Revert "Push SkYUVAInfo into GrYUVToRGBEffect."

This reverts commit b60255033d.

Reason for revert: GM needs fix for abandoned context 

Original change's description:
> Push SkYUVAInfo into GrYUVToRGBEffect.
>
> Wrap up SkYUVAInfo and proxies into new type GrYUVATextureProxies.
>
> Bug: skia:10632
> Change-Id: Ic907d78a1a40af3c8ef838021749839c422d62dc
> Reviewed-on: https://skia-review.googlesource.com/c/skia/+/353042
> Commit-Queue: Brian Salomon <bsalomon@google.com>
> Reviewed-by: Jim Van Verth <jvanverth@google.com>

TBR=jvanverth@google.com,bsalomon@google.com

Change-Id: Ia5a1121ed388ad04ef86121a3f7905772316a200
No-Presubmit: true
No-Tree-Checks: true
No-Try: true
Bug: skia:10632
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/353618
Reviewed-by: Brian Salomon <bsalomon@google.com>
Commit-Queue: Brian Salomon <bsalomon@google.com>
Auto-Submit: Brian Salomon <bsalomon@google.com>
This commit is contained in:
Brian Salomon 2021-01-13 20:14:50 +00:00 committed by Skia Commit-Bot
parent a65441b3c4
commit 0e4a29af9d
15 changed files with 335 additions and 578 deletions

View File

@ -16,15 +16,14 @@
#include "include/core/SkScalar.h"
#include "include/core/SkSize.h"
#include "include/core/SkString.h"
#include "include/core/SkYUVAInfo.h"
#include "include/core/SkYUVAPixmaps.h"
#include "include/private/GrTypesPriv.h"
#include "src/core/SkYUVAInfoLocation.h"
#include "src/gpu/GrBitmapTextureMaker.h"
#include "src/gpu/GrDirectContextPriv.h"
#include "src/gpu/GrPaint.h"
#include "src/gpu/GrSamplerState.h"
#include "src/gpu/GrSurfaceDrawContext.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/GrYUVATextureProxies.h"
#include "src/gpu/effects/GrYUVtoRGBEffect.h"
#include <memory>
@ -32,6 +31,10 @@
class SkCanvas;
#define YSIZE 8
#define USIZE 4
#define VSIZE 4
namespace skiagm {
//////////////////////////////////////////////////////////////////////////////
@ -52,16 +55,13 @@ protected:
SkISize onISize() override { return {1310, 540}; }
void makePixmaps() {
SkYUVAInfo yuvaInfo = SkYUVAInfo({8, 8},
SkYUVAInfo::PlaneConfig::kY_U_V,
SkYUVAInfo::Subsampling::k420,
kJPEG_Full_SkYUVColorSpace);
SkColorType colorTypes[] = {kAlpha_8_SkColorType,
kAlpha_8_SkColorType,
kAlpha_8_SkColorType};
SkYUVAPixmapInfo pmapInfo(yuvaInfo, colorTypes, nullptr);
fPixmaps = SkYUVAPixmaps::Allocate(pmapInfo);
void onOnceBeforeDraw() override {
SkImageInfo yinfo = SkImageInfo::MakeA8(YSIZE, YSIZE);
fBitmaps[0].allocPixels(yinfo);
SkImageInfo uinfo = SkImageInfo::MakeA8(USIZE, USIZE);
fBitmaps[1].allocPixels(uinfo);
SkImageInfo vinfo = SkImageInfo::MakeA8(VSIZE, VSIZE);
fBitmaps[2].allocPixels(vinfo);
unsigned char innerY[16] = {149, 160, 130, 105,
160, 130, 105, 149,
@ -70,62 +70,45 @@ protected:
unsigned char innerU[4] = {43, 75, 145, 200};
unsigned char innerV[4] = {88, 180, 200, 43};
int outerYUV[] = {128, 128, 128};
SkBitmap bitmaps[3];
for (int i = 0; i < 3; ++i) {
bitmaps[i].installPixels(fPixmaps.plane(i));
bitmaps[i].eraseColor(SkColorSetARGB(outerYUV[i], 0, 0, 0));
fBitmaps[i].eraseColor(SkColorSetARGB(outerYUV[i], 0, 0, 0));
}
SkPixmap innerYPM(SkImageInfo::MakeA8(4, 4), innerY, 4);
SkPixmap innerUPM(SkImageInfo::MakeA8(2, 2), innerU, 2);
SkPixmap innerVPM(SkImageInfo::MakeA8(2, 2), innerV, 2);
bitmaps[0].writePixels(innerYPM, 2, 2);
bitmaps[1].writePixels(innerUPM, 1, 1);
bitmaps[2].writePixels(innerVPM, 1, 1);
fBitmaps[0].writePixels(innerYPM, 2, 2);
fBitmaps[1].writePixels(innerUPM, 1, 1);
fBitmaps[2].writePixels(innerVPM, 1, 1);
for (auto& fBitmap : fBitmaps) {
fBitmap.setImmutable();
}
}
DrawResult onGpuSetup(GrDirectContext* context, SkString* errorMsg) override {
if (!context) {
return DrawResult::kSkip;
}
if (!fPixmaps.isValid()) {
this->makePixmaps();
}
GrSurfaceProxyView views[SkYUVAInfo::kMaxPlanes];
GrColorType colorTypes[SkYUVAInfo::kMaxPlanes];
for (int i = 0; i < fPixmaps.numPlanes(); ++i) {
SkBitmap bitmap;
bitmap.installPixels(fPixmaps.plane(i));
bitmap.setImmutable();
GrBitmapTextureMaker maker(
context, bitmap, GrImageTexGenPolicy::kNew_Uncached_Budgeted);
DrawResult onDraw(GrRecordingContext* context, GrSurfaceDrawContext* surfaceDrawContext,
SkCanvas* canvas, SkString* errorMsg) override {
GrSurfaceProxyView views[3];
for (int i = 0; i < 3; ++i) {
GrBitmapTextureMaker maker(context, fBitmaps[i], GrImageTexGenPolicy::kDraw);
views[i] = maker.view(GrMipmapped::kNo);
if (!views[i]) {
*errorMsg = "Failed to create proxy";
return DrawResult::kFail;
}
colorTypes[i] = SkColorTypeToGrColorType(bitmap.colorType());
}
fProxies = GrYUVATextureProxies(fPixmaps.yuvaInfo(), views, colorTypes);
if (!fProxies.isValid()) {
*errorMsg = "Failed to create GrYUVATextureProxies";
return DrawResult::kFail;
}
return DrawResult::kOk;
}
void onGpuTeardown() override { fProxies = {}; }
DrawResult onDraw(GrRecordingContext* context,
GrSurfaceDrawContext* surfaceDrawContext,
SkCanvas* canvas,
SkString* errorMsg) override {
static const GrSamplerState::Filter kFilters[] = {GrSamplerState::Filter::kNearest,
GrSamplerState::Filter::kLinear};
static const SkRect kColorRect = SkRect::MakeLTRB(2.f, 2.f, 6.f, 6.f);
SkYUVAInfo::YUVALocations yuvaLocations = {{
{ 0, SkColorChannel::kA},
{ 1, SkColorChannel::kA},
{ 2, SkColorChannel::kA},
{-1, SkColorChannel::kA}
}};
// Outset to visualize wrap modes.
SkRect rect = SkRect::Make(fProxies.yuvaInfo().dimensions());
rect = rect.makeOutset(fProxies.yuvaInfo().width()/2.f, fProxies.yuvaInfo().height()/2.f);
SkRect rect = SkRect::MakeWH(YSIZE, YSIZE).makeOutset(YSIZE/2, YSIZE/2);
SkScalar y = kTestPad;
// Rows are filter modes.
@ -146,8 +129,9 @@ protected:
samplerState.setWrapModeY(wm);
}
const auto& caps = *context->priv().caps();
std::unique_ptr<GrFragmentProcessor> fp =
GrYUVtoRGBEffect::Make(fProxies, samplerState, caps, SkMatrix::I(), subset);
std::unique_ptr<GrFragmentProcessor> fp(
GrYUVtoRGBEffect::Make(views, yuvaLocations, kJPEG_SkYUVColorSpace,
samplerState, caps, SkMatrix::I(), subset));
if (fp) {
GrPaint grPaint;
grPaint.setColorFragmentProcessor(std::move(fp));
@ -161,11 +145,10 @@ protected:
}
return DrawResult::kOk;
}
}
private:
SkYUVAPixmaps fPixmaps;
GrYUVATextureProxies fProxies;
SkBitmap fBitmaps[3];
static constexpr SkScalar kTestPad = 10.f;

