diff --git a/src/opts/SkOpts_sse41.cpp b/src/opts/SkOpts_sse41.cpp index be31b56c81..f0561a69c6 100644 --- a/src/opts/SkOpts_sse41.cpp +++ b/src/opts/SkOpts_sse41.cpp @@ -12,12 +12,221 @@ #include "SkBlitRow_opts.h" #include "SkBlend_opts.h" +#ifndef SK_SUPPORT_LEGACY_X86_BLITS + +namespace sk_sse41_new { + +// An SSE register holding at most 64 bits of useful data in the low lanes. +struct m64i { + __m128i v; + /*implicit*/ m64i(__m128i v) : v(v) {} + operator __m128i() const { return v; } +}; + +// Load 4, 2, or 1 constant pixels or coverages (4x replicated). +static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); } +static m64i next2(uint32_t val) { return _mm_set1_epi32(val); } +static m64i next1(uint32_t val) { return _mm_set1_epi32(val); } + +static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); } +static m64i next2(uint8_t val) { return _mm_set1_epi8(val); } +static m64i next1(uint8_t val) { return _mm_set1_epi8(val); } + +// Load 4, 2, or 1 variable pixels or coverages (4x replicated), +// incrementing the pointer past what we read. +static __m128i next4(const uint32_t*& ptr) { + auto r = _mm_loadu_si128((const __m128i*)ptr); + ptr += 4; + return r; +} +static m64i next2(const uint32_t*& ptr) { + auto r = _mm_loadl_epi64((const __m128i*)ptr); + ptr += 2; + return r; +} +static m64i next1(const uint32_t*& ptr) { + auto r = _mm_cvtsi32_si128(*ptr); + ptr += 1; + return r; +} + +// xyzw -> xxxx yyyy zzzz wwww +static __m128i replicate_coverage(__m128i xyzw) { + return _mm_shuffle_epi8(xyzw, _mm_setr_epi8(0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)); +} + +static __m128i next4(const uint8_t*& ptr) { + auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr)); + ptr += 4; + return r; +} +static m64i next2(const uint8_t*& ptr) { + auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr)); + ptr += 2; + return r; +} +static m64i next1(const uint8_t*& ptr) { + auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr)); + ptr += 1; + return r; +} + +// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. +template +static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { + // We don't want to muck with the callers' pointers, so we make them const and copy here. + Dst d = dst; + Src s = src; + Cov c = cov; + + // Writing this as a single while-loop helps hoist loop invariants from fn. + while (n) { + if (n >= 4) { + _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c))); + t += 4; + n -= 4; + continue; + } + if (n & 2) { + _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c))); + t += 2; + } + if (n & 1) { + *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c))); + } + return; + } +} + +// packed +// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ // +// unpacked + +// Everything on the packed side of the squiggly line deals with densely packed 8-bit data, +// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage. +// +// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data, +// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage, +// where _ is a zero byte. +// +// Adapt / adapt(fn) allow the two sides to interoperate, +// by unpacking arguments, calling fn, then packing the results. +// +// This lets us write most of our code in terms of unpacked inputs (considerably simpler) +// and all the packing and unpacking is handled automatically. + +template +struct Adapt { + Fn fn; + + __m128i operator()(__m128i d, __m128i s, __m128i c) { + auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; + auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); }; + return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)), + fn(hi(d), hi(s), hi(c))); + } + + m64i operator()(const m64i& d, const m64i& s, const m64i& c) { + auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); }; + auto r = fn(lo(d), lo(s), lo(c)); + return _mm_packus_epi16(r, r); + } +}; + +template +static Adapt adapt(Fn&& fn) { return { fn }; } + +// These helpers all work exclusively with unpacked 8-bit values, +// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse. + +// Divide by 255 with rounding. +// (x+127)/255 == ((x+128)*257)>>16. +// Sometimes we can be more efficient by breaking this into two parts. +static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); } +static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); } +static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); } + +// (x*y+127)/255, a byte multiply. +static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); } + +// (255 * x). +static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); } + +// (255 - x). +static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); } + +// ARGB argb -> AAAA aaaa +static __m128i alphas(__m128i px) { + const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6. + const int _ = ~0; + return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_)); +} + +// SrcOver, with a constant source and full coverage. +static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { + // We want to calculate s + (d * inv(alphas(s)) + 127)/255. + // We'd generally do that div255 as s + ((d * inv(alphas(s)) + 128)*257)>>16. + + // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. + // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. + __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()), + s_255_128 = div255_part1(mul255(s)), + A = inv(alphas(s)); + + const uint8_t cov = 0xff; + loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) { + return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); + })); +} + +// SrcOver, with a constant source and variable coverage. +// If the source is opaque, SrcOver becomes Src. +static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB, + const SkAlpha* cov, size_t covRB, + SkColor color, int w, int h) { + if (SkColorGetA(color) == 0xFF) { + const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); + while (h --> 0) { + loop(w, dst, (const SkPMColor*)dst, src, cov, + adapt([](__m128i d, __m128i s, __m128i c) { + // Src blend mode: a simple lerp from d to s by c. + // TODO: try a pmaddubsw version? + return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), + _mm_mullo_epi16( c ,s))); + })); + dst += dstRB / sizeof(*dst); + cov += covRB / sizeof(*cov); + } + } else { + const SkPMColor src = SkPreMultiplyColor(color); + while (h --> 0) { + loop(w, dst, (const SkPMColor*)dst, src, cov, + adapt([](__m128i d, __m128i s, __m128i c) { + // SrcOver blend mode, with coverage folded into source alpha. + __m128i sc = scale(s,c), + AC = inv(alphas(sc)); + return _mm_add_epi16(sc, scale(d,AC)); + })); + dst += dstRB / sizeof(*dst); + cov += covRB / sizeof(*cov); + } + } +} +} // namespace sk_sse41_new + +#endif + namespace SkOpts { void Init_sse41() { - box_blur_xx = sk_sse41::box_blur_xx; - box_blur_xy = sk_sse41::box_blur_xy; - box_blur_yx = sk_sse41::box_blur_yx; - srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb; + box_blur_xx = sk_sse41::box_blur_xx; + box_blur_xy = sk_sse41::box_blur_xy; + box_blur_yx = sk_sse41::box_blur_yx; + srcover_srgb_srgb = sk_sse41::srcover_srgb_srgb; + + #ifndef SK_SUPPORT_LEGACY_X86_BLITS + blit_row_color32 = sk_sse41_new::blit_row_color32; + blit_mask_d32_a8 = sk_sse41_new::blit_mask_d32_a8; + #endif blit_row_s32a_opaque = sk_sse41::blit_row_s32a_opaque; } }