Interpolate vertical linear gradients for improved quality.

Consolidate interpolation functions, add new faster more accurate dithering
interpolator.



git-svn-id: http://skia.googlecode.com/svn/trunk@3072 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
tomhudson@google.com 2012-01-18 21:28:01 +00:00
parent 90503184f6
commit 13e812c69a
5 changed files with 213 additions and 93 deletions

View File

@ -215,6 +215,57 @@ static inline SkPMColor SkPackARGB32(U8CPU a, U8CPU r, U8CPU g, U8CPU b) {
(g << SK_G32_SHIFT) | (b << SK_B32_SHIFT);
}
/**
* Abstract 4-byte interpolation, implemented on top of SkPMColor
* utility functions. Third parameter controls blending of the first two:
* (src, dst, 0) returns dst
* (src, dst, 0xFF) returns src
*/
static inline SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst,
U8CPU srcWeight) {
unsigned scale = SkAlpha255To256(srcWeight);
unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
return SkPackARGB32(a, r, g, b);
}
/**
* 32b optimized version; currently appears to be 10% faster even on 64b
* architectures than an equivalent 64b version and 30% faster than
* SkFourByteInterp(). Third parameter controls blending of the first two:
* (src, dst, 0) returns dst
* (src, dst, 0xFF) returns src
* ** Does not match the results of SkFourByteInterp() because we use
* a more accurate scale computation!
* TODO: migrate Skia function to using an accurate 255->266 alpha
* conversion.
*/
static inline SkPMColor SkFastFourByteInterp(SkPMColor src,
SkPMColor dst,
U8CPU srcWeight) {
SkASSERT(srcWeight < 256);
// Reorders ARGB to AG-RB in order to reduce the number of operations.
const uint32_t mask = 0xFF00FF;
uint32_t src_rb = src & mask;
uint32_t src_ag = (src >> 8) & mask;
uint32_t dst_rb = dst & mask;
uint32_t dst_ag = (dst >> 8) & mask;
// scale = srcWeight + (srcWeight >> 7) is more accurate than
// scale = srcWeight + 1, but 7% slower
int scale = srcWeight + (srcWeight >> 7);
uint32_t ret_rb = src_rb * scale + (256 - scale) * dst_rb;
uint32_t ret_ag = src_ag * scale + (256 - scale) * dst_ag;
return (ret_ag & ~mask) | ((ret_rb & ~mask) >> 8);
}
/**
* Same as SkPackARGB32, but this version guarantees to not check that the
* values are premultiplied in the debug version.

View File

@ -12,17 +12,6 @@
#define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b)
static SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst, U8CPU alpha) {
unsigned scale = SkAlpha255To256(alpha);
unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
return SkPackARGB32(a, r, g, b);
}
#if 0
// idea for higher precision blends in xfer procs (and slightly faster)
// see DstATop as a probable caller

View File

@ -98,16 +98,6 @@ static int scale_dist_14(int dist, uint32_t mul, uint32_t sub)
return result;
}
static SkPMColor SkFourByteInterp(SkPMColor src, SkPMColor dst, unsigned scale)
{
unsigned a = SkAlphaBlend(SkGetPackedA32(src), SkGetPackedA32(dst), scale);
unsigned r = SkAlphaBlend(SkGetPackedR32(src), SkGetPackedR32(dst), scale);
unsigned g = SkAlphaBlend(SkGetPackedG32(src), SkGetPackedG32(dst), scale);
unsigned b = SkAlphaBlend(SkGetPackedB32(src), SkGetPackedB32(dst), scale);
return SkPackARGB32(a, r, g, b);
}
static inline unsigned Accurate255To256(unsigned x) {
return x + (x >> 7);
}

View File

@ -119,28 +119,41 @@ public:
virtual bool isOpaque() const SK_OVERRIDE;
enum {
kCache16Bits = 8, // seems like enough for visual accuracy
kCache16Count = 1 << kCache16Bits,
kCache16Mask = kCache16Count - 1,
/// Seems like enough for visual accuracy. TODO: if pos[] deserves
/// it, use a larger cache.
kCache16Bits = 8,
kGradient16Length = (1 << kCache16Bits),
/// Each cache gets 1 extra entry at the end so we don't have to
/// test for end-of-cache in lerps. This is also the value used
/// to stride *writes* into the dither cache; it must not be zero.
