refactor SkBitmapProcState_opts_SSSE3

Change-Id: Ied07a15b891e5b94fad14056ddfdffc52facf242
Reviewed-on: https://skia-review.googlesource.com/c/170764
Auto-Submit: Mike Klein <mtklein@google.com>
Commit-Queue: Herb Derby <herb@google.com>
Reviewed-by: Herb Derby <herb@google.com>
This commit is contained in:
Mike Klein 2018-11-13 14:05:32 -05:00 committed by Skia Commit-Bot
parent 09212197d7
commit 14b9f537c5

View File

@ -6,223 +6,73 @@
*/ */
#include "SkBitmapProcState_opts_SSSE3.h" #include "SkBitmapProcState_opts_SSSE3.h"
#include "SkColorData.h" #include <tmmintrin.h>
#include "SkPaint.h"
#include "SkUTF.h"
#include <tmmintrin.h> // SSSE3 // This same basic packing scheme is used throughout the file.
static void decode_packed_coordinates_and_weight(uint32_t packed, int* v0, int* v1, int* w) {
// The top 14 bits are the integer coordinate x0 or y0.
*v0 = packed >> 18;
namespace { // The bottom 14 bits are the integer coordinate x1 or y1.
*v1 = packed & 0x3fff;
// Prepare all necessary constants for a round of processing for two pixel // The middle 4 bits are the interpolating factor between the two, i.e. the weight for v1.
// pairs. *w = (packed >> 14) & 0xf;
// @param xy is the location where the xy parameters for four pixels should be
// read from. It is identical in concept with argument two of
// S32_{opaque}_D32_filter_DX methods.
// @param mask_3FFF vector of 32 bit constants containing 3FFF,
// suitable to mask the bottom 14 bits of a XY value.
// @param mask_000F vector of 32 bit constants containing 000F,
// suitable to mask the bottom 4 bits of a XY value.
// @param sixteen_8bit vector of 8 bit components containing the value 16.
// @param mask_dist_select vector of 8 bit components containing the shuffling
// parameters to reorder x[0-3] parameters.
// @param all_x_result vector of 8 bit components that will contain the
// (4x(x3), 4x(x2), 4x(x1), 4x(x0)) upon return.
// @param sixteen_minus_x vector of 8 bit components, containing
// (4x(16 - x3), 4x(16 - x2), 4x(16 - x1), 4x(16 - x0))
inline void PrepareConstantsTwoPixelPairs(const uint32_t* xy,
const __m128i& mask_3FFF,
const __m128i& mask_000F,
const __m128i& sixteen_8bit,
const __m128i& mask_dist_select,
__m128i* all_x_result,
__m128i* sixteen_minus_x,
int* x0,
int* x1) {
const __m128i xx = _mm_loadu_si128(reinterpret_cast<const __m128i *>(xy));
// 4 delta X
// (x03, x02, x01, x00)
const __m128i x0_wide = _mm_srli_epi32(xx, 18);
// (x13, x12, x11, x10)
const __m128i x1_wide = _mm_and_si128(xx, mask_3FFF);
_mm_storeu_si128(reinterpret_cast<__m128i *>(x0), x0_wide);
_mm_storeu_si128(reinterpret_cast<__m128i *>(x1), x1_wide);
__m128i all_x = _mm_and_si128(_mm_srli_epi32(xx, 14), mask_000F);
// (4x(x3), 4x(x2), 4x(x1), 4x(x0))
all_x = _mm_shuffle_epi8(all_x, mask_dist_select);
*all_x_result = all_x;
// (4x(16-x3), 4x(16-x2), 4x(16-x1), 4x(16-x0))
*sixteen_minus_x = _mm_sub_epi8(sixteen_8bit, all_x);
} }
// Helper function used when processing one pixel pair. // As above, 4x.
// @param pixel0..3 are the four input pixels static void decode_packed_coordinates_and_weight(__m128i packed, int v0[4], int v1[4], __m128i* w) {
// @param scale_x vector of 8 bit components to multiply the pixel[0:3]. This _mm_storeu_si128((__m128i*)v0, _mm_srli_epi32(packed, 18));
// will contain (4x(x1, 16-x1), 4x(x0, 16-x0)) _mm_storeu_si128((__m128i*)v1, _mm_and_si128 (packed, _mm_set1_epi32(0x3fff)));
// or (4x(x3, 16-x3), 4x(x2, 16-x2)) *w = _mm_and_si128(_mm_srli_epi32(packed, 14), _mm_set1_epi32(0xf));
// @return a vector of 16 bit components containing:
// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
inline __m128i ProcessPixelPairHelper(uint32_t pixel0,
uint32_t pixel1,
uint32_t pixel2,
uint32_t pixel3,
const __m128i& scale_x) {
__m128i a0, a1, a2, a3;
// Load 2 pairs of pixels
a0 = _mm_cvtsi32_si128(pixel0);
a1 = _mm_cvtsi32_si128(pixel1);
// Interleave pixels.
