Optimized R11 EAC compressor

R=robertphillips@google.com

Author: krajcevski@google.com

Review URL: https://codereview.chromium.org/373243002
This commit is contained in:
krajcevski 2014-07-09 09:15:45 -07:00 committed by Commit bot
parent 6ac0037b70
commit 1459be5ae3

View File

@ -280,8 +280,8 @@ static uint64_t compress_latc_block(const uint8_t pixels[]) {
}
}
static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
static inline bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_latc_block);
}
@ -291,6 +291,10 @@ static bool compress_a8_to_latc(uint8_t* dst, const uint8_t* src,
//
////////////////////////////////////////////////////////////////////////////////
// #define COMPRESS_R11_EAC_SLOW 1
// #define COMPRESS_R11_EAC_FAST 1
#define COMPRESS_R11_EAC_FASTEST 1
// Blocks compressed into R11 EAC are represented as follows:
// 0000000000000000000000000000000000000000000000000000000000000000
// |base_cw|mod|mul| ----------------- indices -------------------
@ -327,6 +331,7 @@ static const int kR11EACModifierPalettes[kNumR11EACPalettes][kR11EACPaletteSize]
{-3, -5, -7, -9, 2, 4, 6, 8}
};
#if COMPRESS_R11_EAC_SLOW
// Pack the base codeword, palette, and multiplier into the 64 bits necessary
// to decode it.
static uint64_t pack_r11eac_block(uint16_t base_cw, uint16_t palette, uint16_t multiplier,
@ -354,7 +359,7 @@ static uint16_t compute_r11eac_pixel(int base_cw, int modifier, int multiplier)
// 2. Choose a multiplier based roughly on the size of the span of block values
// 3. Iterate through each palette and choose the one with the most accurate
// modifiers.
static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
// Find the center of the data...
uint16_t bmin = block[0];
uint16_t bmax = block[0];
@ -382,7 +387,7 @@ static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
}
// Finally, choose the proper palette and indices
uint32_t bestError = static_cast<uint32_t>(-1);
uint32_t bestError = 0xFFFFFFFF;
uint64_t bestIndices = 0;
uint16_t bestPalette = 0;
for (uint16_t paletteIdx = 0; paletteIdx < kNumR11EACPalettes; ++paletteIdx) {
@ -432,7 +437,60 @@ static uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
// Finally, pack everything together...
return pack_r11eac_block(center, bestPalette, multiplier, bestIndices);
}
#endif // COMPRESS_R11_EAC_SLOW
#if COMPRESS_R11_EAC_FAST
// This function takes into account that most blocks that we compress have a gradation from
// fully opaque to fully transparent. The compression scheme works by selecting the
// palette and multiplier that has the tightest fit to the 0-255 range. This is encoded
// as the block header (0x8490). The indices are then selected by considering the top
// three bits of each alpha value. For alpha masks, this reduces the dynamic range from
// 17 to 8, but the quality is still acceptable.
//
// There are a few caveats that need to be taken care of...
//
// 1. The block is read in as scanlines, so the indices are stored as:
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// However, the decomrpession routine reads them in column-major order, so they
// need to be packed as:
// 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
// So when reading, they must be transposed.
//
// 2. We cannot use the top three bits as an index directly, since the R11 EAC palettes
// above store the modulation values first decreasing and then increasing:
// e.g. {-3, -6, -9, -15, 2, 5, 8, 14}
// Hence, we need to convert the indices with the following mapping:
// From: 0 1 2 3 4 5 6 7
// To: 3 2 1 0 4 5 6 7
static inline uint64_t compress_heterogeneous_r11eac_block(const uint8_t block[16]) {
uint64_t retVal = static_cast<uint64_t>(0x8490) << 48;
for(int i = 0; i < 4; ++i) {
for(int j = 0; j < 4; ++j) {
const int shift = 45-3*(j*4+i);
SkASSERT(shift <= 45);
const uint64_t idx = block[i*4+j] >> 5;
SkASSERT(idx < 8);
// !SPEED! This is slightly faster than having an if-statement.