/// Total space for a cache is 2x kCache16Count entries: one
/// regular cache, one for dithering.
kCache16Count = kGradient16Length + 1,
kCache16Shift = 16 - kCache16Bits,
kSqrt16Shift = 8 - kCache16Bits,
kCache32Bits = 8, // pretty much should always be 8
kCache32Count = 1 << kCache32Bits,
kCache32Mask = kCache32Count - 1,
/// Seems like enough for visual accuracy. TODO: if pos[] deserves
/// it, use a larger cache.
kCache32Bits = 8,
kGradient32Length = (1 << kCache32Bits),
/// Each cache gets 1 extra entry at the end so we don't have to
/// test for end-of-cache in lerps. This is also the value used
/// to stride *writes* into the dither cache; it must not be zero.
/// Total space for a cache is 2x kCache32Count entries: one
/// regular cache, one for dithering.
kCache32Count = kGradient32Length + 1,
kCache32Shift = 16 - kCache32Bits,
kSqrt32Shift = 8 - kCache32Bits,
/** ToggleMasks are used in dithering to switch between the two
halves of the gradient cache; they should be equal to the size
of a half-cache.
*/
/// This value is used to *read* the dither cache; it may be 0
/// if dithering is disabled.
#ifdef USE_DITHER_32BIT_GRADIENT
kToggleMask32 = kCache32Count,
kDitherStride32 = kCache32Count,
#else
kToggleMask32 = 0,
kDitherStride32 = 0,
#endif
kToggleMask16 = kCache16Count
kDitherStride16 = kCache16Count,
kLerpRemainderMask32 = (1 << (16 - kCache32Bits)) - 1
};
@ -557,10 +570,11 @@ void Gradient_Shader::Build32bitCache(SkPMColor cache[], SkColor c0, SkColor c1,
do {
cache[0] = SkPremultiplyARGBInline(a >> 16, r >> 16, g >> 16, b >> 16);
cache[kCache32Count] = SkPremultiplyARGBInline(dither_ceil_fixed_to_8(a),
dither_fixed_to_8(r),
dither_fixed_to_8(g),
dither_fixed_to_8(b));
cache[kCache32Count] =
SkPremultiplyARGBInline(dither_ceil_fixed_to_8(a),
dither_fixed_to_8(r),
dither_fixed_to_8(g),
dither_fixed_to_8(b));
cache += 1;
a += da;
r += dr;
@ -586,6 +600,14 @@ static inline U16CPU bitsTo16(unsigned x, const unsigned bits) {
return 0;
}
/** We duplicate the last value in each half of the cache so that
interpolation doesn't have to special-case being at the last point.
*/
static void complete_16bit_cache(uint16_t* cache, int stride) {
cache[stride - 1] = cache[stride - 2];
cache[2 * stride - 1] = cache[2 * stride - 2];
}
const uint16_t* Gradient_Shader::getCache16() const {
if (fCache16 == NULL) {
// double the count for dither entries
@ -597,7 +619,8 @@ const uint16_t* Gradient_Shader::getCache16() const {
}
fCache16 = fCache16Storage;
if (fColorCount == 2) {
Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1], kCache16Count);
Build16bitCache(fCache16, fOrigColors[0], fOrigColors[1],
kGradient16Length);
} else {
Rec* rec = fRecs;
int prevIndex = 0;
@ -609,7 +632,8 @@ const uint16_t* Gradient_Shader::getCache16() const {
Build16bitCache(fCache16 + prevIndex, fOrigColors[i-1], fOrigColors[i], nextIndex - prevIndex + 1);
prevIndex = nextIndex;
}
SkASSERT(prevIndex == kCache16Count - 1);
// one extra space left over at the end for complete_16bit_cache()
SkASSERT(prevIndex == kGradient16Length - 1);
}
if (fMapper) {
@ -617,7 +641,7 @@ const uint16_t* Gradient_Shader::getCache16() const {
uint16_t* linear = fCache16; // just computed linear data
uint16_t* mapped = fCache16Storage; // storage for mapped data
SkUnitMapper* map = fMapper;
for (int i = 0; i < kCache16Count; i++) {
for (int i = 0; i < kGradient16Length; i++) {
int index = map->mapUnit16(bitsTo16(i, kCache16Bits)) >> kCache16Shift;
mapped[i] = linear[index];
mapped[i + kCache16Count] = linear[index + kCache16Count];
@ -625,10 +649,19 @@ const uint16_t* Gradient_Shader::getCache16() const {
sk_free(fCache16);
fCache16 = fCache16Storage;
}
complete_16bit_cache(fCache16, kCache16Count);
}
return fCache16;
}
/** We duplicate the last value in each half of the cache so that
interpolation doesn't have to special-case being at the last point.
