256_sub_epi16(_mm256_slli_epi16(x, 8), x); }
|
||||
|
||||
// (255 - x).
|
||||
static __m256i inv(__m256i x) { return _mm256_xor_si256(_mm256_set1_epi16(0x00ff), x); }
|
||||
|
||||
// ARGB argb ... -> AAAA aaaa ...
|
||||
static __m256i alphas(__m256i px) {
|
||||
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
|
||||
const int _ = ~0;
|
||||
return _mm256_shuffle_epi8(px, _mm256_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_,
|
||||
a+8,_,a+8,_,a+8,_,a+8,_,
|
||||
a+0,_,a+0,_,a+0,_,a+0,_,
|
||||
a+8,_,a+8,_,a+8,_,a+8,_));
|
||||
}
|
||||
|
||||
|
||||
// SrcOver, with a constant source and full coverage.
|
||||
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
|
||||
// We want to calculate s + (d * inv(alphas(s)) + 127)/255.
|
||||
// We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16.
|
||||
|
||||
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
|
||||
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
|
||||
auto s = _mm256_cvtepu8_epi16(_mm_set1_epi32(src)),
|
||||
s_255_128 = div255_part1(mul255(s)),
|
||||
A = inv(alphas(s));
|
||||
|
||||
const uint8_t cov = 0xff;
|
||||
loop(n, tgt, dst, src, cov, adapt([=](__m256i d, __m256i, __m256i) {
|
||||
return div255_part2(_mm256_add_epi16(s_255_128, _mm256_mullo_epi16(d, A)));
|
||||
}));
|
||||
}
|
||||
|
||||
// SrcOver, with a constant source and variable coverage.
|
||||
// If the source is opaque, SrcOver becomes Src.
|
||||
static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
||||
const SkAlpha* cov, size_t covRB,
|
||||
SkColor color, int w, int h) {
|
||||
if (SkColorGetA(color) == 0xFF) {
|
||||
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
|
||||
while (h --> 0) {
|
||||
loop(w, dst, (const SkPMColor*)dst, src, cov,
|
||||
adapt([](__m256i d, __m256i s, __m256i c) {
|
||||
// Src blend mode: a simple lerp from d to s by c.
|
||||
// TODO: try a pmaddubsw version?
|
||||
return div255(_mm256_add_epi16(_mm256_mullo_epi16(inv(c),d),
|
||||
_mm256_mullo_epi16( c ,s)));
|
||||
}));
|
||||
dst += dstRB / sizeof(*dst);
|
||||
cov += covRB / sizeof(*cov);
|
||||
}
|
||||
} else {
|
||||
const SkPMColor src = SkPreMultiplyColor(color);
|
||||
while (h --> 0) {
|
||||
loop(w, dst, (const SkPMColor*)dst, src, cov,
|
||||
adapt([](__m256i d, __m256i s, __m256i c) {
|
||||
// SrcOver blend mode, with coverage folded into source alpha.
|
||||
auto sc = scale(s,c),
|
||||
AC = inv(alphas(sc));
|
||||
return _mm256_add_epi16(sc, scale(d,AC));
|
||||
}));
|
||||
dst += dstRB / sizeof(*dst);
|
||||
cov += covRB / sizeof(*cov);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace sk_avx2
|
||||
|
||||
#endif
|
||||
|
||||
namespace SkOpts {
|
||||
void Init_avx2() {
|
||||
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
|
||||
blit_row_color32 = sk_avx2::blit_row_color32;
|
||||
blit_mask_d32_a8 = sk_avx2::blit_mask_d32_a8;
|
||||
#endif
|
||||
}
|
||||
}
|
@ -12,67 +12,88 @@
|
||||
|
||||
#ifndef SK_SUPPORT_LEGACY_X86_BLITS
|
||||
|
||||
namespace sk_sse41 {
|
||||
// This file deals mostly with unpacked 8-bit values,
|
||||
// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
|
||||
|
||||
// An SSE register holding at most 64 bits of useful data in the low lanes.
|
||||
struct m64i {
|
||||
__m128i v;
|
||||
/*implicit*/ m64i(__m128i v) : v(v) {}
|
||||
operator __m128i() const { return v; }
|
||||
};
|
||||
// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4.
|
||||
struct m128ix2 { __m128i lo, hi; };
|
||||
|
||||
// Load 4, 2, or 1 constant pixels or coverages (4x replicated).
|
||||
static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
|
||||
static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
|
||||
static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
|
||||
// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels.
|
||||
static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); }
|
||||
static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }
|
||||
|
||||
static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
|
||||
static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
|
||||
static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
|
||||
// pack() converts back, from 4 unpacked pixels to 4 packed pixels.