View File

@ -277,8 +277,6 @@ skia_gpu_sources = [
"$_src/gpu/GrXferProcessor.cpp",
"$_src/gpu/GrXferProcessor.h",
"$_src/gpu/GrYUVABackendTextures.cpp",
"$_src/gpu/GrYUVATextureProxies.cpp",
"$_src/gpu/GrYUVATextureProxies.h",
# Ops
"$_src/gpu/effects/GrBezierEffect.cpp",

View File

@ -93,16 +93,6 @@ public:
static constexpr int kMaxPlanes = 4;
/** ratio of Y/A values to U/V values in x and y. */
static std::tuple<int, int> SubsamplingFactors(Subsampling);
/**
* SubsamplingFactors(Subsampling) if planedIdx refers to a U/V plane and otherwise {1, 1} if
* inputs are valid. Invalid inputs consist of incompatible PlaneConfig/Subsampling/planeIdx
* combinations. {0, 0} is returned for invalid inputs.
*/
static std::tuple<int, int> PlaneSubsamplingFactors(PlaneConfig, Subsampling, int planeIdx);
/**
* Given image dimensions, a planer configuration, subsampling, and origin, determine the
* expected size of each plane. Returns the number of expected planes. planeDimensions[0]
@ -156,10 +146,6 @@ public:
PlaneConfig planeConfig() const { return fPlaneConfig; }
Subsampling subsampling() const { return fSubsampling; }
std::tuple<int, int> planeSubsamplingFactors(int planeIdx) const {
return PlaneSubsamplingFactors(fPlaneConfig, fSubsampling, planeIdx);
}
/**
* Dimensions of the full resolution image (after planes have been oriented to how the image
* is displayed as indicated by fOrigin).
@ -174,10 +160,6 @@ public:
SkEncodedOrigin origin() const { return fOrigin; }
SkMatrix originMatrix() const {
return SkEncodedOriginToMatrix(fOrigin, this->width(), this->height());
}
bool hasAlpha() const { return HasAlpha(fPlaneConfig); }
/**
@ -217,12 +199,6 @@ public:
*/
SkYUVAInfo makeSubsampling(SkYUVAInfo::Subsampling) const;
/**
* Makes a SkYUVAInfo that is identical to this one but with the passed dimensions. If the
* passed dimensions is empty then the result will be an invalid SkYUVAInfo.
*/
SkYUVAInfo makeDimensions(SkISize) const;
bool operator==(const SkYUVAInfo& that) const;
bool operator!=(const SkYUVAInfo& that) const { return !(*this == that); }

View File

@ -24,54 +24,6 @@ static bool is_plane_config_compatible_with_subsampling(SkYUVAInfo::PlaneConfig
config != SkYUVAInfo::PlaneConfig::kUYVA);
}
std::tuple<int, int> SkYUVAInfo::SubsamplingFactors(Subsampling subsampling) {
switch (subsampling) {
case Subsampling::kUnknown: return {0, 0};
case Subsampling::k444: return {1, 1};
case Subsampling::k422: return {2, 1};
case Subsampling::k420: return {2, 2};
case Subsampling::k440: return {1, 2};
case Subsampling::k411: return {4, 1};
case Subsampling::k410: return {4, 2};
}
SkUNREACHABLE;
}
std::tuple<int, int> SkYUVAInfo::PlaneSubsamplingFactors(PlaneConfig planeConfig,
Subsampling subsampling,
int planeIdx) {
if (!is_plane_config_compatible_with_subsampling(planeConfig, subsampling) ||
planeIdx < 0 ||
planeIdx > NumPlanes(planeConfig)) {
return {0, 0};
}
bool isSubsampledPlane = false;
switch (planeConfig) {
case PlaneConfig::kUnknown: SkUNREACHABLE;
case PlaneConfig::kY_U_V:
case PlaneConfig::kY_V_U:
case PlaneConfig::kY_U_V_A:
case PlaneConfig::kY_V_U_A:
isSubsampledPlane = planeIdx == 1 || planeIdx == 2;
break;
case PlaneConfig::kY_UV:
case PlaneConfig::kY_VU:
case PlaneConfig::kY_UV_A:
case PlaneConfig::kY_VU_A:
isSubsampledPlane = planeIdx == 1;
break;
case PlaneConfig::kYUV:
case PlaneConfig::kUYV:
case PlaneConfig::kYUVA:
case PlaneConfig::kUYVA:
break;
}
return isSubsampledPlane ? SubsamplingFactors(subsampling) : std::make_tuple(1, 1);
}
int SkYUVAInfo::PlaneDimensions(SkISize imageDimensions,
PlaneConfig planeConfig,
Subsampling subsampling,
@ -358,11 +310,13 @@ SkYUVAInfo::YUVALocations SkYUVAInfo::toYUVALocations(const uint32_t* channelFla
}
SkYUVAInfo SkYUVAInfo::makeSubsampling(SkYUVAInfo::Subsampling subsampling) const {
return {fDimensions, fPlaneConfig, subsampling, fYUVColorSpace, fOrigin, fSitingX, fSitingY};
}
SkYUVAInfo SkYUVAInfo::makeDimensions(SkISize dimensions) const {
return {dimensions, fPlaneConfig, fSubsampling, fYUVColorSpace, fOrigin, fSitingX, fSitingY};
return {fDimensions,
fPlaneConfig,
subsampling,
fYUVColorSpace,
fOrigin,
fSitingX,
fSitingY};
}
bool SkYUVAInfo::operator==(const SkYUVAInfo& that) const {

View File

@ -77,16 +77,12 @@ std::unique_ptr<GrFragmentProcessor> GrYUVAImageTextureMaker::createFragmentProc
}
const auto& caps = *fImage->context()->priv().caps();
auto fp = GrYUVtoRGBEffect::Make(fImage->fYUVAProxies,
samplerState,
caps,
textureMatrix,
subset,
domain);
auto fp = GrYUVtoRGBEffect::Make(fImage->fViews, fImage->fYUVALocations, fImage->fYUVColorSpace,
samplerState, caps, textureMatrix, subset, domain);
if (fImage->fFromColorSpace) {
fp = GrColorSpaceXformEffect::Make(std::move(fp),
fImage->fFromColorSpace.get(), fImage->alphaType(),
fImage->colorSpace(), kPremul_SkAlphaType);
fp = GrColorSpaceXformEffect::Make(std::move(fp), fImage->fFromColorSpace.get(),
fImage->alphaType(), fImage->colorSpace(),
kPremul_SkAlphaType);
}
return fp;
}
@ -100,12 +96,12 @@ std::unique_ptr<GrFragmentProcessor> GrYUVAImageTextureMaker::createBicubicFragm
SkImage::CubicResampler kernel) {
const auto& caps = *fImage->context()->priv().caps();
GrSamplerState samplerState(wrapX, wrapY, GrSamplerState::Filter::kNearest);
auto fp = GrYUVtoRGBEffect::Make(fImage->fYUVAProxies, samplerState, caps, SkMatrix::I(),
subset, domain);
auto fp = GrYUVtoRGBEffect::Make(fImage->fViews, fImage->fYUVALocations, fImage->fYUVColorSpace,
samplerState, caps, SkMatrix::I(), subset, domain);
fp = GrBicubicEffect::Make(std::move(fp),
fImage->alphaType(),
textureMatrix,
kernel,
kernel /*GrBicubicEffect::gMitchell*/,
GrBicubicEffect::Direction::kXY);
if (fImage->fFromColorSpace) {
fp = GrColorSpaceXformEffect::Make(std::move(fp),