*/
static void complete_32bit_cache(SkPMColor* cache, int stride) {
cache[stride - 1] = cache[stride - 2];
cache[2 * stride - 1] = cache[2 * stride - 2];
}
const SkPMColor* Gradient_Shader::getCache32() const {
if (fCache32 == NULL) {
// double the count for dither entries
@ -642,13 +675,13 @@ const SkPMColor* Gradient_Shader::getCache32() const {
fCache32 = (SkPMColor*)fCache32PixelRef->getAddr();
if (fColorCount == 2) {
Build32bitCache(fCache32, fOrigColors[0], fOrigColors[1],
kCache32Count, fCacheAlpha);
kGradient32Length, fCacheAlpha);
} else {
Rec* rec = fRecs;
int prevIndex = 0;
for (int i = 1; i < fColorCount; i++) {
int nextIndex = SkFixedToFFFF(rec[i].fPos) >> kCache32Shift;
SkASSERT(nextIndex < kCache32Count);
SkASSERT(nextIndex < kGradient32Length);
if (nextIndex > prevIndex)
Build32bitCache(fCache32 + prevIndex, fOrigColors[i-1],
@ -656,7 +689,7 @@ const SkPMColor* Gradient_Shader::getCache32() const {
nextIndex - prevIndex + 1, fCacheAlpha);
prevIndex = nextIndex;
}
SkASSERT(prevIndex == kCache32Count - 1);
SkASSERT(prevIndex == kGradient32Length - 1);
}
if (fMapper) {
@ -665,7 +698,7 @@ const SkPMColor* Gradient_Shader::getCache32() const {
SkPMColor* linear = fCache32; // just computed linear data
SkPMColor* mapped = (SkPMColor*)newPR->getAddr(); // storage for mapped data
SkUnitMapper* map = fMapper;
for (int i = 0; i < kCache32Count; i++) {
for (int i = 0; i < kGradient32Length; i++) {
int index = map->mapUnit16((i << 8) | i) >> 8;
mapped[i] = linear[index];
mapped[i + kCache32Count] = linear[index + kCache32Count];
@ -674,6 +707,7 @@ const SkPMColor* Gradient_Shader::getCache32() const {
fCache32PixelRef = newPR;
fCache32 = (SkPMColor*)newPR->getAddr();
}
complete_32bit_cache(fCache32, kCache32Count);
}
return fCache32;
}
@ -695,7 +729,7 @@ void Gradient_Shader::commonAsABitmap(SkBitmap* bitmap) const {
if (fMapper) {
// force our cahce32pixelref to be built
(void)this->getCache32();
bitmap->setConfig(SkBitmap::kARGB_8888_Config, kCache32Count, 1);
bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1);
bitmap->setPixelRef(fCache32PixelRef);
return;
}
@ -735,7 +769,9 @@ void Gradient_Shader::commonAsABitmap(SkBitmap* bitmap) const {
if (!gCache->find(storage.get(), size, bitmap)) {
// force our cahce32pixelref to be built
(void)this->getCache32();
bitmap->setConfig(SkBitmap::kARGB_8888_Config, kCache32Count, 1);
// Only expose the linear section of the cache; don't let the caller
// know about the padding at the end to make interpolation faster.
