Revert of PDF: remove last use of SkPDFImage (patchset #5 id:120001 of https://codereview.chromium.org/950633003/)

Reason for revert:
static void draw(SkCanvas* canvas,
                 const SkPaint& p,
                 const SkBitmap& src,
                 SkColorType colorType,
                 const char text[]) {
    SkASSERT(src.colorType() == colorType);
    canvas->drawBitmap(src, 0.0f, 0.0f);
    canvas->drawText(text, strlen(text), 0.0f, 12.0f, p);
}

This assert is firing, at least on macs, where all images get decoded into 32bit at the moment.

Original issue's description:
> PDF: remove last use of SkPDFImage
>
> Add a GM.
>
> BUG=skia:255
>
> Committed: https://skia.googlesource.com/skia/+/86ad8d643624a55b02e529100bbe4e2940115fa1

TBR=mtklein@google.com,halcanary@google.com
NOPRESUBMIT=true
NOTREECHECKS=true
NOTRY=true
BUG=skia:255

Review URL: https://codereview.chromium.org/1024113002
This commit is contained in:
reed 2015-03-20 10:03:36 -07:00 committed by Commit bot
parent b79ff56de2
commit 1b600d3446
8 changed files with 992 additions and 360 deletions

View File

@ -1,93 +0,0 @@
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "sk_tool_utils.h"
#include "SkSurface.h"
#include "Resources.h"
#include "gm.h"
static SkBitmap copy_bitmap(const SkBitmap& src, SkColorType colorType) {
SkBitmap copy;
src.copyTo(&copy, colorType);
copy.setImmutable();
return copy;
}
// Make either A8 or gray8 bitmap.
static SkBitmap make_bitmap(bool alpha) {
SkBitmap bm;
SkImageInfo info = alpha ? SkImageInfo::MakeA8(128, 128)
: SkImageInfo::Make(128, 128, kGray_8_SkColorType,
kOpaque_SkAlphaType);
bm.allocPixels(info);
SkAutoLockPixels autoLockPixels(bm);
uint8_t spectrum[256];
for (int y = 0; y < 256; ++y) {
spectrum[y] = y;
}
for (int y = 0; y < 128; ++y) {
// Shift over one byte each scanline.
memcpy(bm.getAddr8(0, y), &spectrum[y], 128);
}
bm.setImmutable();
return bm;
}
static void draw(SkCanvas* canvas,
const SkPaint& p,
const SkBitmap& src,
SkColorType colorType,
const char text[]) {
SkASSERT(src.colorType() == colorType);
canvas->drawBitmap(src, 0.0f, 0.0f);
canvas->drawText(text, strlen(text), 0.0f, 12.0f, p);
}
#define SCALE 128
DEF_SIMPLE_GM(all_bitmap_configs, canvas, SCALE, 6 * SCALE) {
SkAutoCanvasRestore autoCanvasRestore(canvas, true);
SkPaint p;
p.setColor(SK_ColorBLACK);
p.setAntiAlias(true);
sk_tool_utils::set_portable_typeface(&p, NULL, SkTypeface::kBold);
sk_tool_utils::draw_checkerboard(canvas, SK_ColorLTGRAY, SK_ColorWHITE, 8);
SkBitmap bitmap;
if (GetResourceAsBitmap("color_wheel.png", &bitmap)) {
bitmap.setImmutable();
draw(canvas, p, bitmap, kN32_SkColorType, "Native 32");
canvas->translate(0.0f, SkIntToScalar(SCALE));
SkBitmap copy565 = copy_bitmap(bitmap, kRGB_565_SkColorType);
p.setColor(SK_ColorRED);
draw(canvas, p, copy565, kRGB_565_SkColorType, "RGB 565");
p.setColor(SK_ColorBLACK);
canvas->translate(0.0f, SkIntToScalar(SCALE));
SkBitmap copy4444 = copy_bitmap(bitmap, kARGB_4444_SkColorType);
draw(canvas, p, copy4444, kARGB_4444_SkColorType, "ARGB 4444");
} else {
canvas->translate(0.0f, SkIntToScalar(2 * SCALE));
}
canvas->translate(0.0f, SkIntToScalar(SCALE));
SkBitmap bitmapIndexed;
if (GetResourceAsBitmap("color_wheel.gif", &bitmapIndexed)) {
bitmapIndexed.setImmutable();
draw(canvas, p, bitmapIndexed, kIndex_8_SkColorType, "Index 8");
}
canvas->translate(0.0f, SkIntToScalar(SCALE));
SkBitmap bitmapA8 = make_bitmap(true);
draw(canvas, p, bitmapA8, kAlpha_8_SkColorType, "Alpha 8");
p.setColor(SK_ColorRED);
canvas->translate(0.0f, SkIntToScalar(SCALE));
SkBitmap bitmapG8 = make_bitmap(false);
draw(canvas, p, bitmapG8, kGray_8_SkColorType, "Gray 8");
}