View File

@ -1,126 +0,0 @@
/*
* Copyright 2021 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "src/gpu/GrYUVATextureProxies.h"
#ifdef SK_DEBUG
static int num_channels(uint32_t channelFlags) {
switch (channelFlags) {
case kRed_SkColorChannelFlag : return 1;
case kAlpha_SkColorChannelFlag : return 1;
case kGray_SkColorChannelFlag : return 1;
case kGrayAlpha_SkColorChannelFlags : return 2;
case kRG_SkColorChannelFlags : return 2;
case kRGB_SkColorChannelFlags : return 3;
case kRGBA_SkColorChannelFlags : return 4;
default:
SkDEBUGFAILF("Unexpected channel combination 0x%08x", channelFlags);
return 0;
}
}
#endif
GrYUVATextureProxies::GrYUVATextureProxies(const SkYUVAInfo& yuvaInfo,
sk_sp<GrSurfaceProxy> proxies[SkYUVAInfo::kMaxPlanes],
GrSurfaceOrigin textureOrigin)
: fYUVAInfo(yuvaInfo), fTextureOrigin(textureOrigin) {
int n = yuvaInfo.numPlanes();
if (n == 0) {
*this = {};
SkASSERT(!this->isValid());
return;
}
uint32_t textureChannelMasks[SkYUVAInfo::kMaxPlanes];
for (int i = 0; i < n; ++i) {
if (!proxies[i]) {
*this = {};
SkASSERT(!this->isValid());
return;
}
textureChannelMasks[i] = proxies[i]->backendFormat().channelMask();
}
fYUVALocations = yuvaInfo.toYUVALocations(textureChannelMasks);
if (fYUVALocations[0].fPlane < 0) {
*this = {};
SkASSERT(!this->isValid());
return;
}
fMipmapped = GrMipmapped::kYes;
for (size_t i = 0; i < static_cast<size_t>(n); ++i) {
if (!proxies[i]) {
*this = {};
SkASSERT(!this->isValid());
return;
}
SkASSERT(proxies[i]->asTextureProxy());
if (proxies[i]->asTextureProxy()->mipmapped() == GrMipmapped::kNo) {
fMipmapped = GrMipmapped::kNo;
}
fProxies[i] = std::move(proxies[i]);
}
SkASSERT(this->isValid());
}
GrYUVATextureProxies::GrYUVATextureProxies(const SkYUVAInfo& yuvaInfo,
GrSurfaceProxyView views[SkYUVAInfo::kMaxPlanes],
GrColorType colorTypes[SkYUVAInfo::kMaxPlanes])
: fYUVAInfo(yuvaInfo) {
uint32_t pixmapChannelMasks[SkYUVAInfo::kMaxPlanes];
int n = yuvaInfo.numPlanes();
if (n == 0) {
*this = {};
SkASSERT(!this->isValid());
return;
}
fMipmapped = GrMipmapped::kYes;
for (int i = 0; i < n; ++i) {
pixmapChannelMasks[i] = GrColorTypeChannelFlags(colorTypes[i]);
SkASSERT(num_channels(pixmapChannelMasks[i]) <=
num_channels(views[i].proxy()->backendFormat().channelMask()));
if (!views[i] || views[i].origin() != views[0].origin()) {
*this = {};
SkASSERT(!this->isValid());
return;
}
if (views[i].proxy()->asTextureProxy()->mipmapped() == GrMipmapped::kNo) {
fMipmapped = GrMipmapped::kNo;
}
}
// Initial locations refer to the CPU pixmap channels.
fYUVALocations = yuvaInfo.toYUVALocations(pixmapChannelMasks);
if (fYUVALocations[0].fPlane < 0) {
*this = {};
SkASSERT(!this->isValid());
return;
}
// Run each location through the proxy view's swizzle to get the actual texture format channel.
for (int i = 0; i < SkYUVAInfo::kYUVAChannelCount; ++i) {
int plane = fYUVALocations[i].fPlane;
if (plane >= 0) {
int chanAsIdx = static_cast<int>(fYUVALocations[i].fChannel);
switch (views[plane].swizzle()[chanAsIdx]) {
case 'r': fYUVALocations[i].fChannel = SkColorChannel::kR; break;
case 'g': fYUVALocations[i].fChannel = SkColorChannel::kG; break;
case 'b': fYUVALocations[i].fChannel = SkColorChannel::kB; break;
case 'a': fYUVALocations[i].fChannel = SkColorChannel::kA; break;
default:
SkDEBUGFAILF("Unexpected swizzle value: %c", views[i].swizzle()[chanAsIdx]);
*this = {};
SkASSERT(!this->isValid());
return;
}
}
}
for (int i = 0; i < n; ++i) {
fProxies[i] = views[i].detachProxy();
}
fTextureOrigin = views[0].origin();
SkASSERT(this->isValid());
}

View File

@ -1,76 +0,0 @@
/*
* Copyright 2021 Google LLC
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrYUVATextureProxies_DEFINED
#define GrYUVATextureProxies_DEFINED
#include "include/core/SkYUVAInfo.h"
#include "src/core/SkYUVAInfoLocation.h"
#include "src/gpu/GrSurfaceProxy.h"
#include "src/gpu/GrSurfaceProxyView.h"
class GrSurfaceProxyView;
class GrYUVATextureProxies {
public:
GrYUVATextureProxies() = default;
/** Assumes all planes are sampled with a default "rgba" swizzle. */
GrYUVATextureProxies(const SkYUVAInfo&,
sk_sp<GrSurfaceProxy>[SkYUVAInfo::kMaxPlanes],
GrSurfaceOrigin textureOrigin);
/**
* When uploading pixmaps to textures it is important that we account for how the original
* pixmaps' channels are swizzled into the texture during upload. This will compute a swizzle
* for each texture based on the original color types and the views' swizzles. The views must
* all have the same origin or the result will be an invalid GrYUVATextureProxies.
*/
GrYUVATextureProxies(const SkYUVAInfo&,
GrSurfaceProxyView[SkYUVAInfo::kMaxPlanes],
GrColorType[SkYUVAInfo::kMaxPlanes]);
GrYUVATextureProxies(const GrYUVATextureProxies&) = default;
GrYUVATextureProxies(GrYUVATextureProxies&&) = default;
GrYUVATextureProxies& operator=(const GrYUVATextureProxies&) = default;
GrYUVATextureProxies& operator=(GrYUVATextureProxies&&) = default;
const SkYUVAInfo& yuvaInfo() const { return fYUVAInfo; }
int numPlanes() const { return fYUVAInfo.numPlanes(); }
GrSurfaceOrigin textureOrigin() const { return fTextureOrigin; }
// Overall set of YUVA proxies is mip mapped if each plane is mip mapped.
GrMipmapped mipmapped() const { return fMipmapped; }
GrSurfaceProxy* proxy(int i) const { return fProxies[i].get(); }
const std::array<sk_sp<GrSurfaceProxy>, SkYUVAInfo::kMaxPlanes>& proxies() const {
return fProxies;
}
sk_sp<GrSurfaceProxy> refProxy(int i) const { return fProxies[i]; }
GrSurfaceProxyView makeView(int i) const {
return {fProxies[i], fTextureOrigin, GrSwizzle::RGBA()};
}
bool isValid() const { return fYUVAInfo.isValid(); }
const SkYUVAInfo::YUVALocations& yuvaLocations() const { return fYUVALocations; }
private:
std::array<sk_sp<GrSurfaceProxy>, SkYUVAInfo::kMaxPlanes> fProxies;
SkYUVAInfo fYUVAInfo;
GrSurfaceOrigin fTextureOrigin = kTopLeft_GrSurfaceOrigin;
GrMipmapped fMipmapped = GrMipmapped::kNo;
SkYUVAInfo::YUVALocations fYUVALocations = {};
};
#endif

