Added GrAAFlatteningConvexPathRenderer.

This is an alternate version of GrAAConvexPathRenderer which handles
curves by first flattening them to straight lines.

BUG=skia:

Review URL: https://codereview.chromium.org/1158803002
This commit is contained in:
ethannicholas 2015-06-10 12:11:17 -07:00 committed by Commit bot
parent 523beb7fd9
commit 1a1b3ac0d4
5 changed files with 564 additions and 91 deletions

View File

@ -57,6 +57,8 @@
'<(skia_src_path)/gpu/GrAAHairLinePathRenderer.h',
'<(skia_src_path)/gpu/GrAAConvexPathRenderer.cpp',
'<(skia_src_path)/gpu/GrAAConvexPathRenderer.h',
'<(skia_src_path)/gpu/GrAALinearizingConvexPathRenderer.cpp',
'<(skia_src_path)/gpu/GrAALinearizingConvexPathRenderer.h',
'<(skia_src_path)/gpu/GrAAConvexTessellator.cpp',
'<(skia_src_path)/gpu/GrAAConvexTessellator.h',
'<(skia_src_path)/gpu/GrAADistanceFieldPathRenderer.cpp',

View File

@ -10,6 +10,7 @@
#include "SkPath.h"
#include "SkPoint.h"
#include "SkString.h"
#include "GrPathUtils.h"
// Next steps:
// use in AAConvexPathRenderer
@ -51,13 +52,15 @@ static SkScalar abs_dist_from_line(const SkPoint& p0, const SkVector& v, const S
int GrAAConvexTessellator::addPt(const SkPoint& pt,
SkScalar depth,
bool movable) {
bool movable,
bool isCurve) {
this->validate();
int index = fPts.count();
*fPts.push() = pt;
*fDepths.push() = depth;
*fMovable.push() = movable;
*fIsCurve.push() = isCurve;
this->validate();
return index;
@ -236,7 +239,6 @@ bool GrAAConvexTessellator::computePtAlongBisector(int startIdx,
}
bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& path) {
SkASSERT(SkPath::kLine_SegmentMask == path.getSegmentMasks());
SkASSERT(SkPath::kConvex_Convexity == path.getConvexity());
// Outer ring: 3*numPts
@ -250,7 +252,8 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
fNorms.setReserve(path.countPoints());
SkScalar minCross = SK_ScalarMax, maxCross = -SK_ScalarMax;
SkDEBUGCODE(fMinCross = SK_ScalarMax;)
SkDEBUGCODE(fMaxCross = -SK_ScalarMax;)
// TODO: is there a faster way to extract the points from the path? Perhaps
// get all the points via a new entry point, transform them all in bulk
@ -261,38 +264,16 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kLine_Verb:
m.mapPoints(&pts[1], 1);
if (this->numPts() > 0 && duplicate_pt(pts[1], this->lastPoint())) {
continue;
}
SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
if (this->numPts() >= 2 &&
abs_dist_from_line(fPts.top(), fNorms.top(), pts[1]) < kClose) {
// The old last point is on the line from the second to last to the new point
this->popLastPt();
fNorms.pop();
}
this->addPt(pts[1], 0.0f, false);
if (this->numPts() > 1) {
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
}
if (this->numPts() >= 3) {
int cur = this->numPts()-1;
SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
maxCross = SkTMax(maxCross, cross);
minCross = SkTMin(minCross, cross);
}
this->lineTo(m, pts[1], false);
break;
case SkPath::kQuad_Verb:
case SkPath::kConic_Verb:
this->quadTo(m, pts);
break;
case SkPath::kCubic_Verb:
SkASSERT(false);
this->cubicTo(m, pts);
break;
case SkPath::kConic_Verb:
this->conicTo(m, pts, iter.conicWeight());
break;
case SkPath::kMove_Verb:
case SkPath::kClose_Verb:
@ -342,16 +323,14 @@ bool GrAAConvexTessellator::extractFromPath(const SkMatrix& m, const SkPath& pat
return false;
}
// Check the cross produce of the final trio
// Check the cross product of the final trio
SkScalar cross = SkPoint::CrossProduct(fNorms[0], fNorms.top());
maxCross = SkTMax(maxCross, cross);
minCross = SkTMin(minCross, cross);
if (maxCross > 0.0f) {
SkASSERT(minCross >= 0.0f);
SkDEBUGCODE(fMaxCross = SkTMax(fMaxCross, cross));
SkDEBUGCODE(fMinCross = SkTMin(fMinCross, cross));
SkASSERT((fMaxCross >= 0.0f) == (fMinCross >= 0.0f));
if (cross > 0.0f) {
fSide = SkPoint::kRight_Side;
} else {
SkASSERT(minCross <= 0.0f);
fSide = SkPoint::kLeft_Side;
}
@ -404,69 +383,109 @@ void GrAAConvexTessellator::createOuterRing() {
const int numPts = fPts.count();