|
||||
static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); }
|
||||
|
||||
// Load 4, 2, or 1 variable pixels or coverages (4x replicated),
|
||||
// incrementing the pointer past what we read.
|
||||
static __m128i next4(const uint32_t*& ptr) {
|
||||
auto r = _mm_loadu_si128((const __m128i*)ptr);
|
||||
ptr += 4;
|
||||
return r;
|
||||
// These nextN() functions abstract over the difference between iterating over
|
||||
// an array of values and returning a constant value, for uint8_t and uint32_t.
|
||||
// The nextN() taking pointers increment that pointer past where they read.
|
||||
//
|
||||
// nextN() returns N unpacked pixels or 4N unpacked coverage values.
|
||||
|
||||
static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
|
||||
static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
|
||||
static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
|
||||
|
||||
static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); }
|
||||
static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); }
|
||||
static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
|
||||
|
||||
static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); }
|
||||
static inline __m128i next2(const uint8_t*& ptr) {
|
||||
auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
|
||||
ptr += 2;
|
||||
const int _ = ~0;
|
||||
return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
|
||||
}
|
||||
static m64i next2(const uint32_t*& ptr) {
|
||||
auto r = _mm_loadl_epi64((const __m128i*)ptr);
|
||||
static inline m128ix2 next4(const uint8_t*& ptr) {
|
||||
auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr);
|
||||
ptr += 4;
|
||||
const int _ = ~0;
|
||||
auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)),
|
||||
hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_));
|
||||
return { lo, hi };
|
||||
}
|
||||
|
||||
static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); }
|
||||
static inline __m128i next2(const uint32_t*& ptr) {
|
||||
auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
|
||||
ptr += 2;
|
||||
return r;
|
||||
}
|
||||
static m64i next1(const uint32_t*& ptr) {
|
||||
auto r = _mm_cvtsi32_si128(*ptr);
|
||||
ptr += 1;
|
||||
return r;
|
||||
}
|
||||
|
||||
// xyzw -> xxxx yyyy zzzz wwww
|
||||
static __m128i replicate_coverage(__m128i xyzw) {
|
||||
const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
|
||||
return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
|
||||
}
|
||||
|
||||
static __m128i next4(const uint8_t*& ptr) {
|
||||
auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
|
||||
static inline m128ix2 next4(const uint32_t*& ptr) {
|
||||
auto packed = _mm_loadu_si128((const __m128i*)ptr);
|
||||
ptr += 4;
|
||||
return r;
|
||||
return { unpacklo(packed), unpackhi(packed) };
|
||||
}
|
||||
static m64i next2(const uint8_t*& ptr) {
|
||||
auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
|
||||
ptr += 2;
|
||||
return r;
|
||||
|
||||
// Divide by 255 with rounding.
|
||||
// (x+127)/255 == ((x+128)*257)>>16.
|
||||
// Sometimes we can be more efficient by breaking this into two parts.
|
||||
static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
|
||||
static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
|
||||
static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
|
||||
|
||||
// (x*y+127)/255, a byte multiply.
|
||||
static inline __m128i scale(__m128i x, __m128i y) {
|
||||
return div255(_mm_mullo_epi16(x, y));
|
||||
}
|
||||
static m64i next1(const uint8_t*& ptr) {
|
||||
auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
|
||||
ptr += 1;
|
||||
return r;
|
||||
|
||||
// (255 - x).
|
||||
static inline __m128i inv(__m128i x) {
|
||||
return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16.
|
||||
}
|
||||
|
||||
// ARGB argb -> AAAA aaaa
|
||||
static inline __m128i alphas(__m128i px) {
|
||||
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
|
||||
const int _ = ~0;
|
||||
return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
|
||||
}
|
||||
|
||||
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
|
||||
template <typename Dst, typename Src, typename Cov, typename Fn>
|
||||
static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
|
||||
static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
|
||||
// We don't want to muck with the callers' pointers, so we make them const and copy here.
|
||||
Dst d = dst;
|
||||
Src s = src;
|
||||
@ -81,85 +102,30 @@ static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov
|
||||
// Writing this as a single while-loop helps hoist loop invariants from fn.