View File

@ -7,10 +7,8 @@
#include "src/gpu/effects/GrYUVtoRGBEffect.h"
#include "include/core/SkYUVAInfo.h"
#include "src/core/SkYUVMath.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/GrYUVATextureProxies.h"
#include "src/gpu/effects/GrMatrixEffect.h"
#include "src/gpu/glsl/GrGLSLFragmentProcessor.h"
#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
@ -18,82 +16,88 @@
#include "src/sksl/SkSLCPP.h"
#include "src/sksl/SkSLUtil.h"
static void border_colors(const GrYUVATextureProxies& yuvaProxies, float planeBorders[4][4]) {
static void border_colors(SkYUVColorSpace cs,
const SkYUVAInfo::YUVALocations& locations,
float planeBorders[4][4]) {
float m[20];
SkColorMatrix_RGB2YUV(yuvaProxies.yuvaInfo().yuvColorSpace(), m);
for (int i = 0; i < SkYUVAInfo::kYUVAChannelCount; ++i) {
auto [plane, channel] = yuvaProxies.yuvaLocations()[i];
SkColorMatrix_RGB2YUV(cs, m);
int i = 0;
for (auto [plane, channel] : locations) {
if (plane == -1) {
return;
continue;
}
auto c = static_cast<int>(channel);
planeBorders[plane][c] = m[i*5 + 4];
++i;
}
}
std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::Make(const GrYUVATextureProxies& yuvaProxies,
GrSamplerState samplerState,
const GrCaps& caps,
const SkMatrix& localMatrix,
const SkRect* subset,
const SkRect* domain) {
int numPlanes = yuvaProxies.yuvaInfo().numPlanes();
if (!yuvaProxies.isValid()) {
return nullptr;
}
std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::Make(
GrSurfaceProxyView views[],
const SkYUVAInfo::YUVALocations& locations,
SkYUVColorSpace yuvColorSpace,
GrSamplerState samplerState,
const GrCaps& caps,
const SkMatrix& localMatrix,
const SkRect* subset,
const SkRect* domain) {
int numPlanes;
SkAssertResult(SkYUVAInfo::YUVALocation::AreValidLocations(locations, &numPlanes));
const SkISize yDimensions =
views[locations[SkYUVAInfo::YUVAChannels::kY].fPlane].proxy()->dimensions();
bool usesBorder = samplerState.wrapModeX() == GrSamplerState::WrapMode::kClampToBorder ||
samplerState.wrapModeY() == GrSamplerState::WrapMode::kClampToBorder;
float planeBorders[4][4] = {};
if (usesBorder) {
border_colors(yuvaProxies, planeBorders);
border_colors(yuvColorSpace, locations, planeBorders);
}
bool snap[2] = {false, false};
std::unique_ptr<GrFragmentProcessor> planeFPs[SkYUVAInfo::kMaxPlanes];
std::unique_ptr<GrFragmentProcessor> planeFPs[4];
for (int i = 0; i < numPlanes; ++i) {
GrSurfaceProxyView view = yuvaProxies.makeView(i);
SkMatrix planeMatrix = yuvaProxies.yuvaInfo().originMatrix();
// The returned matrix is a view matrix but we need a local matrix.
SkAssertResult(planeMatrix.invert(&planeMatrix));
SkISize dimensions = views[i].proxy()->dimensions();
SkTCopyOnFirstWrite<SkMatrix> planeMatrix(&SkMatrix::I());
SkRect planeSubset;
SkRect planeDomain;
bool makeLinearWithSnap = false;
auto [ssx, ssy] = yuvaProxies.yuvaInfo().planeSubsamplingFactors(i);
SkASSERT(ssx > 0 && ssx <= 4);
SkASSERT(ssy > 0 && ssy <= 2);
float scaleX = 1.f;
float scaleY = 1.f;
if (ssx > 1 || ssy > 1) {
float sx = 1.f,
sy = 1.f;
if (dimensions != yDimensions) {
// JPEG chroma subsampling of odd dimensions produces U and V planes with the ceiling of
// the image size divided by the subsampling factor (2). Our API for creating YUVA
// doesn't capture the intended subsampling (and we should fix that). This fixes up 2x
// subsampling for images with odd widths/heights (e.g. JPEG 420 or 422).
scaleX = 1.f/ssx;
scaleY = 1.f/ssy;
// We would want to add a translation to this matrix to handle other sitings.
SkASSERT(yuvaProxies.yuvaInfo().sitingX() == SkYUVAInfo::Siting::kCentered);
SkASSERT(yuvaProxies.yuvaInfo().sitingY() == SkYUVAInfo::Siting::kCentered);
planeMatrix.postConcat(SkMatrix::Scale(scaleX, scaleY));
sx = (float)dimensions.width() / yDimensions.width();
sy = (float)dimensions.height() / yDimensions.height();
if ((yDimensions.width() & 0b1) && dimensions.width() == yDimensions.width() / 2 + 1) {
sx = 0.5f;
}
if ((yDimensions.height() & 0b1) &&
dimensions.height() == yDimensions.height() / 2 + 1) {
sy = 0.5f;
}
*planeMatrix.writable() = SkMatrix::Scale(sx, sy);
if (subset) {
planeSubset = {subset->fLeft *scaleX,
subset->fTop *scaleY,
subset->fRight *scaleX,
subset->fBottom*scaleY};
planeSubset = {subset->fLeft * sx,
subset->fTop * sy,
subset->fRight * sx,
subset->fBottom * sy};
}
if (domain) {
planeDomain = {domain->fLeft *scaleX,
domain->fTop *scaleY,
domain->fRight *scaleX,
domain->fBottom*scaleY};
planeDomain = {domain->fLeft * sx,
domain->fTop * sy,
domain->fRight * sx,
domain->fBottom * sy};
}
// This promotion of nearest to linear filtering for UV planes exists to mimic
// libjpeg[-turbo]'s do_fancy_upsampling option. We will filter the subsampled plane,
// however we want to filter at a fixed point for each logical image pixel to simulate
// nearest neighbor.
if (samplerState.filter() == GrSamplerState::Filter::kNearest) {
bool snapX = (ssx != 1),
snapY = (ssy != 1);
bool snapX = (sx != 1.f),
snapY = (sy != 1.f);
makeLinearWithSnap = snapX || snapY;
snap[0] |= snapX;
snap[1] |= snapY;
@ -127,53 +131,30 @@ std::unique_ptr<GrFragmentProcessor> GrYUVtoRGBEffect::Make(const GrYUVATextureP
// planeSubset but allows linear filtering to read pixels from the plane that are
// just outside planeSubset.
SkRect* domainRect = domain ? &planeDomain : nullptr;
planeFPs[i] = GrTextureEffect::MakeCustomLinearFilterInset(std::move(view),
kUnknown_SkAlphaType,
planeMatrix,
samplerState.wrapModeX(),
samplerState.wrapModeY(),
planeSubset,
domainRect,
{scaleX/2.f, scaleY/2.f},
caps,
planeBorders[i]);
planeFPs[i] = GrTextureEffect::MakeCustomLinearFilterInset(
views[i], kUnknown_SkAlphaType, *planeMatrix, samplerState.wrapModeX(),
samplerState.wrapModeY(), planeSubset, domainRect, {sx / 2.f, sy / 2.f},
caps, planeBorders[i]);
} else if (domain) {
planeFPs[i] = GrTextureEffect::MakeSubset(std::move(view),
kUnknown_SkAlphaType,
planeMatrix,
samplerState,
planeSubset,
planeDomain,
caps,
planeBorders[i]);
planeFPs[i] = GrTextureEffect::MakeSubset(views[i], kUnknown_SkAlphaType,
*planeMatrix, samplerState, planeSubset,
planeDomain, caps, planeBorders[i]);
} else {
planeFPs[i] = GrTextureEffect::MakeSubset(std::move(view),
kUnknown_SkAlphaType,
planeMatrix,
samplerState,
planeSubset,
caps,
planeBorders[i]);
planeFPs[i] = GrTextureEffect::MakeSubset(views[i], kUnknown_SkAlphaType,
*planeMatrix, samplerState, planeSubset,
caps, planeBorders[i]);
}
} else {
GrSamplerState planeSampler = samplerState;
if (makeLinearWithSnap) {
planeSampler.setFilterMode(GrSamplerState::Filter::kLinear);
}
planeFPs[i] = GrTextureEffect::Make(std::move(view),
kUnknown_SkAlphaType,
planeMatrix,
planeSampler,
caps,
planeBorders[i]);
planeFPs[i] = GrTextureEffect::Make(views[i], kUnknown_SkAlphaType, *planeMatrix,
planeSampler, caps, planeBorders[i]);
}
}
std::unique_ptr<GrFragmentProcessor> fp(
new GrYUVtoRGBEffect(planeFPs,
numPlanes,
yuvaProxies.yuvaLocations(),
snap,
yuvaProxies.yuvaInfo().yuvColorSpace()));
auto fp = std::unique_ptr<GrFragmentProcessor>(
new GrYUVtoRGBEffect(planeFPs, numPlanes, locations, snap, yuvColorSpace));
return GrMatrixEffect::Make(localMatrix, std::move(fp));
}