// (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
a0 = _mm_unpacklo_epi8(a0, a1);
a2 = _mm_cvtsi32_si128(pixel2);
a3 = _mm_cvtsi32_si128(pixel3);
// (0, 0, 0, 0, 0, 0, 0, 0, Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2)
a2 = _mm_unpacklo_epi8(a2, a3);
// two pairs of pixel pairs, interleaved.
// (Aa3, Aa2, Ba3, Ba2, Ga3, Ga2, Ra3, Ra2,
// Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
a0 = _mm_unpacklo_epi64(a0, a2);
// multiply and sum to 16 bit components.
// (Aa2 * (16 - x1) + Aa3 * x1, ... , Ra0 * (16 - x0) + Ra1 * x0)
// At that point, we use up a bit less than 12 bits for each 16 bit
// component:
// All components are less than 255. So,
// C0 * (16 - x) + C1 * x <= 255 * (16 - x) + 255 * x = 255 * 16.
return _mm_maddubs_epi16(a0, scale_x);
}
// Scale back the results after multiplications to the [0:255] range, and scale by alpha.
inline __m128i ScaleFourPixels(__m128i* pixels, const __m128i& alpha) {
// Divide each 16 bit component by 256.
*pixels = _mm_srli_epi16(*pixels, 8);
// Multiply by alpha.
*pixels = _mm_mullo_epi16(*pixels, alpha);
// Divide each 16 bit component by 256.
*pixels = _mm_srli_epi16(*pixels, 8);
return *pixels;
} }
// Same as ProcessPixelPairHelper, except that the values are scaled by y. // This is the crux of the whole file, interpolating in X for up to two output pixels (A and B).
// @param y vector of 16 bit components containing 'y' values. There are two static inline __m128i interpolate_in_x(uint32_t A0, uint32_t A1,
// cases in practice, where y will contain the sub_y constant, or will uint32_t B0, uint32_t B1,
// contain the 16 - sub_y constant. const __m128i& interlaced_x_weights) {
// @return vector of 16 bit components containing: // _mm_maddubs_epi16() is a little idiosyncratic, but very helpful as the core of a lerp.
// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... , y * (Ra0 * (16 - x0) + Ra1 * x0)) //
inline __m128i ProcessPixelPair(uint32_t pixel0, // It takes two arguments interlaced byte-wise:
uint32_t pixel1, // - first arg: [ x,y, ... 7 more pairs of 8-bit values ...]
uint32_t pixel2, // - second arg: [ z,w, ... 7 more pairs of 8-bit values ...]
uint32_t pixel3, // and returns 8 16-bit values: [ x*z + y*w, ... 7 more 16-bit values ... ].
const __m128i& scale_x, //
const __m128i& y) { // That's why we go to all this trouble to make interlaced_x_weights,
__m128i sum = ProcessPixelPairHelper(pixel0, pixel1, pixel2, pixel3, // and here we're interlacing A0 with A1, B0 with B1 to match.
scale_x);
// first row times 16-y or y depending on whether 'y' represents one or __m128i interlaced_A = _mm_unpacklo_epi8(_mm_cvtsi32_si128(A0), _mm_cvtsi32_si128(A1)),
// the other. interlaced_B = _mm_unpacklo_epi8(_mm_cvtsi32_si128(B0), _mm_cvtsi32_si128(B1));
// Values will be up to 255 * 16 * 16 = 65280.
// (y * (Aa2 * (16 - x1) + Aa3 * x1), ... ,
// y * (Ra0 * (16 - x0) + Ra1 * x0))
sum = _mm_mullo_epi16(sum, y);
return sum; return _mm_maddubs_epi16(_mm_unpacklo_epi64(interlaced_A, interlaced_B),
interlaced_x_weights);
} }
// Process two pixel pairs out of eight input pixels. // Interpolate {A0..A3} --> output pixel A, and {B0..B3} --> output pixel B.