|
||||
while (n) {
|
||||
if (n >= 4) {
|
||||
_mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
|
||||
auto d4 = next4(d),
|
||||
s4 = next4(s),
|
||||
c4 = next4(c);
|
||||
auto lo = fn(d4.lo, s4.lo, c4.lo),
|
||||
hi = fn(d4.hi, s4.hi, c4.hi);
|
||||
_mm_storeu_si128((__m128i*)t, pack(lo,hi));
|
||||
t += 4;
|
||||
n -= 4;
|
||||
continue;
|
||||
}
|
||||
if (n & 2) {
|
||||
_mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
|
||||
auto r = fn(next2(d), next2(s), next2(c));
|
||||
_mm_storel_epi64((__m128i*)t, pack(r,r));
|
||||
t += 2;
|
||||
}
|
||||
if (n & 1) {
|
||||
*t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
|
||||
auto r = fn(next1(d), next1(s), next1(c));
|
||||
*t = _mm_cvtsi128_si32(pack(r,r));
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// packed
|
||||
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
|
||||
// unpacked
|
||||
|
||||
// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
|
||||
// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
|
||||
//
|
||||
// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
|
||||
// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
|
||||
// where _ is a zero byte.
|
||||
//
|
||||
// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
|
||||
// by unpacking arguments, calling fn, then packing the results.
|
||||
//
|
||||
// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
|
||||
// and all the packing and unpacking is handled automatically.
|
||||
|
||||
template <typename Fn>
|
||||
struct Adapt {
|
||||
Fn fn;
|
||||
|
||||
__m128i operator()(__m128i d, __m128i s, __m128i c) {
|
||||
auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
|
||||
auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
|
||||
return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
|
||||
fn(hi(d), hi(s), hi(c)));
|
||||
}
|
||||
|
||||
m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
|
||||
auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
|
||||
auto r = fn(lo(d), lo(s), lo(c));
|
||||
return _mm_packus_epi16(r, r);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename Fn>
|
||||
static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
|
||||
|
||||
// These helpers all work exclusively with unpacked 8-bit values,
|
||||
// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
|
||||
|
||||
// Divide by 255 with rounding.
|
||||
// (x+127)/255 == ((x+128)*257)>>16.
|
||||
// Sometimes we can be more efficient by breaking this into two parts.
|
||||
static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
|
||||
static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
|
||||
static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
|
||||
|
||||
// (x*y+127)/255, a byte multiply.
|
||||
static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
|
||||
|
||||
// (255 * x).
|
||||
static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
|
||||
|
||||
// (255 - x).
|
||||
static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
|
||||
|
||||
// ARGB argb -> AAAA aaaa
|
||||
static __m128i alphas(__m128i px) {
|
||||
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
|
||||
const int _ = ~0;
|
||||
return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
|
||||
}
|
||||
namespace sk_sse41 {
|
||||
|
||||
// SrcOver, with a constant source and full coverage.
|
||||
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
|
||||
@ -168,14 +134,14 @@ static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
|
||||
|
||||
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
|
||||
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
|
||||
__m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
|
||||
s_255_128 = div255_part1(mul255(s)),
|
||||
__m128i s = next2(src),
|
||||
s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))),
|
||||
A = inv(alphas(s));
|
||||
|
||||
const uint8_t cov = 0xff;
|
||||
loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
|
||||
loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) {
|
||||
return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
|
||||
}));
|
||||
});
|
||||
}
|
||||
|
||||
// SrcOver, with a constant source and variable coverage.
|
||||
@ -186,26 +152,23 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
||||
if (SkColorGetA(color) == 0xFF) {
|
||||
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
|
||||
while (h --> 0) {
|
||||
loop(w, dst, (const SkPMColor*)dst, src, cov,
|
||||
adapt([](__m128i d, __m128i s, __m128i c) {
|
||||
loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
|
||||
// Src blend mode: a simple lerp from d to s by c.
|
||||
// TODO: try a pmaddubsw version?
|
||||
return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
|
||||
_mm_mullo_epi16( c ,s)));
|
||||
}));
|
||||
return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s)));
|
||||
});
|
||||
dst += dstRB / sizeof(*dst);
|
||||
cov += covRB / sizeof(*cov);
|
||||
}
|
||||
} else {
|
||||
const SkPMColor src = SkPreMultiplyColor(color);
|
||||
while (h --> 0) {
|
||||
loop(w, dst, (const SkPMColor*)dst, src, cov,
|
||||
adapt([](__m128i d, __m128i s, __m128i c) {
|
||||
loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) {
|
||||
// SrcOver blend mode, with coverage folded into source alpha.
|
||||
__m128i sc = scale(s,c),
|
||||
AC = inv(alphas(sc));
|
||||
return _mm_add_epi16(sc, scale(d,AC));
|
||||
}));
|
||||
});
|
||||
dst += dstRB / sizeof(*dst);
|
||||
cov += covRB / sizeof(*cov);
|
||||
}
|
||||
@ -213,7 +176,6 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
|
||||
}
|
||||
|
||||
} // namespace sk_sse41
|
||||
|
||||
#endif
|
||||
|
||||
namespace SkOpts {
|
||||
|
Loading…
Reference in New Issue
Block a user