View File

@ -16,7 +16,6 @@
'../gm/aaclip.cpp', '../gm/aaclip.cpp',
'../gm/aarectmodes.cpp', '../gm/aarectmodes.cpp',
'../gm/addarc.cpp', '../gm/addarc.cpp',
'../gm/all_bitmap_configs.cpp',
'../gm/alphagradients.cpp', '../gm/alphagradients.cpp',
'../gm/arcofzorro.cpp', '../gm/arcofzorro.cpp',
'../gm/arithmode.cpp', '../gm/arithmode.cpp',

View File

@ -25,6 +25,8 @@
'<(skia_src_path)/pdf/SkPDFFormXObject.h', '<(skia_src_path)/pdf/SkPDFFormXObject.h',
'<(skia_src_path)/pdf/SkPDFGraphicState.cpp', '<(skia_src_path)/pdf/SkPDFGraphicState.cpp',
'<(skia_src_path)/pdf/SkPDFGraphicState.h', '<(skia_src_path)/pdf/SkPDFGraphicState.h',
'<(skia_src_path)/pdf/SkPDFImage.cpp',
'<(skia_src_path)/pdf/SkPDFImage.h',
'<(skia_src_path)/pdf/SkPDFPage.cpp', '<(skia_src_path)/pdf/SkPDFPage.cpp',
'<(skia_src_path)/pdf/SkPDFPage.h', '<(skia_src_path)/pdf/SkPDFPage.h',
'<(skia_src_path)/pdf/SkPDFResourceDict.cpp', '<(skia_src_path)/pdf/SkPDFResourceDict.cpp',