switch(idx) {
case 0:
case 1:
case 2:
case 3:
retVal |= (3-idx) << shift;
break;
default:
retVal |= idx << shift;
break;
}
}
}
return SkEndian_SwapBE64(retVal);
}
#endif // COMPRESS_R11_EAC_FAST
#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
static uint64_t compress_r11eac_block(const uint8_t block[16]) {
// Are all blocks a solid color?
bool solid = true;
@ -443,62 +501,265 @@ static uint64_t compress_r11eac_block(const uint8_t block[16]) {
}
}
// Fully transparent? We know the encoding...
if (solid && 0 == block[0]) {
// (0x0060 << 48) produces the following:
// basw_cw: 0
// mod: 6, palette: {-4, -7, -8, -11, 3, 6, 7, 10}
// mod_val: -3
//
// this gives the following formula:
// clamp[0, 2047](0*8+4+(-4)) = 0
return SkEndian_SwapBE64(static_cast<uint64_t>(0x0060) << 48);
if (solid) {
switch(block[0]) {
// Fully transparent? We know the encoding...
case 0:
// (0x0020 << 48) produces the following:
// basw_cw: 0
// mod: 0, palette: {-3, -6, -9, -15, 2, 5, 8, 14}
// multiplier: 2
// mod_val: -3
//
// this gives the following formula:
// clamp[0, 2047](0*8+4+(-3)*2*8) = 0
//
// Furthermore, it is impervious to endianness:
// 0x0020000000002000ULL
// Will produce one pixel with index 2, which gives:
// clamp[0, 2047](0*8+4+(-9)*2*8) = 0
return 0x0020000000002000ULL;
// Fully opaque? We know this encoding too...
} else if (solid && 255 == block[0]) {
// -1 produces the following:
// basw_cw: 255
// mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
// mod_val: 8
//
// this gives the following formula:
// clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
return static_cast<uint64_t>(-1);
}
// Fully opaque? We know this encoding too...
case 255:
// -1 produces the following:
// basw_cw: 255
// mod: 15, palette: {-3, -5, -7, -9, 2, 4, 6, 8}
// mod_val: 8
//
// this gives the following formula:
// clamp[0, 2047](255*8+4+8*8*8) = clamp[0, 2047](2556) = 2047
return 0xFFFFFFFFFFFFFFFFULL;
#if 0
else if (solid) {
// !TODO! krajcevski:
// This will probably never happen, since we're using this format
// primarily for compressing alpha maps. Usually the only
// non-fullly opaque or fully transparent blocks are not a solid
// intermediate color. If we notice that they are, then we can
// add another optimization...
default:
// !TODO! krajcevski:
// This will probably never happen, since we're using this format
// primarily for compressing alpha maps. Usually the only
// non-fullly opaque or fully transparent blocks are not a solid
// intermediate color. If we notice that they are, then we can
// add another optimization...
break;
}
}
#endif
return compress_heterogeneous_r11eac_block(block);
}
#endif // (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
static bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
#if COMPRESS_R11_EAC_FASTEST
static inline uint64_t interleave6(uint64_t topRows, uint64_t bottomRows) {
// If our 3-bit block indices are laid out as:
// a b c d
// e f g h
// i j k l
// m n o p
//
// This function expects topRows and bottomRows to contain the first two rows
// of indices interleaved in the least significant bits of a and b. In other words...
//
// If the architecture is big endian, then topRows and bottomRows will contain the following:
// Bits 31-0:
// a: 00 a e 00 b f 00 c g 00 d h
// b: 00 i m 00 j n 00 k o 00 l p
//
// If the architecture is little endian, then topRows and bottomRows will contain
// the following:
// Bits 31-0:
// a: 00 d h 00 c g 00 b f 00 a e
// b: 00 l p 00 k o 00 j n 00 i m
//
// This function returns a 48-bit packing of the form:
// a e i m b f j n c g k o d h l p
//
// !SPEED! this function might be even faster if certain SIMD intrinsics are
// used..