// For each vertex of the original polygon we add three points to the
// outset polygon - one extending perpendicular to each impinging edge
// and one along the bisector. Two triangles are added for each corner
// and two are added along each edge.
int prev = numPts - 1;
int lastPerpIdx = -1, firstPerpIdx = -1, newIdx0, newIdx1, newIdx2;
for (int cur = 0; cur < numPts; ++cur) {
// The perpendicular point for the last edge
SkPoint temp = fNorms[prev];
temp.scale(fTargetDepth);
temp += fPts[cur];
if (fIsCurve[cur]) {
// Inside a curve, we assume that the curvature is shallow enough (due to tesselation)
// that we only need one corner point. Mathematically, the distance the corner point
// gets shifted out should depend on the angle between the two line segments (as in
// mitering), but again due to tesselation we assume that this angle is small and
// therefore the correction factor is negligible and we do not bother with it.
// We know it isn't a duplicate of the prior point (since it and this
// one are just perpendicular offsets from the non-merged polygon points)
newIdx0 = this->addPt(temp, -fTargetDepth, false);
// The bisector outset point
SkPoint temp = fBisectors[cur];
temp.scale(-fTargetDepth); // the bisectors point in
temp += fPts[cur];
// The bisector outset point
temp = fBisectors[cur];
temp.scale(-fTargetDepth); // the bisectors point in
temp += fPts[cur];
// double-check our "sufficiently flat" assumption; we want the bisector point to be
// close to the normal point.
#define kFlatnessTolerance 1.0f
SkDEBUGCODE(SkPoint prevNormal = fNorms[prev];)
SkDEBUGCODE(prevNormal.scale(fTargetDepth);)
SkDEBUGCODE(prevNormal += fPts[cur];)
SkASSERT((temp - prevNormal).length() < kFlatnessTolerance);
// For very shallow angles all the corner points could fuse
if (duplicate_pt(temp, this->point(newIdx0))) {
newIdx1 = newIdx0;
} else {
newIdx1 = this->addPt(temp, -fTargetDepth, false);
newIdx1 = this->addPt(temp, -fTargetDepth, false, true);
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = newIdx1;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
this->addTri(prev, newIdx1, cur);
this->addTri(prev, lastPerpIdx, newIdx1);
}
prev = cur;
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = newIdx1;
}
else {
// For each vertex of the original polygon we add three points to the
// outset polygon - one extending perpendicular to each impinging edge
// and one along the bisector. Two triangles are added for each corner
// and two are added along each edge.
// The perpendicular point for the next edge.
temp = fNorms[cur];
temp.scale(fTargetDepth);
temp += fPts[cur];
// The perpendicular point for the last edge
SkPoint temp = fNorms[prev];
temp.scale(fTargetDepth);
temp += fPts[cur];
// For very shallow angles all the corner points could fuse.
if (duplicate_pt(temp, this->point(newIdx1))) {
newIdx2 = newIdx1;
} else {
newIdx2 = this->addPt(temp, -fTargetDepth, false);
// We know it isn't a duplicate of the prior point (since it and this
// one are just perpendicular offsets from the non-merged polygon points)
newIdx0 = this->addPt(temp, -fTargetDepth, false, false);
// The bisector outset point
temp = fBisectors[cur];
temp.scale(-fTargetDepth); // the bisectors point in
temp += fPts[cur];
// For very shallow angles all the corner points could fuse
if (duplicate_pt(temp, this->point(newIdx0))) {
newIdx1 = newIdx0;
} else {
newIdx1 = this->addPt(temp, -fTargetDepth, false, false);
}
// The perpendicular point for the next edge.
temp = fNorms[cur];
temp.scale(fTargetDepth);
temp += fPts[cur];
// For very shallow angles all the corner points could fuse.
if (duplicate_pt(temp, this->point(newIdx1))) {
newIdx2 = newIdx1;
} else {
newIdx2 = this->addPt(temp, -fTargetDepth, false, false);
}
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = newIdx0;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
this->addTri(prev, newIdx0, cur);
this->addTri(prev, lastPerpIdx, newIdx0);
}
// The two triangles for the corner