View File

@ -12,11 +12,11 @@
#include "src/core/SkYUVAInfoLocation.h"
#include "src/gpu/GrFragmentProcessor.h"
class GrYUVATextureProxies;
class GrYUVtoRGBEffect : public GrFragmentProcessor {
public:
static std::unique_ptr<GrFragmentProcessor> Make(const GrYUVATextureProxies& yuvaProxies,
static std::unique_ptr<GrFragmentProcessor> Make(GrSurfaceProxyView views[],
const SkYUVAInfo::YUVALocations&,
SkYUVColorSpace yuvColorSpace,
GrSamplerState samplerState,
const GrCaps&,
const SkMatrix& localMatrix = SkMatrix::I(),

View File

@ -39,7 +39,6 @@
#include "src/gpu/GrTextureAdjuster.h"
#include "src/gpu/GrTextureProxy.h"
#include "src/gpu/GrTextureProxyPriv.h"
#include "src/gpu/GrYUVATextureProxies.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/gl/GrGLTexture.h"

View File

@ -12,7 +12,6 @@
#include "include/gpu/GrBackendSurface.h"
#include "include/gpu/GrDirectContext.h"
#include "include/gpu/GrRecordingContext.h"
#include "include/gpu/GrYUVABackendTextures.h"
#include "src/core/SkBitmapCache.h"
#include "src/core/SkTLList.h"
#include "src/gpu/GrDirectContextPriv.h"
@ -23,7 +22,6 @@
#include "src/gpu/GrSurfaceDrawContext.h"
#include "src/gpu/GrTexture.h"
#include "src/gpu/GrTextureAdjuster.h"
#include "src/gpu/GrYUVATextureProxies.h"
#include "src/gpu/effects/GrYUVtoRGBEffect.h"
#include "src/image/SkImage_Gpu.h"
#include "src/image/SkReadPixelsRec.h"

View File

@ -60,6 +60,11 @@ public:
static bool ValidateCompressedBackendTexture(const GrCaps*, const GrBackendTexture& tex,
SkAlphaType);
static SkAlphaType GetAlphaTypeFromYUVALocations(const SkYUVAInfo::YUVALocations locations) {
return locations[SkYUVAInfo::YUVAChannels::kA].fPlane >= 0 ? kPremul_SkAlphaType
: kOpaque_SkAlphaType;
}
using PromiseImageTextureContext = SkDeferredDisplayListRecorder::PromiseImageTextureContext;
using PromiseImageTextureFulfillProc =
SkDeferredDisplayListRecorder::PromiseImageTextureFulfillProc;