View File

@ -25,214 +25,114 @@ static void pdf_stream_end(SkWStream* stream) {
stream->write(streamEnd, strlen(streamEnd)); stream->write(streamEnd, strlen(streamEnd));
} }
//////////////////////////////////////////////////////////////////////////////// static size_t pixel_count(const SkBitmap& bm) {
return SkToSizeT(bm.width()) * SkToSizeT(bm.height());
}
// write a single byte to a stream n times. // write a single byte to a stream n times.
static void fill_stream(SkWStream* out, char value, size_t n) { static void fill_stream(SkWStream* out, char value, size_t n) {
char buffer[4096]; char buffer[4096];
memset(buffer, value, sizeof(buffer)); memset(buffer, value, sizeof(buffer));
for (size_t i = 0; i < n / sizeof(buffer); ++i) { while (n) {
out->write(buffer, sizeof(buffer)); size_t k = SkTMin(n, sizeof(buffer));
out->write(buffer, k);
n -= k;
} }
out->write(buffer, n % sizeof(buffer));
} }
// unpremultiply and extract R, G, B components. static SkPMColor get_pmcolor_neighbor_avg_color(const SkBitmap& bitmap,
static void pmcolor_to_rgb24(SkPMColor pmColor, uint8_t* rgb) { int xOrig,
uint32_t s = SkUnPreMultiply::GetScale(SkGetPackedA32(pmColor)); int yOrig) {
rgb[0] = SkUnPreMultiply::ApplyScale(s, SkGetPackedR32(pmColor)); SkASSERT(kN32_SkColorType == bitmap.colorType());
rgb[1] = SkUnPreMultiply::ApplyScale(s, SkGetPackedG32(pmColor)); SkASSERT(bitmap.getPixels());
rgb[2] = SkUnPreMultiply::ApplyScale(s, SkGetPackedB32(pmColor)); uint8_t count = 0;
} unsigned r = 0;
unsigned g = 0;
/* It is necessary to average the color component of transparent unsigned b = 0;
pixels with their surrounding neighbors since the PDF renderer may for (int y = yOrig - 1; y <= yOrig + 1; ++y) {
separately re-sample the alpha and color channels when the image is if (y < 0 || y >= bitmap.height()) {
not displayed at its native resolution. Since an alpha of zero continue;
gives no information about the color component, the pathological }
case is a white image with sharp transparency bounds - the color uint32_t* src = bitmap.getAddr32(0, y);
channel goes to black, and the should-be-transparent pixels are for (int x = xOrig - 1; x <= xOrig + 1; ++x) {
rendered as grey because of the separate soft mask and color if (x < 0 || x >= bitmap.width()) {
resizing. e.g.: gm/bitmappremul.cpp */ continue;
static void get_neighbor_avg_color(const SkBitmap& bm, }
int xOrig, SkPMColor pmColor = src[x];
int yOrig, U8CPU alpha = SkGetPackedA32(pmColor);
uint8_t rgb[3]) { if (alpha != SK_AlphaTRANSPARENT) {
SkASSERT(kN32_SkColorType == bm.colorType()); uint32_t s = SkUnPreMultiply::GetScale(alpha);
unsigned a = 0, r = 0, g = 0, b = 0; r += SkUnPreMultiply::ApplyScale(s, SkGetPackedR32(pmColor));
// Clamp the range to the edge of the bitmap. g += SkUnPreMultiply::ApplyScale(s, SkGetPackedG32(pmColor));
int ymin = SkTMax(0, yOrig - 1); b += SkUnPreMultiply::ApplyScale(s, SkGetPackedB32(pmColor));
int ymax = SkTMin(yOrig + 1, bm.height() - 1); ++count;
int xmin = SkTMax(0, xOrig - 1); }
int xmax = SkTMin(xOrig + 1, bm.width() - 1);
for (int y = ymin; y <= ymax; ++y) {
SkPMColor* scanline = bm.getAddr32(0, y);
for (int x = xmin; x <= xmax; ++x) {
SkPMColor pmColor = scanline[x];
a += SkGetPackedA32(pmColor);
r += SkGetPackedR32(pmColor);
g += SkGetPackedG32(pmColor);
b += SkGetPackedB32(pmColor);
} }
} }