this->addTri(cur, newIdx0, newIdx1);
this->addTri(cur, newIdx1, newIdx2);
prev = cur;
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = newIdx2;
}
if (0 == cur) {
// Store the index of the first perpendicular point to finish up
firstPerpIdx = newIdx0;
SkASSERT(-1 == lastPerpIdx);
} else {
// The triangles for the previous edge
this->addTri(prev, newIdx0, cur);
this->addTri(prev, lastPerpIdx, newIdx0);
}
// The two triangles for the corner
this->addTri(cur, newIdx0, newIdx1);
this->addTri(cur, newIdx1, newIdx2);
prev = cur;
// Track the last perpendicular outset point so we can construct the
// trailing edge triangles.
lastPerpIdx = newIdx2;
}
// pick up the final edge rect
this->addTri(numPts-1, firstPerpIdx, 0);
this->addTri(numPts-1, lastPerpIdx, firstPerpIdx);
this->addTri(numPts - 1, firstPerpIdx, 0);
this->addTri(numPts - 1, lastPerpIdx, firstPerpIdx);
this->validate();
}
@ -592,7 +611,7 @@ bool GrAAConvexTessellator::createInsetRing(const Ring& lastRing, Ring* nextRing
// if the originating index is still valid then this point wasn't
// fused (and is thus movable)
newIdx = this->addPt(fCandidateVerts.point(i), depth,
fCandidateVerts.originatingIdx(i) != -1);
fCandidateVerts.originatingIdx(i) != -1, false);
} else {
SkASSERT(fCandidateVerts.originatingIdx(i) != -1);
this->updatePt(fCandidateVerts.originatingIdx(i), fCandidateVerts.point(i), depth);
@ -768,6 +787,84 @@ void GrAAConvexTessellator::checkAllDepths() const {
}
#endif
#define kQuadTolerance 0.2f
#define kCubicTolerance 0.2f
#define kConicTolerance 0.5f
void GrAAConvexTessellator::lineTo(const SkMatrix& m, SkPoint p, bool isCurve) {
m.mapPoints(&p, 1);
if (this->numPts() > 0 && duplicate_pt(p, this->lastPoint())) {
return;
}
SkASSERT(fPts.count() <= 1 || fPts.count() == fNorms.count()+1);
if (this->numPts() >= 2 &&
abs_dist_from_line(fPts.top(), fNorms.top(), p) < kClose) {
// The old last point is on the line from the second to last to the new point
this->popLastPt();
fNorms.pop();
fIsCurve.pop();
}
this->addPt(p, 0.0f, false, isCurve);
if (this->numPts() > 1) {
*fNorms.push() = fPts.top() - fPts[fPts.count()-2];
SkDEBUGCODE(SkScalar len =) SkPoint::Normalize(&fNorms.top());
SkASSERT(len > 0.0f);
SkASSERT(SkScalarNearlyEqual(1.0f, fNorms.top().length()));
}
SkDEBUGCODE(
if (this->numPts() >= 3) {
int cur = this->numPts()-1;
SkScalar cross = SkPoint::CrossProduct(fNorms[cur-1], fNorms[cur-2]);
fMaxCross = SkTMax(fMaxCross, cross);
fMinCross = SkTMin(fMinCross, cross);
}
)
}
void GrAAConvexTessellator::quadTo(const SkMatrix& m, SkPoint pts[3]) {
int maxCount = GrPathUtils::quadraticPointCount(pts, kQuadTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateQuadraticPoints(pts[0], pts[1], pts[2],
kQuadTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
lineTo(m, fPointBuffer[i], true);
}
}
void GrAAConvexTessellator::cubicTo(const SkMatrix& m, SkPoint pts[4]) {
int maxCount = GrPathUtils::cubicPointCount(pts, kCubicTolerance);
fPointBuffer.setReserve(maxCount);
SkPoint* target = fPointBuffer.begin();
int count = GrPathUtils::generateCubicPoints(pts[0], pts[1], pts[2], pts[3],
kCubicTolerance, &target, maxCount);
fPointBuffer.setCount(count);
for (int i = 0; i < count; i++) {
lineTo(m, fPointBuffer[i], true);
}
}
// include down here to avoid compilation errors caused by "-" overload in SkGeometry.h
#include "SkGeometry.h"
void GrAAConvexTessellator::conicTo(const SkMatrix& m, SkPoint* pts, SkScalar w) {
SkAutoConicToQuads quadder;
const SkPoint* quads = quadder.computeQuads(pts, w, kConicTolerance);
SkPoint lastPoint = *(quads++);
int count = quadder.countQuads();
for (int i = 0; i < count; ++i) {
SkPoint quadPts[3];
quadPts[0] = lastPoint;
quadPts[1] = quads[0];
quadPts[2] = i == count - 1 ? pts[2] : quads[1];
quadTo(m, quadPts);
lastPoint = quadPts[2];
quads += 2;
}
}
//////////////////////////////////////////////////////////////////////////////
#if GR_AA_CONVEX_TESSELLATOR_VIZ
static const SkScalar kPointRadius = 0.02f;