bitmap->setConfig(SkBitmap::kARGB_8888_Config, kGradient32Length, 1);
bitmap->setPixelRef(fCache32PixelRef);
gCache->add(storage.get(), size, *bitmap);
@ -851,7 +887,7 @@ bool Linear_Gradient::setContext(const SkBitmap& device, const SkPaint& paint,
SkASSERT(fi <= 0xFF); \
fx += dx; \
*dstC++ = cache[toggle + fi]; \
toggle ^= Gradient_Shader::kToggleMask32; \
toggle ^= Gradient_Shader::kDitherStride32; \
} while (0)
namespace {
@ -860,15 +896,28 @@ typedef void (*LinearShadeProc)(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* dstC, const SkPMColor* cache,
int toggle, int count);
void shadeSpan_linear_vertical(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
// we're a vertical gradient, so no change in a span
unsigned fi = proc(fx) >> Gradient_Shader::kCache32Shift;
sk_memset32_dither(dstC, cache[toggle + fi],
cache[(toggle ^ Gradient_Shader::kToggleMask32) + fi], count);
// lerp is unnecessary if there are no sharp discontinuities in the
// gradient - which must be true if there are only 2 colors - but for
// vertical gradients it's so cheap we do it anyway.
void shadeSpan_linear_vertical_lerp(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
// We're a vertical gradient, so no change in a span.
// If colors change sharply across the gradient, dithering is
// insufficient (it subsamples the color space) and we need to lerp.
unsigned fullIndex = proc(fx);
unsigned fi = fullIndex >> (16 - Gradient_Shader::kCache32Bits);
unsigned remainder = fullIndex & Gradient_Shader::kLerpRemainderMask32;
SkPMColor lerp =
SkFastFourByteInterp(
cache[toggle + fi + 1],
cache[toggle + fi], remainder);
SkPMColor dlerp =
SkFastFourByteInterp(
cache[(toggle ^ Gradient_Shader::kDitherStride32) + fi + 1],
cache[(toggle ^ Gradient_Shader::kDitherStride32) + fi], remainder);
sk_memset32_dither(dstC, lerp, dlerp, count);
}
void shadeSpan_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
@ -876,12 +925,12 @@ void shadeSpan_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
const SkPMColor* SK_RESTRICT cache,
int toggle, int count) {
SkClampRange range;
range.init(fx, dx, count, 0, 0xFF);
range.init(fx, dx, count, 0, Gradient_Shader::kGradient32Length);
if ((count = range.fCount0) > 0) {
sk_memset32_dither(dstC,
cache[toggle + range.fV0],
cache[(toggle ^ Gradient_Shader::kToggleMask32) + range.fV0],
cache[(toggle ^ Gradient_Shader::kDitherStride32) + range.fV0],
count);
dstC += count;
}
@ -903,13 +952,11 @@ void shadeSpan_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
if ((count = range.fCount2) > 0) {
sk_memset32_dither(dstC,
cache[toggle + range.fV1],
cache[(toggle ^ Gradient_Shader::kToggleMask32) + range.fV1],
cache[(toggle ^ Gradient_Shader::kDitherStride32) + range.fV1],
count);
}
}
// TODO: we could merge mirror and repeat if we passed in a pointer to the
// *_8bits proc, but that'd lose inlining, which might be significant here.