// In other methods, the distinct pixels are passed one by one, but in this // Returns two pixels, with each channel in a 16-bit lane of the __m128i.
// case, the rows, and index offsets to the pixels into the row are passed static inline __m128i interpolate_in_x_and_y(uint32_t A0, uint32_t A1,
// to generate the 8 pixels. uint32_t A2, uint32_t A3,
// @param row0..1 top and bottom row where to find input pixels. uint32_t B0, uint32_t B1,
// @param x0..1 offsets into the row for all eight input pixels. uint32_t B2, uint32_t B3,
// @param all_y vector of 16 bit components containing the constant sub_y const __m128i& interlaced_x_weights,
// @param neg_y vector of 16 bit components containing the constant 16 - sub_y int wy) {
// @param alpha vector of 16 bit components containing the alpha value to scale // The stored Y weight wy is for y1, and y0 gets a weight 16-wy.
// the results by const __m128i wy1 = _mm_set1_epi16(wy),
// @return wy0 = _mm_sub_epi16(_mm_set1_epi16(16), wy1);
// (alpha * ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) +
// y * (Aa2' * (16-x1) + Aa3' * x1)),
// ...
// alpha * ((16-y) * (Ra0 * (16-x0) + Ra1 * x0) +
// y * (Ra0' * (16-x0) + Ra1' * x0))
// The values are scaled back to 16 bit components, but with only the bottom
// 8 bits being set.
inline __m128i ProcessTwoPixelPairs(const uint32_t* row0,
const uint32_t* row1,
const int* x0,
const int* x1,
const __m128i& scale_x,
const __m128i& all_y,
const __m128i& neg_y,
const __m128i& alpha) {
__m128i sum0 = ProcessPixelPair(
row0[x0[0]], row0[x1[0]], row0[x0[1]], row0[x1[1]],
scale_x, neg_y);
__m128i sum1 = ProcessPixelPair(
row1[x0[0]], row1[x1[0]], row1[x0[1]], row1[x1[1]],
scale_x, all_y);
// 2 samples fully summed. // First interpolate in X,
// ((16-y) * (Aa2 * (16-x1) + Aa3 * x1) + // leaving the values in 16-bit lanes scaled up by those [0,16] interlaced_x_weights.
// y * (Aa2' * (16-x1) + Aa3' * x1), __m128i row0 = interpolate_in_x(A0,A1, B0,B1, interlaced_x_weights),
// ... row1 = interpolate_in_x(A2,A3, B2,B3, interlaced_x_weights);
// (16-y) * (Ra0 * (16 - x0) + Ra1 * x0)) +
// y * (Ra0' * (16-x0) + Ra1' * x0))
// Each component, again can be at most 256 * 255 = 65280, so no overflow.
sum0 = _mm_add_epi16(sum0, sum1);
return ScaleFourPixels(&sum0, alpha); // Interpolate in Y across the two rows,
// then scale everything down by the maximum total weight 16x16 = 256.
return _mm_srli_epi16(_mm_add_epi16(_mm_mullo_epi16(row0, wy0),
_mm_mullo_epi16(row1, wy1)), 8);
} }
// Same as ProcessPixelPair, except that performing the math one output pixel
// at a time. This means that only the bottom four 16 bit components are set.
inline __m128i ProcessOnePixel(uint32_t pixel0, uint32_t pixel1,
const __m128i& scale_x, const __m128i& y) {
__m128i a0 = _mm_cvtsi32_si128(pixel0);
__m128i a1 = _mm_cvtsi32_si128(pixel1);
// Interleave
// (0, 0, 0, 0, 0, 0, 0, 0, Aa1, Aa0, Ba1, Ba0, Ga1, Ga0, Ra1, Ra0)
a0 = _mm_unpacklo_epi8(a0, a1);
// (a0 * (16-x) + a1 * x)
a0 = _mm_maddubs_epi16(a0, scale_x);
// scale row by y
return _mm_mullo_epi16(a0, y);
}
} // namespace
// Notes about the various tricks that are used in this implementation:
// - calculating 4 output pixels at a time.
// This allows loading the coefficients x0 and x1 and shuffling them to the
// optimum location only once per loop, instead of twice per loop.
// This also allows us to store the four pixels with a single store.
// - Use of 2 special SSSE3 instructions (comparatively to the SSE2 instruction
// version):
// _mm_shuffle_epi8 : this allows us to spread the coefficients x[0-3] loaded
// in 32 bit values to 8 bit values repeated four times.