View File

@ -165,7 +165,7 @@ private:
// Movable points are those that can be slid along their bisector.
// Basically, a point is immovable if it is part of the original
// polygon or it results from the fusing of two bisectors.
int addPt(const SkPoint& pt, SkScalar depth, bool movable);
int addPt(const SkPoint& pt, SkScalar depth, bool movable, bool isCurve);
void popLastPt();
void popFirstPtShuffle();
@ -185,6 +185,14 @@ private:
int edgeIdx, SkScalar desiredDepth,
SkPoint* result) const;
void lineTo(const SkMatrix& m, SkPoint p, bool isCurve);
void quadTo(const SkMatrix& m, SkPoint pts[3]);
void cubicTo(const SkMatrix& m, SkPoint pts[4]);
void conicTo(const SkMatrix& m, SkPoint pts[3], SkScalar w);
void terminate(const Ring& lastRing);
// return false on failure/degenerate path
@ -217,6 +225,11 @@ private:
// The inward facing bisector at each point in the original polygon. Only
// needed for exterior ring creation and then handed off to the initial ring.
SkTDArray<SkVector> fBisectors;
// Tracks whether a given point is interior to a curve. Such points are
// assumed to have shallow curvature.
SkTDArray<bool> fIsCurve;
SkPoint::Side fSide; // winding of the original polygon
// The triangulation of the points
@ -233,10 +246,16 @@ private:
SkScalar fTargetDepth;
SkTDArray<SkPoint> fPointBuffer;
// If some goes wrong with the inset computation the tessellator will
// truncate the creation of the inset polygon. In this case the depth
// check will complain.
SkDEBUGCODE(bool fShouldCheckDepths;)
SkDEBUGCODE(SkScalar fMinCross;)
SkDEBUGCODE(SkScalar fMaxCross;)
};