View File

@ -34,21 +34,33 @@
static constexpr auto kAssumedColorType = kRGBA_8888_SkColorType;
SkImage_GpuYUVA::SkImage_GpuYUVA(sk_sp<GrImageContext> context,
SkISize size,
uint32_t uniqueID,
GrYUVATextureProxies proxies,
SkYUVColorSpace colorSpace,
GrSurfaceProxyView views[],
int numViews,
const SkYUVAInfo::YUVALocations& yuvaLocations,
sk_sp<SkColorSpace> imageColorSpace)
: INHERITED(std::move(context),
proxies.yuvaInfo().dimensions(),
size,
uniqueID,
kAssumedColorType,
// If an alpha channel is present we always use kPremul. This is because,
// If an alpha channel is present we always switch to kPremul. This is because,
// although the planar data is always un-premul, the final interleaved RGB image
// is/would-be premul.
proxies.yuvaInfo().hasAlpha() ? kPremul_SkAlphaType : kOpaque_SkAlphaType,
GetAlphaTypeFromYUVALocations(yuvaLocations),
std::move(imageColorSpace))
, fYUVAProxies(std::move(proxies)) {
// The caller should have checked this, just verifying.
SkASSERT(fYUVAProxies.isValid());
, fNumViews(numViews)
, fYUVALocations(yuvaLocations)
, fYUVColorSpace(colorSpace) {
// The caller should have done this work, just verifying
SkDEBUGCODE(int textureCount;)
SkASSERT(SkYUVAInfo::YUVALocation::AreValidLocations(fYUVALocations, &textureCount));
SkASSERT(textureCount == fNumViews);
for (int i = 0; i < numViews; ++i) {
fViews[i] = std::move(views[i]);
}
}
// For onMakeColorSpace()
@ -59,46 +71,55 @@ SkImage_GpuYUVA::SkImage_GpuYUVA(sk_sp<GrImageContext> context,
image->dimensions(),
kNeedNewImageUniqueID,
kAssumedColorType,
image->alphaType(),
// If an alpha channel is present we always switch to kPremul. This is because,
// although the planar data is always un-premul, the final interleaved RGB image
// is/would-be premul.
GetAlphaTypeFromYUVALocations(image->fYUVALocations),
std::move(targetCS))
, fYUVAProxies(image->fYUVAProxies)
, fRGBView(image->fRGBView)
, fNumViews(image->fNumViews)
, fYUVALocations(image->fYUVALocations)
, fYUVColorSpace(image->fYUVColorSpace)
// Since null fFromColorSpace means no GrColorSpaceXform, we turn a null
// image->refColorSpace() into an explicit SRGB.
, fFromColorSpace(image->colorSpace() ? image->refColorSpace() : SkColorSpace::MakeSRGB()) {
// We should either have a RGB proxy *or* a set of YUVA proxies.
SkASSERT(fYUVAProxies.isValid() != SkToBool(image->fRGBView));
// The caller should have done this work, just verifying
SkDEBUGCODE(int textureCount;)
SkASSERT(SkYUVAInfo::YUVALocation::AreValidLocations(image->fYUVALocations, &textureCount));
SkASSERT(textureCount == fNumViews);
if (image->fRGBView.proxy()) {
fRGBView = image->fRGBView; // we ref in this case, not move
} else {
for (int i = 0; i < fNumViews; ++i) {
fViews[i] = image->fViews[i]; // we ref in this case, not move
}
}
}
bool SkImage_GpuYUVA::setupMipmapsForPlanes(GrRecordingContext* context) const {
// We shouldn't get here if the planes were already flattened to RGBA.
SkASSERT(fYUVAProxies.isValid() && !fRGBView);
SkASSERT(fViews[0].proxy() && !fRGBView.proxy());
if (!context || !fContext->priv().matches(context)) {
return false;
}
GrSurfaceProxyView newViews[4];
if (!context->priv().caps()->mipmapSupport()) {
// We succeed in this case by doing nothing.
return true;
}
int n = fYUVAProxies.yuvaInfo().numPlanes();
sk_sp<GrSurfaceProxy> newProxies[4];
for (int i = 0; i < n; ++i) {
auto* t = fYUVAProxies.proxy(i)->asTextureProxy();
for (int i = 0; i < fNumViews; ++i) {
auto* t = fViews[i].asTextureProxy();
if (t->mipmapped() == GrMipmapped::kNo && (t->width() > 1 || t->height() > 1)) {
auto newView = GrCopyBaseMipMapToView(context, fYUVAProxies.makeView(i));
if (!newView) {
if (!(newViews[i] = GrCopyBaseMipMapToView(context, fViews[i]))) {
return false;
}
SkASSERT(newView.swizzle() == fYUVAProxies.makeView(i).swizzle());
newProxies[i] = newView.detachProxy();
} else {
newProxies[i] = fYUVAProxies.refProxy(i);
newViews[i] = fViews[i];
}
}
fYUVAProxies = GrYUVATextureProxies(fYUVAProxies.yuvaInfo(),
newProxies,
fYUVAProxies.textureOrigin());
SkASSERT(fYUVAProxies.isValid());
for (int i = 0; i < fNumViews; ++i) {
fViews[i] = std::move(newViews[i]);
}
return true;
}
@ -115,19 +136,15 @@ GrSemaphoresSubmitted SkImage_GpuYUVA::onFlush(GrDirectContext* dContext, const
return GrSemaphoresSubmitted::kNo;
}
GrSurfaceProxy* proxies[SkYUVAInfo::kMaxPlanes] = {};
size_t numProxies;
if (fRGBView) {
GrSurfaceProxy* proxies[4] = {fViews[0].proxy(), fViews[1].proxy(), fViews[2].proxy(),
fViews[3].proxy()};
size_t numProxies = fNumViews;
if (fRGBView.proxy()) {
// Either we've already flushed the flattening draw or the flattening is unflushed. In the
// latter case it should still be ok to just pass fRGBView proxy because it in turn depends
// on the planar proxies and will cause all of their work to flush as well.
proxies[0] = fRGBView.proxy();
numProxies = 1;
} else {
numProxies = fYUVAProxies.numPlanes();
for (size_t i = 0; i < numProxies; ++i) {
proxies[i] = fYUVAProxies.proxy(i);
}
}
return dContext->priv().flushSurfaces({proxies, numProxies},
SkSurface::BackendSurfaceAccess::kNoAccess,
@ -136,6 +153,49 @@ GrSemaphoresSubmitted SkImage_GpuYUVA::onFlush(GrDirectContext* dContext, const
GrTextureProxy* SkImage_GpuYUVA::peekProxy() const { return fRGBView.asTextureProxy(); }
bool SkImage_GpuYUVA::MakeTempTextureProxies(GrRecordingContext* rContext,
const GrBackendTexture yuvaTextures[],
int numTextures,
const SkYUVAInfo::YUVALocations& yuvaLocations,
GrSurfaceOrigin imageOrigin,
GrSurfaceProxyView tempViews[4],
sk_sp<GrRefCntedCallback> releaseHelper) {
GrProxyProvider* proxyProvider = rContext->priv().proxyProvider();
for (int textureIndex = 0; textureIndex < numTextures; ++textureIndex) {
const GrBackendFormat& backendFormat = yuvaTextures[textureIndex].getBackendFormat();
if (!backendFormat.isValid()) {
return false;
}
SkASSERT(yuvaTextures[textureIndex].isValid());
auto proxy = proxyProvider->wrapBackendTexture(yuvaTextures[textureIndex],
kBorrow_GrWrapOwnership,
GrWrapCacheable::kNo,
kRead_GrIOType,
releaseHelper);
if (!proxy) {
return false;
}
tempViews[textureIndex] =
GrSurfaceProxyView(std::move(proxy), imageOrigin, GrSwizzle("rgba"));
#ifdef SK_DEBUG
// Check that each texture contains the channel data for the corresponding YUVA location
auto formatChannelMask = backendFormat.channelMask();
if (formatChannelMask & kGray_SkColorChannelFlag) {
formatChannelMask |= kRGB_SkColorChannelFlags;
}
for (int i = 0; i < SkYUVAInfo::kYUVAChannelCount; ++i) {
if (yuvaLocations[i].fPlane == textureIndex) {
uint32_t channelAsMask = 1 << static_cast<int>(yuvaLocations[i].fChannel);
SkASSERT(channelAsMask & formatChannelMask);
}
}
#endif
}
return true;
}
void SkImage_GpuYUVA::flattenToRGB(GrRecordingContext* context) const {
if (fRGBView.proxy()) {
return;
@ -162,18 +222,23 @@ void SkImage_GpuYUVA::flattenToRGB(GrRecordingContext* context) const {
const GrCaps& caps = *context->priv().caps();
auto fp = GrYUVtoRGBEffect::Make(fYUVAProxies, GrSamplerState::Filter::kNearest, caps);
auto fp = GrYUVtoRGBEffect::Make(
fViews, fYUVALocations, fYUVColorSpace, GrSamplerState::Filter::kNearest, caps);
if (fFromColorSpace) {
fp = GrColorSpaceXformEffect::Make(std::move(fp),
fFromColorSpace.get(), this->alphaType(),
this->colorSpace(), this->alphaType());
auto colorSpaceXform = GrColorSpaceXform::Make(fFromColorSpace.get(),
this->alphaType(),
this->colorSpace(),
this->alphaType());
fp = GrColorSpaceXformEffect::Make(std::move(fp), std::move(colorSpaceXform));
}