// _mm_maddubs_epi16 : this allows us to perform multiplications and additions
// in one swoop of 8bit values storing the results in 16 bit values. This
// instruction is actually crucial for the speed of the implementation since
// as one can see in the SSE2 implementation, all inputs have to be used as
// 16 bits because the results are 16 bits. This basically allows us to process
// twice as many pixel components per iteration.
//
// As a result, this method behaves faster than the traditional SSE2. The actual
// boost varies greatly on the underlying architecture.
void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s, void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
const uint32_t* xy, const uint32_t* xy,
int count, uint32_t* colors) { int count, uint32_t* colors) {
@ -230,108 +80,78 @@ void S32_alpha_D32_filter_DX_SSSE3(const SkBitmapProcState& s,
SkASSERT(s.fFilterQuality != kNone_SkFilterQuality); SkASSERT(s.fFilterQuality != kNone_SkFilterQuality);
SkASSERT(kN32_SkColorType == s.fPixmap.colorType()); SkASSERT(kN32_SkColorType == s.fPixmap.colorType());
const uint8_t* src_addr = // Return (px * s.fAlphaScale) / 256. (s.fAlphaScale is in [0,256].)
static_cast<const uint8_t*>(s.fPixmap.addr()); auto scale_by_alpha = [&](const __m128i& px) {
const size_t rb = s.fPixmap.rowBytes(); return _mm_srli_epi16(_mm_mullo_epi16(px, _mm_set1_epi16(s.fAlphaScale)), 8);
const uint32_t XY = *xy++; };
const unsigned y0 = XY >> 14;
const uint32_t* row0 =
reinterpret_cast<const uint32_t*>(src_addr + (y0 >> 4) * rb);
const uint32_t* row1 =
reinterpret_cast<const uint32_t*>(src_addr + (XY & 0x3FFF) * rb);
// vector constants // We're in _DX_ mode here, so we're only varying in X.
const __m128i mask_dist_select = _mm_set_epi8(12, 12, 12, 12, // That means the first entry of xy is our constant pair of Y coordinates and weight in Y.
8, 8, 8, 8, // All the other entries in xy will be pairs of X coordinates and the X weight.
4, 4, 4, 4, int y0, y1, wy;
0, 0, 0, 0); decode_packed_coordinates_and_weight(*xy++, &y0, &y1, &wy);
const __m128i mask_3FFF = _mm_set1_epi32(0x3FFF);
const __m128i mask_000F = _mm_set1_epi32(0x000F);
const __m128i sixteen_8bit = _mm_set1_epi8(16);
// (0, 0, 0, 0, 0, 0, 0, 0)
const __m128i zero = _mm_setzero_si128();
// 8x(alpha) auto row0 = (const uint32_t*)( (const uint8_t*)s.fPixmap.addr() + y0 * s.fPixmap.rowBytes() ),
const __m128i alpha = _mm_set1_epi16(s.fAlphaScale); row1 = (const uint32_t*)( (const uint8_t*)s.fPixmap.addr() + y1 * s.fPixmap.rowBytes() );
// 8x(16) while (count >= 4) {
const __m128i sixteen_16bit = _mm_set1_epi16(16); // We can really get going, loading 4 X pairs at a time to produce 4 output pixels.
const __m128i xx = _mm_loadu_si128((const __m128i*)xy);
// 8x (y) int x0[4],
const __m128i all_y = _mm_set1_epi16(y0 & 0xF); x1[4];
__m128i wx;
decode_packed_coordinates_and_weight(xx, x0, x1, &wx);
// 8x (16-y) // Splat out each x weight wx four times (one for each pixel channel) as wx1,
const __m128i neg_y = _mm_sub_epi16(sixteen_16bit, all_y); // and sixteen minus that as the weight for x0, wx0.
__m128i wx1 = _mm_shuffle_epi8(wx, _mm_setr_epi8(0,0,0,0, 4,4,4,4, 8,8,8,8, 12,12,12,12)),
wx0 = _mm_sub_epi8(_mm_set1_epi8(16), wx1);
// Unroll 4x, interleave bytes, use pmaddubsw (all_x is small) // We need to interlace wx0 and wx1 for _mm_maddubs_epi16().
while (count > 3) { __m128i interlaced_x_weights_AB = _mm_unpacklo_epi8(wx0,wx1),
count -= 4; interlaced_x_weights_CD = _mm_unpackhi_epi8(wx0,wx1);
int x0[4]; // interpolate_in_x_and_y() can produce two output pixels (A and B) at a time
int x1[4]; // from eight input pixels {A0..A3} and {B0..B3}, arranged in a 2x2 grid for each.