void shadeSpan_linear_mirror(TileProc proc, SkFixed dx, SkFixed fx,
SkPMColor* SK_RESTRICT dstC,
const SkPMColor* SK_RESTRICT cache,
@ -919,7 +966,7 @@ void shadeSpan_linear_mirror(TileProc proc, SkFixed dx, SkFixed fx,
SkASSERT(fi <= 0xFF);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle ^= Gradient_Shader::kToggleMask32;
toggle ^= Gradient_Shader::kDitherStride32;
} while (--count != 0);
}
@ -932,9 +979,10 @@ void shadeSpan_linear_repeat(TileProc proc, SkFixed dx, SkFixed fx,
SkASSERT(fi <= 0xFF);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle ^= Gradient_Shader::kToggleMask32;
toggle ^= Gradient_Shader::kDitherStride32;
} while (--count != 0);
}
}
void Linear_Gradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
@ -946,7 +994,7 @@ void Linear_Gradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
TileProc proc = fTileProc;
const SkPMColor* SK_RESTRICT cache = this->getCache32();
#ifdef USE_DITHER_32BIT_GRADIENT
int toggle = ((x ^ y) & 1) << kCache32Bits;
int toggle = ((x ^ y) & 1) * kDitherStride32;
#else
int toggle = 0;
#endif
@ -967,7 +1015,7 @@ void Linear_Gradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
LinearShadeProc shadeProc = shadeSpan_linear_repeat;
if (SkFixedNearlyZero(dx)) {
shadeProc = shadeSpan_linear_vertical;
shadeProc = shadeSpan_linear_vertical_lerp;
} else if (proc == clamp_tileproc) {
shadeProc = shadeSpan_linear_clamp;
} else if (proc == mirror_tileproc) {
@ -984,7 +1032,7 @@ void Linear_Gradient::shadeSpan(int x, int y, SkPMColor* SK_RESTRICT dstC,
unsigned fi = proc(SkScalarToFixed(srcPt.fX));
SkASSERT(fi <= 0xFFFF);
*dstC++ = cache[toggle + (fi >> kCache32Shift)];
toggle ^= Gradient_Shader::kToggleMask32;
toggle ^= Gradient_Shader::kDitherStride32;
dstX += SK_Scalar1;
} while (--count != 0);
}
@ -998,7 +1046,7 @@ SkShader::BitmapType Linear_Gradient::asABitmap(SkBitmap* bitmap,
this->commonAsABitmap(bitmap);
}
if (matrix) {
matrix->setScale(SkIntToScalar(kCache32Count), SK_Scalar1);
matrix->setScale(SkIntToScalar(kGradient32Length), SK_Scalar1);
matrix->preConcat(fPtsToUnit);
}
if (xy) {
@ -1035,10 +1083,10 @@ static void dither_memset16(uint16_t dst[], uint16_t value, uint16_t other,
#define NO_CHECK_ITER_16 \
do { \
unsigned fi = fx >> Gradient_Shader::kCache16Shift; \
SkASSERT(fi <= Gradient_Shader::kCache16Mask); \
SkASSERT(fi < Gradient_Shader::kCache16Count); \
fx += dx; \
*dstC++ = cache[toggle + fi]; \
toggle ^= Gradient_Shader::kToggleMask16; \
toggle ^= Gradient_Shader::kDitherStride16; \
} while (0)
namespace {
@ -1053,9 +1101,9 @@ void shadeSpan16_linear_vertical(TileProc proc, SkFixed dx, SkFixed fx,
int toggle, int count) {
// we're a vertical gradient, so no change in a span
unsigned fi = proc(fx) >> Gradient_Shader::kCache16Shift;
SkASSERT(fi <= Gradient_Shader::kCache16Mask);
SkASSERT(fi < Gradient_Shader::kCache16Count);
dither_memset16(dstC, cache[toggle + fi],
cache[(toggle ^ Gradient_Shader::kToggleMask16) + fi], count);
cache[(toggle ^ Gradient_Shader::kDitherStride16) + fi], count);
}
@ -1064,12 +1112,12 @@ void shadeSpan16_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
const uint16_t* SK_RESTRICT cache,
int toggle, int count) {
SkClampRange range;
range.init(fx, dx, count, 0, Gradient_Shader::kCache16Mask);
range.init(fx, dx, count, 0, Gradient_Shader::kGradient16Length);
if ((count = range.fCount0) > 0) {
dither_memset16(dstC,