// For both architectures, we can figure out a packing of the bits by
// using a shuffle and a few shift-rotates...
uint64_t x = (static_cast<uint64_t>(topRows) << 32) | static_cast<uint64_t>(bottomRows);
// x: 00 a e 00 b f 00 c g 00 d h 00 i m 00 j n 00 k o 00 l p
uint64_t t = (x ^ (x >> 10)) & 0x3FC0003FC00000ULL;
x = x ^ t ^ (t << 10);
// x: b f 00 00 00 a e c g i m 00 00 00 d h j n 00 k o 00 l p
x |= ((x << 52) & (0x3FULL << 52));
x = (x | ((x << 20) & (0x3FULL << 28))) >> 16;
#if defined (SK_CPU_BENDIAN)
// x: 00 00 00 00 00 00 00 00 b f l p a e c g i m k o d h j n
t = (x ^ (x >> 6)) & 0xFC0000ULL;
x = x ^ t ^ (t << 6);
// x: 00 00 00 00 00 00 00 00 b f l p a e i m c g k o d h j n
t = (x ^ (x >> 36)) & 0x3FULL;
x = x ^ t ^ (t << 36);
// x: 00 00 00 00 00 00 00 00 b f j n a e i m c g k o d h l p
t = (x ^ (x >> 12)) & 0xFFF000000ULL;
x = x ^ t ^ (t << 12);
// x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
return x;
#else
// If our CPU is little endian, then the above logic will
// produce the following indices:
// x: 00 00 00 00 00 00 00 00 c g i m d h b f l p j n a e k o
t = (x ^ (x >> 6)) & 0xFC0000ULL;
x = x ^ t ^ (t << 6);
// x: 00 00 00 00 00 00 00 00 c g i m d h l p b f j n a e k o
t = (x ^ (x >> 36)) & 0xFC0ULL;
x = x ^ t ^ (t << 36);
// x: 00 00 00 00 00 00 00 00 a e i m d h l p b f j n c g k o
x = (x & (0xFFFULL << 36)) | ((x & 0xFFFFFFULL) << 12) | ((x >> 24) & 0xFFFULL);
// x: 00 00 00 00 00 00 00 00 a e i m b f j n c g k o d h l p
return x;
#endif
}
// This function converts an integer containing four bytes of alpha
// values into an integer containing four bytes of indices into R11 EAC.
// Note, there needs to be a mapping of indices:
// 0 1 2 3 4 5 6 7
// 3 2 1 0 4 5 6 7
//
// To compute this, we first negate each byte, and then add three, which
// gives the mapping
// 3 2 1 0 -1 -2 -3 -4
//
// Then we mask out the negative values, take their absolute value, and
// add three.
//
// Most of the voodoo in this function comes from Hacker's Delight, section 2-18
static inline uint32_t convert_indices(uint32_t x) {
// Take the top three bits...
x = (x & 0xE0E0E0E0) >> 5;
// Negate...
x = ~((0x80808080 - x) ^ 0x7F7F7F7F);
// Add three
const uint32_t s = (x & 0x7F7F7F7F) + 0x03030303;
x = ((x ^ 0x03030303) & 0x80808080) ^ s;
// Absolute value
const uint32_t a = x & 0x80808080;
const uint32_t b = a >> 7;
// Aside: mask negatives (m is three if the byte was negative)
const uint32_t m = (a >> 6) | b;
// .. continue absolute value
x = (x ^ ((a - b) | a)) + b;
// Add three
return x + m;
}
// This function follows the same basic procedure as compress_heterogeneous_r11eac_block
// above when COMPRESS_R11_EAC_FAST is defined, but it avoids a few loads/stores and
// tries to optimize where it can using SIMD.