__m128i all_x, sixteen_minus_x; __m128i AB = interpolate_in_x_and_y(row0[x0[0]], row0[x1[0]],
PrepareConstantsTwoPixelPairs(xy, mask_3FFF, mask_000F, row1[x0[0]], row1[x1[0]],
sixteen_8bit, mask_dist_select, row0[x0[1]], row0[x1[1]],
&all_x, &sixteen_minus_x, x0, x1); row1[x0[1]], row1[x1[1]],
interlaced_x_weights_AB, wy);
// Once more with the other half of the x-weights for two more pixels C,D.
__m128i CD = interpolate_in_x_and_y(row0[x0[2]], row0[x1[2]],
row1[x0[2]], row1[x1[2]],
row0[x0[3]], row0[x1[3]],
row1[x0[3]], row1[x1[3]],
interlaced_x_weights_CD, wy);
// Scale them all by alpha, pack back together to 8-bit lanes, and write out four pixels!
_mm_storeu_si128((__m128i*)colors, _mm_packus_epi16(scale_by_alpha(AB),
scale_by_alpha(CD)));
xy += 4; xy += 4;
// First pair of pixel pairs
// (4x(x1, 16-x1), 4x(x0, 16-x0))
__m128i scale_x;
scale_x = _mm_unpacklo_epi8(sixteen_minus_x, all_x);
__m128i sum0 = ProcessTwoPixelPairs(
row0, row1, x0, x1,
scale_x, all_y, neg_y, alpha);
// second pair of pixel pairs
// (4x (x3, 16-x3), 4x (16-x2, x2))
scale_x = _mm_unpackhi_epi8(sixteen_minus_x, all_x);
__m128i sum1 = ProcessTwoPixelPairs(
row0, row1, x0 + 2, x1 + 2,
scale_x, all_y, neg_y, alpha);
// Do the final packing of the two results
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, sum1);
// Extract low int and store.
_mm_storeu_si128(reinterpret_cast<__m128i *>(colors), sum0);
colors += 4; colors += 4;
count -= 4;
} }
// Left over. while (count --> 0) {
while (count-- > 0) { // This is exactly the same flow as the count >= 4 loop above, but writing one pixel.
const uint32_t xx = *xy++; // x0:14 | 4 | x1:14 int x0, x1, wx;
const unsigned x0 = xx >> 18; decode_packed_coordinates_and_weight(*xy++, &x0, &x1, &wx);
const unsigned x1 = xx & 0x3FFF;
// 16x(x) // As above, splat out wx four times as wx1, and sixteen minus that as wx0.
const __m128i all_x = _mm_set1_epi8((xx >> 14) & 0x0F); __m128i wx1 = _mm_set1_epi8(wx), // This splats it out 16 times, but that's fine.
wx0 = _mm_sub_epi8(_mm_set1_epi8(16), wx1);
// 16x (16-x) __m128i interlaced_x_weights_A = _mm_unpacklo_epi8(wx0, wx1);
__m128i scale_x = _mm_sub_epi8(sixteen_8bit, all_x);
// (8x (x, 16-x)) __m128i A = interpolate_in_x_and_y(row0[x0], row0[x1],
scale_x = _mm_unpacklo_epi8(scale_x, all_x); row1[x0], row1[x1],
0, 0,
0, 0,
interlaced_x_weights_A, wy);
// first row. *colors++ = _mm_cvtsi128_si32(_mm_packus_epi16(scale_by_alpha(A), _mm_setzero_si128()));
__m128i sum0 = ProcessOnePixel(row0[x0], row0[x1], scale_x, neg_y);
// second row.
__m128i sum1 = ProcessOnePixel(row1[x0], row1[x1], scale_x, all_y);
// Add both rows for full sample
sum0 = _mm_add_epi16(sum0, sum1);
sum0 = ScaleFourPixels(&sum0, alpha);
// Pack lower 4 16 bit values of sum into lower 4 bytes.
sum0 = _mm_packus_epi16(sum0, zero);
// Extract low int and store.
*colors++ = _mm_cvtsi128_si32(sum0);
} }
} }