cache[toggle + range.fV0],
cache[(toggle ^ Gradient_Shader::kToggleMask16) + range.fV0],
cache[(toggle ^ Gradient_Shader::kDitherStride16) + range.fV0],
count);
dstC += count;
}
@ -1091,7 +1139,7 @@ void shadeSpan16_linear_clamp(TileProc proc, SkFixed dx, SkFixed fx,
if ((count = range.fCount2) > 0) {
dither_memset16(dstC,
cache[toggle + range.fV1],
cache[(toggle ^ Gradient_Shader::kToggleMask16) + range.fV1],
cache[(toggle ^ Gradient_Shader::kDitherStride16) + range.fV1],
count);
}
}
@ -1103,10 +1151,10 @@ void shadeSpan16_linear_mirror(TileProc proc, SkFixed dx, SkFixed fx,
do {
unsigned fi = mirror_bits(fx >> Gradient_Shader::kCache16Shift,
Gradient_Shader::kCache16Bits);
SkASSERT(fi <= Gradient_Shader::kCache16Mask);
SkASSERT(fi < Gradient_Shader::kCache16Count);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
} while (--count != 0);
}
@ -1118,10 +1166,10 @@ void shadeSpan16_linear_repeat(TileProc proc, SkFixed dx, SkFixed fx,
do {
unsigned fi = repeat_bits(fx >> Gradient_Shader::kCache16Shift,
Gradient_Shader::kCache16Bits);
SkASSERT(fi <= Gradient_Shader::kCache16Mask);
SkASSERT(fi < Gradient_Shader::kCache16Count);
fx += dx;
*dstC++ = cache[toggle + fi];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
} while (--count != 0);
}
}
@ -1134,7 +1182,7 @@ void Linear_Gradient::shadeSpan16(int x, int y,
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = fTileProc;
const uint16_t* SK_RESTRICT cache = this->getCache16();
int toggle = ((x ^ y) & 1) << kCache16Bits;
int toggle = ((x ^ y) & 1) * kDitherStride16;
if (fDstToIndexClass != kPerspective_MatrixClass) {
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
@ -1171,7 +1219,7 @@ void Linear_Gradient::shadeSpan16(int x, int y,
int index = fi >> kCache16Shift;
*dstC++ = cache[toggle + index];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
dstX += SK_Scalar1;
} while (--count != 0);
@ -1263,7 +1311,7 @@ void shadeSpan16_radial_clamp(SkScalar sfx, SkScalar sdx,
fx += dx;
*dstC++ = cache[toggle +
(sqrt_table[fi] >> Gradient_Shader::kSqrt16Shift)];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
} while (--count != 0);
} else {
do {
@ -1275,7 +1323,7 @@ void shadeSpan16_radial_clamp(SkScalar sfx, SkScalar sdx,
fy += dy;
*dstC++ = cache[toggle +
(sqrt_table[fi] >> Gradient_Shader::kSqrt16Shift)];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
} while (--count != 0);
}
}
@ -1298,7 +1346,7 @@ void shadeSpan16_radial_mirror(SkScalar sfx, SkScalar sdx,
unsigned fi = mirror_tileproc(dist);
SkASSERT(fi <= 0xFFFF);
*dstC++ = cache[toggle + (fi >> Gradient_Shader::kCache16Shift)];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
sfx += sdx;
sfy += sdy;
} while (--count != 0);
@ -1319,7 +1367,7 @@ void shadeSpan16_radial_repeat(SkScalar sfx, SkScalar sdx,
fx += dx;
fy += dy;
*dstC++ = cache[toggle + (fi >> Gradient_Shader::kCache16Shift)];
toggle ^= Gradient_Shader::kToggleMask16;
toggle ^= Gradient_Shader::kDitherStride16;
} while (--count != 0);
}
@ -1350,7 +1398,7 @@ public:
SkMatrix::MapXYProc dstProc = fDstToIndexProc;
TileProc proc = fTileProc;
const uint16_t* SK_RESTRICT cache = this->getCache16();
int toggle = ((x ^ y) & 1) << kCache16Bits;
int toggle = ((x ^ y) & 1) * kDitherStride16;
if (fDstToIndexClass != kPerspective_MatrixClass) {
dstProc(fDstToIndex, SkIntToScalar(x) + SK_ScalarHalf,
@ -1389,7 +1437,7 @@ public:
int index = fi >> (16 - kCache16Bits);
*dstC++ = cache[toggle + index];
toggle ^= (1 << kCache16Bits);
toggle ^= kDitherStride16;
dstX += SK_Scalar1;
} while (--count != 0);
@ -1405,8 +1453,8 @@ public:
this->commonAsABitmap(bitmap);
}
if (matrix) {
matrix->setScale(SkIntToScalar(kCache32Count),
SkIntToScalar(kCache32Count));
matrix->setScale(SkIntToScalar(kGradient32Length),
SkIntToScalar(kGradient32Length));
matrix->preConcat(fPtsToUnit);
}
if (xy) {
@ -1506,7 +1554,7 @@ void shadeSpan_radial_clamp(SkScalar sfx, SkScalar sdx,
SkFixed fy = SkScalarToFixed(sfy) >> 1;
SkFixed dy = SkScalarToFixed(sdy) >> 1;
if ((count > 4) && radial_completely_pinned(fx, dx, fy, dy)) {
sk_memset32(dstC, cache[Gradient_Shader::kCache32Count - 1], count);
sk_memset32(dstC, cache[Gradient_Shader::kGradient32Length], count);
} else if ((count > 4) &&
no_need_for_radial_pin(fx, dx, fy, dy, count)) {
unsigned fi;
@ -2338,7 +2386,7 @@ void Sweep_Gradient::shadeSpan16(int x, int y, uint16_t* SK_RESTRICT dstC,
SkMatrix::MapXYProc proc = fDstToIndexProc;
const SkMatrix& matrix = fDstToIndex;
const uint16_t* SK_RESTRICT cache = this->getCache16();
int toggle = ((x ^ y) & 1) << kCache16Bits;
int toggle = ((x ^ y) & 1) * kDitherStride16;
SkPoint srcPt;
if (fDstToIndexClass != kPerspective_MatrixClass) {
@ -2362,7 +2410,7 @@ void Sweep_Gradient::shadeSpan16(int x, int y, uint16_t* SK_RESTRICT dstC,
for (; count > 0; --count) {
int index = SkATan2_255(fy, fx) >> (8 - kCache16Bits);
*dstC++ = cache[toggle + index];
toggle ^= (1 << kCache16Bits);
toggle ^= kDitherStride16;
fx += dx;
fy += dy;
}
@ -2374,7 +2422,7 @@ void Sweep_Gradient::shadeSpan16(int x, int y, uint16_t* SK_RESTRICT dstC,
int index = SkATan2_255(srcPt.fY, srcPt.fX);
index >>= (8 - kCache16Bits);
*dstC++ = cache[toggle + index];
toggle ^= (1 << kCache16Bits);
toggle ^= kDitherStride16;
}
}
}

View File

@ -7,7 +7,9 @@
*/
#include "Test.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkMath.h"
#include "SkRandom.h"
#include "SkUnPreMultiply.h"
static void test_premul(skiatest::Reporter* reporter) {
@ -31,9 +33,49 @@ static void test_premul(skiatest::Reporter* reporter) {
}
}
/**
This test fails: SkFourByteInterp does *not* preserve opaque destinations.
SkAlpha255To256 implemented as (alpha + 1) is faster than
(alpha + (alpha >> 7)), but inaccurate, and Skia intends to phase it out.
*/
/*
static void test_interp(skiatest::Reporter* reporter) {
SkRandom r;
U8CPU a0 = 0;
U8CPU a255 = 255;
for (int i = 0; i < 200; i++) {
SkColor colorSrc = r.nextU();
SkColor colorDst = r.nextU();
SkPMColor src = SkPreMultiplyColor(colorSrc);
SkPMColor dst = SkPreMultiplyColor(colorDst);
REPORTER_ASSERT(reporter, SkFourByteInterp(src, dst, a0) == dst);
REPORTER_ASSERT(reporter, SkFourByteInterp(src, dst, a255) == src);
}
}
*/
static void test_fast_interp(skiatest::Reporter* reporter) {
SkRandom r;
U8CPU a0 = 0;
U8CPU a255 = 255;
for (int i = 0; i < 200; i++) {
SkColor colorSrc = r.nextU();
SkColor colorDst = r.nextU();
SkPMColor src = SkPreMultiplyColor(colorSrc);
SkPMColor dst = SkPreMultiplyColor(colorDst);
REPORTER_ASSERT(reporter, SkFastFourByteInterp(src, dst, a0) == dst);
REPORTER_ASSERT(reporter, SkFastFourByteInterp(src, dst, a255) == src);
}
}
static void TestColor(skiatest::Reporter* reporter) {
test_premul(reporter);
//test_interp(reporter);
test_fast_interp(reporter);
}
#include "TestClassDef.h"