if (a > 0) { if (count == 0) {
rgb[0] = SkToU8(255 * r / a); return SkPackARGB32NoCheck(SK_AlphaOPAQUE, 0, 0, 0);
rgb[1] = SkToU8(255 * g / a);
rgb[2] = SkToU8(255 * b / a);
} else { } else {
rgb[0] = rgb[1] = rgb[2] = 0; return SkPackARGB32NoCheck(
SK_AlphaOPAQUE, r / count, g / count, b / count);
} }
} }
static size_t pixel_count(const SkBitmap& bm) { static void pmcolor_to_rgb24(const SkBitmap& bm, SkWStream* out) {
return SkToSizeT(bm.width()) * SkToSizeT(bm.height()); SkASSERT(kN32_SkColorType == bm.colorType());
} if (!bm.getPixels()) {
fill_stream(out, '\xFF', 3 * pixel_count(bm));
static const SkBitmap& not4444(const SkBitmap& input, SkBitmap* copy) {
if (input.colorType() != kARGB_4444_SkColorType) {
return input;
}
// ARGB_4444 is rarely used, so we can do a wasteful tmp copy.
SkAssertResult(input.copyTo(copy, kN32_SkColorType));
copy->setImmutable();
return *copy;
}
static size_t pdf_color_component_count(SkColorType ct) {
switch (ct) {
case kN32_SkColorType:
case kRGB_565_SkColorType:
case kARGB_4444_SkColorType:
return 3;
case kAlpha_8_SkColorType:
case kIndex_8_SkColorType:
case kGray_8_SkColorType:
return 1;
case kUnknown_SkColorType:
default:
SkDEBUGFAIL("unexpected color type");
return 0;
}
}
static void bitmap_to_pdf_pixels(const SkBitmap& bitmap, SkWStream* out) {
if (!bitmap.getPixels()) {
size_t size = pixel_count(bitmap) *
pdf_color_component_count(bitmap.colorType());
fill_stream(out, '\x00', size);
return; return;
} }
SkBitmap copy; size_t scanlineLength = 3 * bm.width();
const SkBitmap& bm = not4444(bitmap, &copy); SkAutoTMalloc<uint8_t> scanline(scanlineLength);
SkAutoLockPixels autoLockPixels(bm); for (int y = 0; y < bm.height(); ++y) {
switch (bm.colorType()) { uint8_t* dst = scanline.get();
case kN32_SkColorType: { const SkPMColor* src = bm.getAddr32(0, y);
SkASSERT(3 == pdf_color_component_count(bitmap.colorType())); for (int x = 0; x < bm.width(); ++x) {
SkAutoTMalloc<uint8_t> scanline(3 * bm.width()); SkPMColor color = *src++;
for (int y = 0; y < bm.height(); ++y) { U8CPU alpha = SkGetPackedA32(color);
const SkPMColor* src = bm.getAddr32(0, y); if (alpha != SK_AlphaTRANSPARENT) {
uint8_t* dst = scanline.get(); uint32_t s = SkUnPreMultiply::GetScale(alpha);
for (int x = 0; x < bm.width(); ++x) { *dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedR32(color));
SkPMColor color = *src++; *dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedG32(color));
U8CPU alpha = SkGetPackedA32(color); *dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedB32(color));
if (alpha != SK_AlphaTRANSPARENT) { } else {
pmcolor_to_rgb24(color, dst); /* It is necessary to average the color component of
} else { transparent pixels with their surrounding neighbors
get_neighbor_avg_color(bm, x, y, dst); since the PDF renderer may separately re-sample the
} alpha and color channels when the image is not
dst += 3; displayed at its native resolution. Since an alpha
} of zero gives no information about the color
out->write(scanline.get(), 3 * bm.width()); component, the pathological case is a white image
with sharp transparency bounds - the color channel
goes to black, and the should-be-transparent pixels
are rendered as grey because of the separate soft
mask and color resizing. e.g.: gm/bitmappremul.cpp */
color = get_pmcolor_neighbor_avg_color(bm, x, y);