View File

@ -0,0 +1,320 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrAALinearizingConvexPathRenderer.h"
#include "GrAAConvexTessellator.h"
#include "GrBatch.h"
#include "GrBatchTarget.h"
#include "GrBatchTest.h"
#include "GrContext.h"
#include "GrDefaultGeoProcFactory.h"
#include "GrGeometryProcessor.h"
#include "GrInvariantOutput.h"
#include "GrPathUtils.h"
#include "GrProcessor.h"
#include "GrPipelineBuilder.h"
#include "GrStrokeInfo.h"
#include "SkGeometry.h"
#include "SkString.h"
#include "SkTraceEvent.h"
#include "gl/GrGLProcessor.h"
#include "gl/GrGLSL.h"
#include "gl/GrGLGeometryProcessor.h"
#include "gl/builders/GrGLProgramBuilder.h"
#define DEFAULT_BUFFER_SIZE 100
GrAALinearizingConvexPathRenderer::GrAALinearizingConvexPathRenderer() {
}
///////////////////////////////////////////////////////////////////////////////
bool GrAALinearizingConvexPathRenderer::canDrawPath(const GrDrawTarget* target,
const GrPipelineBuilder*,
const SkMatrix& viewMatrix,
const SkPath& path,
const GrStrokeInfo& stroke,
bool antiAlias) const {
return (antiAlias && stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex());
}
// extract the result vertices and indices from the GrAAConvexTessellator
static void extract_verts(const GrAAConvexTessellator& tess,
void* vertices,
size_t vertexStride,
GrColor color,
uint16_t firstIndex,
uint16_t* idxs,
bool tweakAlphaForCoverage) {
intptr_t verts = reinterpret_cast<intptr_t>(vertices);
for (int i = 0; i < tess.numPts(); ++i) {
*((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i);
}
// Make 'verts' point to the colors
verts += sizeof(SkPoint);
for (int i = 0; i < tess.numPts(); ++i) {
SkASSERT(tess.depth(i) >= -0.5f && tess.depth(i) <= 0.5f);
if (tweakAlphaForCoverage) {
SkASSERT(SkScalarRoundToInt(255.0f * (tess.depth(i) + 0.5f)) <= 255);
unsigned scale = SkScalarRoundToInt(255.0f * (tess.depth(i) + 0.5f));
GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale);
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor;
} else {
*reinterpret_cast<GrColor*>(verts + i * vertexStride) = color;
*reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) =
tess.depth(i) + 0.5f;
}
}
for (int i = 0; i < tess.numIndices(); ++i) {
idxs[i] = tess.index(i) + firstIndex;
}
}
static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage,
const SkMatrix& localMatrix,
bool usesLocalCoords,
bool coverageIgnored) {
uint32_t flags = GrDefaultGeoProcFactory::kColor_GPType;
if (!tweakAlphaForCoverage) {
flags |= GrDefaultGeoProcFactory::kCoverage_GPType;
}
return GrDefaultGeoProcFactory::Create(flags, GrColor_WHITE, usesLocalCoords, coverageIgnored,
SkMatrix::I(), localMatrix);
}
class AAFlatteningConvexPathBatch : public GrBatch {
public:
struct Geometry {
GrColor fColor;
SkMatrix fViewMatrix;
SkPath fPath;
};
static GrBatch* Create(const Geometry& geometry) {
return SkNEW_ARGS(AAFlatteningConvexPathBatch, (geometry));
}
const char* name() const override { return "AAConvexBatch"; }
void getInvariantOutputColor(GrInitInvariantOutput* out) const override {
// When this is called on a batch, there is only one geometry bundle
out->setKnownFourComponents(fGeoData[0].fColor);
}
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override {
out->setUnknownSingleComponent();
}
void initBatchTracker(const GrPipelineInfo& init) override {
// Handle any color overrides