surfaceFillContext->fillWithFP(std::move(fp));
fRGBView = surfaceFillContext->readSurfaceView();
SkASSERT(fRGBView.swizzle() == GrSwizzle());
fYUVAProxies = {};
for (auto& v : fViews) {
v.reset();
}
}
GrSurfaceProxyView SkImage_GpuYUVA::refMippedView(GrRecordingContext* context) const {
@ -221,7 +286,9 @@ sk_sp<SkImage> SkImage_GpuYUVA::onMakeColorTypeAndColorSpace(
}
sk_sp<SkImage> SkImage_GpuYUVA::onReinterpretColorSpace(sk_sp<SkColorSpace> newCS) const {
return sk_sp<SkImage>(new SkImage_GpuYUVA(fContext, this, std::move(newCS)));
return sk_make_sp<SkImage_GpuYUVA>(fContext, this->dimensions(), kNeedNewImageUniqueID,
fYUVColorSpace, fViews, fNumViews, fYUVALocations,
std::move(newCS));
}
//////////////////////////////////////////////////////////////////////////////////////////////////
@ -233,36 +300,32 @@ sk_sp<SkImage> SkImage::MakeFromYUVATextures(GrRecordingContext* context,
ReleaseContext releaseContext) {
auto releaseHelper = GrRefCntedCallback::Make(textureReleaseProc, releaseContext);
GrProxyProvider* proxyProvider = context->priv().proxyProvider();
int numPlanes = yuvaTextures.yuvaInfo().numPlanes();
sk_sp<GrSurfaceProxy> proxies[SkYUVAInfo::kMaxPlanes];
for (int plane = 0; plane < numPlanes; ++plane) {
proxies[plane] = proxyProvider->wrapBackendTexture(yuvaTextures.texture(plane),
kBorrow_GrWrapOwnership,
GrWrapCacheable::kNo,
kRead_GrIOType,
releaseHelper);
if (!proxies[plane]) {
return {};
}
}
GrYUVATextureProxies yuvaProxies(yuvaTextures.yuvaInfo(),
proxies,
yuvaTextures.textureOrigin());
SkYUVAInfo::YUVALocations yuvaLocations = yuvaTextures.toYUVALocations();
if (!yuvaProxies.isValid()) {
GrSurfaceProxyView tempViews[4];
if (!SkImage_GpuYUVA::MakeTempTextureProxies(context,
yuvaTextures.textures().data(),
yuvaTextures.numPlanes(),
yuvaLocations,
yuvaTextures.textureOrigin(),
tempViews,
std::move(releaseHelper))) {
return nullptr;
}
return sk_make_sp<SkImage_GpuYUVA>(sk_ref_sp(context),
yuvaTextures.yuvaInfo().dimensions(),
kNeedNewImageUniqueID,
yuvaProxies,
yuvaTextures.yuvaInfo().yuvColorSpace(),
tempViews,
yuvaTextures.numPlanes(),
yuvaLocations,
imageColorSpace);
}
sk_sp<SkImage> SkImage::MakeFromYUVAPixmaps(GrRecordingContext* context,
const SkYUVAPixmaps& pixmaps,
GrMipmapped buildMips,
GrMipMapped buildMips,
bool limitToMaxTextureSize,
sk_sp<SkColorSpace> imageColorSpace) {
if (!context) {
@ -273,6 +336,8 @@ sk_sp<SkImage> SkImage::MakeFromYUVAPixmaps(GrRecordingContext* context,
return nullptr;
}
SkYUVAInfo::YUVALocations yuvaLocations = pixmaps.toYUVALocations();
// SkImage_GpuYUVA doesn't yet support different encoded origins.
if (pixmaps.yuvaInfo().origin() != kTopLeft_SkEncodedOrigin) {
return nullptr;
@ -282,58 +347,45 @@ sk_sp<SkImage> SkImage::MakeFromYUVAPixmaps(GrRecordingContext* context,
buildMips = GrMipMapped::kNo;
}
// Resize the pixmaps if necessary.
// Make proxies
GrSurfaceProxyView tempViews[4];
int numPlanes = pixmaps.numPlanes();
int maxTextureSize = context->priv().caps()->maxTextureSize();
int maxDim = std::max(pixmaps.yuvaInfo().width(), pixmaps.yuvaInfo().height());
SkYUVAPixmaps tempPixmaps;
const SkYUVAPixmaps* pixmapsToUpload = &pixmaps;
// We assume no plane is larger than the image size (and at least one plane is as big).
if (maxDim > maxTextureSize) {
if (!limitToMaxTextureSize) {
return nullptr;
}
float scale = static_cast<float>(maxTextureSize)/maxDim;
SkISize newDimensions = {
std::min(static_cast<int>(pixmaps.yuvaInfo().width() *scale), maxTextureSize),
std::min(static_cast<int>(pixmaps.yuvaInfo().height()*scale), maxTextureSize)
};
SkYUVAInfo newInfo = pixmaps.yuvaInfo().makeDimensions(newDimensions);
SkYUVAPixmapInfo newPixmapInfo(newInfo, pixmaps.dataType(), /*row bytes*/ nullptr);
tempPixmaps = SkYUVAPixmaps::Allocate(newPixmapInfo);
SkSamplingOptions sampling(SkFilterMode::kLinear, SkMipmapMode::kNone);
if (!tempPixmaps.isValid()) {
return nullptr;
}
for (int i = 0; i < numPlanes; ++i) {
if (!pixmaps.plane(i).scalePixels(tempPixmaps.plane(i), sampling)) {
for (int i = 0; i < numPlanes; ++i) {
const SkPixmap* pixmap = &pixmaps.plane(i);
SkAutoPixmapStorage resized;
int maxDim = std::max(pixmap->width(), pixmap->height());
if (maxDim > maxTextureSize) {
if (!limitToMaxTextureSize) {
return nullptr;
}
float scale = static_cast<float>(maxTextureSize)/maxDim;
int newWidth = std::min(static_cast<int>(pixmap->width() *scale), maxTextureSize);
int newHeight = std::min(static_cast<int>(pixmap->height()*scale), maxTextureSize);
SkImageInfo info = pixmap->info().makeWH(newWidth, newHeight);
SkSamplingOptions sampling(SkFilterMode::kLinear, SkMipmapMode::kNone);
if (!resized.tryAlloc(info) || !pixmap->scalePixels(resized, sampling)) {
return nullptr;
}
pixmap = &resized;
}
pixmapsToUpload = &tempPixmaps;
}
// Convert to texture proxies.
GrSurfaceProxyView views[SkYUVAInfo::kMaxPlanes];
GrColorType pixmapColorTypes[SkYUVAInfo::kMaxPlanes];
for (int i = 0; i < numPlanes; ++i) {
// Turn the pixmap into a GrTextureProxy
SkBitmap bmp;
bmp.installPixels(pixmapsToUpload->plane(i));
bmp.installPixels(*pixmap);
GrBitmapTextureMaker bitmapMaker(context, bmp, GrImageTexGenPolicy::kNew_Uncached_Budgeted);
views[i] = bitmapMaker.view(buildMips);
if (!views[i]) {
tempViews[i] = bitmapMaker.view(buildMips);
if (!tempViews[i]) {
return nullptr;
}
pixmapColorTypes[i] = SkColorTypeToGrColorType(bmp.colorType());
}
GrYUVATextureProxies yuvaProxies(pixmapsToUpload->yuvaInfo(), views, pixmapColorTypes);
SkASSERT(yuvaProxies.isValid());
return sk_make_sp<SkImage_GpuYUVA>(sk_ref_sp(context),
pixmaps.yuvaInfo().dimensions(),
kNeedNewImageUniqueID,
std::move(yuvaProxies),
pixmaps.yuvaInfo().yuvColorSpace(),
tempViews,
numPlanes,
yuvaLocations,
std::move(imageColorSpace));
}
@ -361,6 +413,7 @@ sk_sp<SkImage> SkImage_GpuYUVA::MakePromiseYUVATexture(
releaseHelpers[i] = GrRefCntedCallback::Make(textureReleaseProc, textureContexts[i]);
}
SkYUVAInfo::YUVALocations yuvaLocations = yuvaBackendTextureInfo.toYUVALocations();
if (yuvaBackendTextureInfo.yuvaInfo().origin() != SkEncodedOrigin::kDefault_SkEncodedOrigin) {
// SkImage_GpuYUVA does not support this yet. This will get removed
// when the old APIs are gone and we only have to support YUVA configs described by
@ -381,24 +434,23 @@ sk_sp<SkImage> SkImage_GpuYUVA::MakePromiseYUVATexture(
}
// Make a lazy proxy for each plane and wrap in a view.
sk_sp<GrSurfaceProxy> proxies[4];
for (int i = 0; i < n; ++i) {
proxies[i] = MakePromiseImageLazyProxy(context,
planeDimensions[i],
yuvaBackendTextureInfo.planeFormat(i),
GrSurfaceProxyView views[4];
for (int texIdx = 0; texIdx < n; ++texIdx) {
auto proxy = MakePromiseImageLazyProxy(context,
planeDimensions[texIdx],
yuvaBackendTextureInfo.planeFormat(texIdx),
GrMipmapped::kNo,
textureFulfillProc,
std::move(releaseHelpers[i]));
if (!proxies[i]) {
std::move(releaseHelpers[texIdx]));
if (!proxy) {
return nullptr;
}
views[texIdx] = GrSurfaceProxyView(std::move(proxy), yuvaBackendTextureInfo.textureOrigin(),
GrSwizzle("rgba"));
}
GrYUVATextureProxies yuvaTextureProxies(yuvaBackendTextureInfo.yuvaInfo(),
proxies,
yuvaBackendTextureInfo.textureOrigin());
SkASSERT(yuvaTextureProxies.isValid());
return sk_make_sp<SkImage_GpuYUVA>(sk_ref_sp(context),
kNeedNewImageUniqueID,
std::move(yuvaTextureProxies),
std::move(imageColorSpace));
return sk_make_sp<SkImage_GpuYUVA>(
sk_ref_sp(context), yuvaBackendTextureInfo.yuvaInfo().dimensions(),
kNeedNewImageUniqueID, yuvaBackendTextureInfo.yuvColorSpace(), views, n, yuvaLocations,
std::move(imageColorSpace));
}