*dst++ = SkGetPackedR32(color);
*dst++ = SkGetPackedG32(color);
*dst++ = SkGetPackedB32(color);
} }
return;
} }
case kRGB_565_SkColorType: { out->write(scanline.get(), scanlineLength);
SkASSERT(3 == pdf_color_component_count(bitmap.colorType()));
SkAutoTMalloc<uint8_t> scanline(3 * bm.width());
for (int y = 0; y < bm.height(); ++y) {
const uint16_t* src = bm.getAddr16(0, y);
uint8_t* dst = scanline.get();
for (int x = 0; x < bm.width(); ++x) {
U16CPU color565 = *src++;
*dst++ = SkPacked16ToR32(color565);
*dst++ = SkPacked16ToG32(color565);
*dst++ = SkPacked16ToB32(color565);
}
out->write(scanline.get(), 3 * bm.width());
}
return;
}
case kAlpha_8_SkColorType:
SkASSERT(1 == pdf_color_component_count(bitmap.colorType()));
fill_stream(out, '\x00', pixel_count(bm));
return;
case kGray_8_SkColorType:
case kIndex_8_SkColorType:
SkASSERT(1 == pdf_color_component_count(bitmap.colorType()));
// these two formats need no transformation to serialize.
for (int y = 0; y < bm.height(); ++y) {
out->write(bm.getAddr8(0, y), bm.width());
}
return;
case kUnknown_SkColorType:
case kARGB_4444_SkColorType:
default:
SkDEBUGFAIL("unexpected color type");
} }
} }
//////////////////////////////////////////////////////////////////////////////// static void pmcolor_alpha_to_a8(const SkBitmap& bm, SkWStream* out) {
SkASSERT(kN32_SkColorType == bm.colorType());
static void bitmap_alpha_to_a8(const SkBitmap& bitmap, SkWStream* out) { if (!bm.getPixels()) {
if (!bitmap.getPixels()) { fill_stream(out, '\xFF', pixel_count(bm));
fill_stream(out, '\xFF', pixel_count(bitmap));
return; return;
} }
SkBitmap copy; size_t scanlineLength = bm.width();
const SkBitmap& bm = not4444(bitmap, &copy); SkAutoTMalloc<uint8_t> scanline(scanlineLength);
SkAutoLockPixels autoLockPixels(bm); for (int y = 0; y < bm.height(); ++y) {
switch (bm.colorType()) { uint8_t* dst = scanline.get();
case kN32_SkColorType: { const SkPMColor* src = bm.getAddr32(0, y);
SkAutoTMalloc<uint8_t> scanline(bm.width()); for (int x = 0; x < bm.width(); ++x) {
for (int y = 0; y < bm.height(); ++y) { *dst++ = SkGetPackedA32(*src++);
uint8_t* dst = scanline.get();
const SkPMColor* src = bm.getAddr32(0, y);
for (int x = 0; x < bm.width(); ++x) {
*dst++ = SkGetPackedA32(*src++);
}
out->write(scanline.get(), bm.width());
}
return;
} }
case kAlpha_8_SkColorType: out->write(scanline.get(), scanlineLength);
for (int y = 0; y < bm.height(); ++y) {
out->write(bm.getAddr8(0, y), bm.width());
}
return;
case kIndex_8_SkColorType: {
SkColorTable* ct = bm.getColorTable();
SkASSERT(ct);
SkAutoTMalloc<uint8_t> scanline(bm.width());
for (int y = 0; y < bm.height(); ++y) {
uint8_t* dst = scanline.get();
const uint8_t* src = bm.getAddr8(0, y);
for (int x = 0; x < bm.width(); ++x) {
*dst++ = SkGetPackedA32((*ct)[*src++]);
}
out->write(scanline.get(), bm.width());
}
return;
}
case kRGB_565_SkColorType:
case kGray_8_SkColorType:
SkDEBUGFAIL("color type has no alpha");
return;
case kARGB_4444_SkColorType:
SkDEBUGFAIL("4444 color type should have been converted to N32");
return;
case kUnknown_SkColorType:
default:
SkDEBUGFAIL("unexpected color type");
} }
} }
@ -245,40 +145,49 @@ public:
PDFAlphaBitmap(const SkBitmap& bm) : fBitmap(bm) {} PDFAlphaBitmap(const SkBitmap& bm) : fBitmap(bm) {}
~PDFAlphaBitmap() {} ~PDFAlphaBitmap() {}