if (init.fColorIgnored) {
fGeoData[0].fColor = GrColor_ILLEGAL;
} else if (GrColor_ILLEGAL != init.fOverrideColor) {
fGeoData[0].fColor = init.fOverrideColor;
}
// setup batch properties
fBatch.fColorIgnored = init.fColorIgnored;
fBatch.fColor = fGeoData[0].fColor;
fBatch.fUsesLocalCoords = init.fUsesLocalCoords;
fBatch.fCoverageIgnored = init.fCoverageIgnored;
fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks();
fBatch.fCanTweakAlphaForCoverage = init.fCanTweakAlphaForCoverage;
}
void draw(GrBatchTarget* batchTarget, const GrPipeline* pipeline, int vertexCount,
size_t vertexStride, void* vertices, int indexCount, uint16_t* indices) {
if (vertexCount == 0 || indexCount == 0) {
return;
}
const GrVertexBuffer* vertexBuffer;
GrVertices info;
int firstVertex;
void* verts = batchTarget->makeVertSpace(vertexStride, vertexCount, &vertexBuffer,
&firstVertex);
if (!verts) {
SkDebugf("Could not allocate vertices\n");
return;
}
memcpy(verts, vertices, vertexCount * vertexStride);
const GrIndexBuffer* indexBuffer;
int firstIndex;
uint16_t* idxs = batchTarget->makeIndexSpace(indexCount, &indexBuffer, &firstIndex);
if (!idxs) {
SkDebugf("Could not allocate indices\n");
return;
}
memcpy(idxs, indices, indexCount * sizeof(uint16_t));
info.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, firstVertex,
firstIndex, vertexCount, indexCount);
batchTarget->draw(info);
}
void generateGeometry(GrBatchTarget* batchTarget, const GrPipeline* pipeline) override {
bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage();
SkMatrix invert;
if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) {
SkDebugf("Could not invert viewmatrix\n");
return;
}
// Setup GrGeometryProcessor
SkAutoTUnref<const GrGeometryProcessor> gp(
create_fill_gp(canTweakAlphaForCoverage, invert,
this->usesLocalCoords(),
this->coverageIgnored()));
batchTarget->initDraw(gp, pipeline);
size_t vertexStride = gp->getVertexStride();
SkASSERT(canTweakAlphaForCoverage ?
vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) :
vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr));
GrAAConvexTessellator tess;
int instanceCount = fGeoData.count();
int vertexCount = 0;
int indexCount = 0;
int maxVertices = DEFAULT_BUFFER_SIZE;
int maxIndices = DEFAULT_BUFFER_SIZE;
uint8_t* vertices = (uint8_t*) malloc(maxVertices * vertexStride);
uint16_t* indices = (uint16_t*) malloc(maxIndices * sizeof(uint16_t));
for (int i = 0; i < instanceCount; i++) {
tess.rewind();
Geometry& args = fGeoData[i];
if (!tess.tessellate(args.fViewMatrix, args.fPath)) {
continue;
}
int currentIndices = tess.numIndices();
SkASSERT(currentIndices <= UINT16_MAX);
if (indexCount + currentIndices > UINT16_MAX) {
// if we added the current instance, we would overflow the indices we can store in a
// uint16_t. Draw what we've got so far and reset.
draw(batchTarget, pipeline, vertexCount, vertexStride, vertices, indexCount,
indices);
vertexCount = 0;
indexCount = 0;
}
int currentVertices = tess.numPts();
if (vertexCount + currentVertices > maxVertices) {
maxVertices = SkTMax(vertexCount + currentVertices, maxVertices * 2);
vertices = (uint8_t*) realloc(vertices, maxVertices * vertexStride);
}
if (indexCount + currentIndices > maxIndices) {
maxIndices = SkTMax(indexCount + currentIndices, maxIndices * 2);
indices = (uint16_t*) realloc(indices, maxIndices * sizeof(uint16_t));