View File

@ -10,14 +10,13 @@
#include "include/gpu/GrBackendSurface.h"
#include "src/core/SkCachedData.h"
#include "src/gpu/GrYUVATextureProxies.h"
#include "src/image/SkImage_GpuBase.h"
class GrDirectContext;
class GrRecordingContext;
class GrTexture;
// Wraps the 1 to 4 planes of a YUVA image for consumption by the GPU.
// Wraps the 3 or 4 planes of a YUVA image for consumption by the GPU.
// Initially any direct rendering will be done by passing the individual planes to a shader.
// Once any method requests a flattened image (e.g., onReadPixels), the flattened RGB
// proxy will be stored and used for any future rendering.
@ -26,8 +25,12 @@ public:
friend class GrYUVAImageTextureMaker;
SkImage_GpuYUVA(sk_sp<GrImageContext>,
SkISize size,
uint32_t uniqueID,
GrYUVATextureProxies proxies,
SkYUVColorSpace,
GrSurfaceProxyView views[],
int numViews,
const SkYUVAInfo::YUVALocations&,
sk_sp<SkColorSpace>);
GrSemaphoresSubmitted onFlush(GrDirectContext*, const GrFlushInfo&) override;
@ -39,8 +42,7 @@ public:
const GrSurfaceProxyView* view(GrRecordingContext* context) const override;
bool onIsTextureBacked() const override {
// We should have YUVA proxies or a RGBA proxy,but not both.
SkASSERT(fYUVAProxies.isValid() != SkToBool(fRGBView));
SkASSERT(fViews[0].proxy() || fRGBView.proxy());
return true;
}
@ -59,7 +61,7 @@ public:
#if GR_TEST_UTILS
bool testingOnly_IsFlattened() const {
// We should only have the flattened proxy or the planar proxies at one point in time.
SkASSERT(SkToBool(fRGBView) != fYUVAProxies.isValid());
SkASSERT(SkToBool(fRGBView.proxy()) != SkToBool(fViews[0].proxy()));
return SkToBool(fRGBView.proxy());
}
#endif
@ -74,17 +76,25 @@ public:
PromiseImageTextureReleaseProc textureReleaseProc,
PromiseImageTextureContext textureContexts[]);
static bool MakeTempTextureProxies(GrRecordingContext*,
const GrBackendTexture yuvaTextures[],
int numTextures,
const SkYUVAInfo::YUVALocations&,
GrSurfaceOrigin imageOrigin,
GrSurfaceProxyView tempViews[4],
sk_sp<GrRefCntedCallback> releaseHelper);
private:
SkImage_GpuYUVA(sk_sp<GrImageContext>, const SkImage_GpuYUVA* image, sk_sp<SkColorSpace>);
void flattenToRGB(GrRecordingContext*) const;
mutable GrYUVATextureProxies fYUVAProxies;
// This is only allocated when the image needs to be flattened rather than
// using the separate YUVA planes. From thence forth we will only use the
// the RGBView.
mutable GrSurfaceProxyView fRGBView;
// This array will usually only be sparsely populated.
// The actual non-null fields are dictated by the 'fYUVAIndices' indices
mutable GrSurfaceProxyView fViews[4];
int fNumViews;
SkYUVAInfo::YUVALocations fYUVALocations;
const SkYUVColorSpace fYUVColorSpace;
// If this is non-null then the planar data should be converted from fFromColorSpace to
// this->colorSpace(). Otherwise we assume the planar data (post YUV->RGB conversion) is already
@ -96,6 +106,10 @@ private:
mutable sk_sp<SkColorSpace> fOnMakeColorSpaceTarget;
mutable sk_sp<SkImage> fOnMakeColorSpaceResult;
// This is only allocated when the image needs to be flattened rather than
// using the separate YUVA planes. From thence forth we will only use the
// the RGBView.
mutable GrSurfaceProxyView fRGBView;
using INHERITED = SkImage_GpuBase;
};

View File

@ -30,8 +30,7 @@
#include "src/gpu/GrProxyProvider.h"
#include "src/gpu/GrRecordingContextPriv.h"
#include "src/gpu/GrSamplerState.h"
#include "src/gpu/GrSurfaceFillContext.h"
#include "src/gpu/GrYUVATextureProxies.h"
#include "src/gpu/GrSurfaceDrawContext.h"
#include "src/gpu/SkGr.h"
#include "src/gpu/effects/GrYUVtoRGBEffect.h"
#endif
@ -268,8 +267,7 @@ GrSurfaceProxyView SkImage_Lazy::textureProxyViewFromPlanes(GrRecordingContext*
return {};
}
GrSurfaceProxyView views[SkYUVAInfo::kMaxPlanes];
GrColorType pixmapColorTypes[SkYUVAInfo::kMaxPlanes];
GrSurfaceProxyView yuvViews[SkYUVAInfo::kMaxPlanes];
for (int i = 0; i < yuvaPixmaps.numPlanes(); ++i) {
// If the sizes of the components are not all the same we choose to create exact-match
// textures for the smaller ones rather than add a texture domain to the draw.
@ -298,12 +296,11 @@ GrSurfaceProxyView SkImage_Lazy::textureProxyViewFromPlanes(GrRecordingContext*
bitmap.setImmutable();
GrBitmapTextureMaker maker(ctx, bitmap, fit);
views[i] = maker.view(GrMipmapped::kNo);
yuvViews[i] = maker.view(GrMipmapped::kNo);
if (!views[i]) {
if (!yuvViews[i]) {
return {};
}
pixmapColorTypes[i] = SkColorTypeToGrColorType(bitmap.colorType());
}
// TODO: investigate preallocating mip maps here
@ -323,13 +320,12 @@ GrSurfaceProxyView SkImage_Lazy::textureProxyViewFromPlanes(GrRecordingContext*
return {};
}
GrYUVATextureProxies yuvaProxies(yuvaPixmaps.yuvaInfo(), views, pixmapColorTypes);
SkAssertResult(yuvaProxies.isValid());
std::unique_ptr<GrFragmentProcessor> fp = GrYUVtoRGBEffect::Make(
yuvaProxies,
GrSamplerState::Filter::kNearest,
*ctx->priv().caps());
std::unique_ptr<GrFragmentProcessor> yuvToRgbProcessor =
GrYUVtoRGBEffect::Make(yuvViews,
yuvaPixmaps.toYUVALocations(),
yuvaPixmaps.yuvaInfo().yuvColorSpace(),
GrSamplerState::Filter::kNearest,
*ctx->priv().caps());
// The pixels after yuv->rgb will be in the generator's color space.
// If onMakeColorTypeAndColorSpace has been called then this will not match this image's
@ -344,11 +340,18 @@ GrSurfaceProxyView SkImage_Lazy::textureProxyViewFromPlanes(GrRecordingContext*
// If the caller expects the pixels in a different color space than the one from the image,
// apply a color conversion to do this.
fp = GrColorSpaceXformEffect::Make(std::move(fp),
srcColorSpace, kOpaque_SkAlphaType,
dstColorSpace, kOpaque_SkAlphaType);
surfaceFillContext->fillWithFP(std::move(fp));
std::unique_ptr<GrFragmentProcessor> colorConversionProcessor =
GrColorSpaceXformEffect::Make(std::move(yuvToRgbProcessor),
srcColorSpace, kOpaque_SkAlphaType,
dstColorSpace, kOpaque_SkAlphaType);
SkMatrix m = SkEncodedOriginToMatrix(yuvaPixmaps.yuvaInfo().origin(),
this->width(),
this->height());
// The returned matrix is a view matrix but we need a local matrix.
SkAssertResult(m.invert(&m));
surfaceFillContext->fillWithFP(m, std::move(colorConversionProcessor));
SkASSERT(surfaceFillContext->asTextureProxy());
return surfaceFillContext->readSurfaceView();
}