static uint64_t compress_r11eac_block_fast(const uint8_t* src, int rowBytes) {
// Store each row of alpha values in an integer
const uint32_t alphaRow1 = *(reinterpret_cast<const uint32_t*>(src));
const uint32_t alphaRow2 = *(reinterpret_cast<const uint32_t*>(src + rowBytes));
const uint32_t alphaRow3 = *(reinterpret_cast<const uint32_t*>(src + 2*rowBytes));
const uint32_t alphaRow4 = *(reinterpret_cast<const uint32_t*>(src + 3*rowBytes));
// Check for solid blocks. The explanations for these values
// can be found in the comments of compress_r11eac_block above
if (alphaRow1 == alphaRow2 && alphaRow1 == alphaRow3 && alphaRow1 == alphaRow4) {
if (0 == alphaRow1) {
// Fully transparent block
return 0x0020000000002000ULL;
} else if (0xFFFFFFFF == alphaRow1) {
// Fully opaque block
return 0xFFFFFFFFFFFFFFFFULL;
}
}
// Convert each integer of alpha values into an integer of indices
const uint32_t indexRow1 = convert_indices(alphaRow1);
const uint32_t indexRow2 = convert_indices(alphaRow2);
const uint32_t indexRow3 = convert_indices(alphaRow3);
const uint32_t indexRow4 = convert_indices(alphaRow4);
// Interleave the indices from the top two rows and bottom two rows
// prior to passing them to interleave6. Since each index is at most
// three bits, then each byte can hold two indices... The way that the
// compression scheme expects the packing allows us to efficiently pack
// the top two rows and bottom two rows. Interleaving each 6-bit sequence
// and tightly packing it into a uint64_t is a little trickier, which is
// taken care of in interleave6.
const uint32_t r1r2 = (indexRow1 << 3) | indexRow2;
const uint32_t r3r4 = (indexRow3 << 3) | indexRow4;
const uint64_t indices = interleave6(r1r2, r3r4);
// Return the packed incdices in the least significant bits with the magic header
return SkEndian_SwapBE64(0x8490000000000000ULL | indices);
}
static bool compress_a8_to_r11eac_fast(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
// Make sure that our data is well-formed enough to be considered for compression
if (0 == width || 0 == height || (width % 4) != 0 || (height % 4) != 0) {
return false;
}
const int blocksX = width >> 2;
const int blocksY = height >> 2;
uint64_t* encPtr = reinterpret_cast<uint64_t*>(dst);
for (int y = 0; y < blocksY; ++y) {
for (int x = 0; x < blocksX; ++x) {
// Compress it
*encPtr = compress_r11eac_block_fast(src + 4*x, rowBytes);
++encPtr;
}
src += 4 * rowBytes;
}
return true;
}
#endif // COMPRESS_R11_EAC_FASTEST
static inline bool compress_a8_to_r11eac(uint8_t* dst, const uint8_t* src,
int width, int height, int rowBytes) {
#if (COMPRESS_R11_EAC_SLOW) || (COMPRESS_R11_EAC_FAST)
return compress_4x4_a8_to_64bit(dst, src, width, height, rowBytes, compress_r11eac_block);
#elif COMPRESS_R11_EAC_FASTEST
return compress_a8_to_r11eac_fast(dst, src, width, height, rowBytes);
#else
#error "Must choose R11 EAC algorithm"
#endif
}
////////////////////////////////////////////////////////////////////////////////
namespace SkTextureCompressor {
static size_t get_compressed_data_size(Format fmt, int width, int height) {
static inline size_t get_compressed_data_size(Format fmt, int width, int height) {
switch (fmt) {
// These formats are 64 bits per 4x4 block.
case kR11_EAC_Format:
case kLATC_Format:
{
// The LATC format is 64 bits per 4x4 block.
static const int kLATCEncodedBlockSize = 8;
int blocksX = width / kLATCBlockSize;
int blocksY = height / kLATCBlockSize;
const int blocksX = width / kLATCBlockSize;
const int blocksY = height / kLATCBlockSize;
return blocksX * blocksY * kLATCEncodedBlockSize;
}
@ -520,7 +781,7 @@ bool CompressBufferToFormat(uint8_t* dst, const uint8_t* src, SkColorType srcCol
kProcMap[kLATC_Format][kAlpha_8_SkColorType] = compress_a8_to_latc;
kProcMap[kR11_EAC_Format][kAlpha_8_SkColorType] = compress_a8_to_r11eac;
CompressBitmapProc proc = kProcMap[format][srcColorType];
if (NULL != proc) {
return proc(dst, src, width, height, rowBytes);