}
extract_verts(tess, vertices + vertexStride * vertexCount, vertexStride, args.fColor,
vertexCount, indices + indexCount, canTweakAlphaForCoverage);
vertexCount += currentVertices;
indexCount += currentIndices;
}
draw(batchTarget, pipeline, vertexCount, vertexStride, vertices, indexCount, indices);
free(vertices);
free(indices);
}
SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; }
private:
AAFlatteningConvexPathBatch(const Geometry& geometry) {
this->initClassID<AAFlatteningConvexPathBatch>();
fGeoData.push_back(geometry);
// compute bounds
fBounds = geometry.fPath.getBounds();
geometry.fViewMatrix.mapRect(&fBounds);
}
bool onCombineIfPossible(GrBatch* t) override {
AAFlatteningConvexPathBatch* that = t->cast<AAFlatteningConvexPathBatch>();
SkASSERT(this->usesLocalCoords() == that->usesLocalCoords());
if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) {
return false;
}
// In the event of two batches, one who can tweak, one who cannot, we just fall back to
// not tweaking
if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) {
fBatch.fCanTweakAlphaForCoverage = false;
}
fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin());
this->joinBounds(that->bounds());
return true;
}
GrColor color() const { return fBatch.fColor; }
bool linesOnly() const { return fBatch.fLinesOnly; }
bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; }
bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; }
const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; }
bool coverageIgnored() const { return fBatch.fCoverageIgnored; }
struct BatchTracker {
GrColor fColor;
bool fUsesLocalCoords;
bool fColorIgnored;
bool fCoverageIgnored;
bool fLinesOnly;
bool fCanTweakAlphaForCoverage;
};
BatchTracker fBatch;
SkSTArray<1, Geometry, true> fGeoData;
};
bool GrAALinearizingConvexPathRenderer::onDrawPath(GrDrawTarget* target,
GrPipelineBuilder* pipelineBuilder,
GrColor color,
const SkMatrix& vm,
const SkPath& path,
const GrStrokeInfo&,
bool antiAlias) {
if (path.isEmpty()) {
return true;
}
AAFlatteningConvexPathBatch::Geometry geometry;
geometry.fColor = color;
geometry.fViewMatrix = vm;
geometry.fPath = path;
SkAutoTUnref<GrBatch> batch(AAFlatteningConvexPathBatch::Create(geometry));
target->drawBatch(pipelineBuilder, batch);
return true;
}
///////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef GR_TEST_UTILS
BATCH_TEST_DEFINE(AAFlatteningConvexPathBatch) {
AAFlatteningConvexPathBatch::Geometry geometry;
geometry.fColor = GrRandomColor(random);
geometry.fViewMatrix = GrTest::TestMatrixInvertible(random);
geometry.fPath = GrTest::TestPathConvex(random);
return AAFlatteningConvexPathBatch::Create(geometry);
}
#endif

View File

@ -0,0 +1,35 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrAALinearizingConvexPathRenderer_DEFINED
#define GrAALinearizingConvexPathRenderer_DEFINED
#include "GrPathRenderer.h"
class GrAALinearizingConvexPathRenderer : public GrPathRenderer {
public:
GrAALinearizingConvexPathRenderer();
virtual bool canDrawPath(const GrDrawTarget*,
const GrPipelineBuilder*,
const SkMatrix& viewMatrix,
const SkPath&,
const GrStrokeInfo&,
bool antiAlias) const override;
protected:
virtual bool onDrawPath(GrDrawTarget*,
GrPipelineBuilder*,
GrColor,
const SkMatrix& viewMatrix,
const SkPath&,
const GrStrokeInfo&,
bool antiAlias) override;
};
#endif