void emitObject(SkWStream*, SkPDFCatalog*) SK_OVERRIDE; void emitObject(SkWStream*, SkPDFCatalog*) SK_OVERRIDE;
void addResources(SkTSet<SkPDFObject*>*, SkPDFCatalog*) const SK_OVERRIDE {}
private: private:
const SkBitmap fBitmap; const SkBitmap fBitmap;
void emitDict(SkWStream*, SkPDFCatalog*, size_t) const; void emitDict(SkWStream*, SkPDFCatalog*, size_t, bool) const;
}; };
void PDFAlphaBitmap::emitObject(SkWStream* stream, SkPDFCatalog* catalog) { void PDFAlphaBitmap::emitObject(SkWStream* stream, SkPDFCatalog* catalog) {
SkAutoLockPixels autoLockPixels(fBitmap); SkAutoLockPixels autoLockPixels(fBitmap);
SkASSERT(fBitmap.colorType() != kIndex_8_SkColorType ||
fBitmap.getColorTable());
#ifndef SK_NO_FLATE
// Write to a temporary buffer to get the compressed length. // Write to a temporary buffer to get the compressed length.
SkDynamicMemoryWStream buffer; SkDynamicMemoryWStream buffer;
SkDeflateWStream deflateWStream(&buffer); SkDeflateWStream deflateWStream(&buffer);
bitmap_alpha_to_a8(fBitmap, &deflateWStream); pmcolor_alpha_to_a8(fBitmap, &deflateWStream);
deflateWStream.finalize(); // call before detachAsStream(). deflateWStream.finalize(); // call before detachAsStream().
SkAutoTDelete<SkStreamAsset> asset(buffer.detachAsStream()); SkAutoTDelete<SkStreamAsset> asset(buffer.detachAsStream());
this->emitDict(stream, catalog, asset->getLength()); this->emitDict(stream, catalog, asset->getLength(), /*deflate=*/true);
pdf_stream_begin(stream); pdf_stream_begin(stream);
stream->writeStream(asset.get(), asset->getLength()); stream->writeStream(asset.get(), asset->getLength());
pdf_stream_end(stream); pdf_stream_end(stream);
#else
this->emitDict(stream, catalog, pixel_count(fBitmap), /*deflate=*/false);
pdf_stream_begin(stream);
pmcolor_alpha_to_a8(fBitmap, stream);
pdf_stream_end(stream);
#endif // SK_NO_FLATE
} }
void PDFAlphaBitmap::emitDict(SkWStream* stream, void PDFAlphaBitmap::emitDict(SkWStream* stream,
SkPDFCatalog* catalog, SkPDFCatalog* catalog,
size_t length) const { size_t length,
bool deflate) const {
SkPDFDict pdfDict("XObject"); SkPDFDict pdfDict("XObject");
pdfDict.insertName("Subtype", "Image"); pdfDict.insertName("Subtype", "Image");
pdfDict.insertInt("Width", fBitmap.width()); pdfDict.insertInt("Width", fBitmap.width());
pdfDict.insertInt("Height", fBitmap.height()); pdfDict.insertInt("Height", fBitmap.height());
pdfDict.insertName("ColorSpace", "DeviceGray"); pdfDict.insertName("ColorSpace", "DeviceGray");
pdfDict.insertInt("BitsPerComponent", 8); pdfDict.insertInt("BitsPerComponent", 8);
pdfDict.insertName("Filter", "FlateDecode"); if (deflate) {
pdfDict.insertName("Filter", "FlateDecode");
}
pdfDict.insertInt("Length", length); pdfDict.insertInt("Length", length);
pdfDict.emitObject(stream, catalog); pdfDict.emitObject(stream, catalog);
} }
@ -289,81 +198,50 @@ void PDFAlphaBitmap::emitDict(SkWStream* stream,
void SkPDFBitmap::addResources(SkTSet<SkPDFObject*>* resourceSet, void SkPDFBitmap::addResources(SkTSet<SkPDFObject*>* resourceSet,
SkPDFCatalog* catalog) const { SkPDFCatalog* catalog) const {
if (fSMask.get()) { if (fSMask.get()) {
if (resourceSet->add(fSMask.get())) { resourceSet->add(fSMask.get());
fSMask->addResources(resourceSet, catalog);
}
} }
} }
void SkPDFBitmap::emitObject(SkWStream* stream, SkPDFCatalog* catalog) { void SkPDFBitmap::emitObject(SkWStream* stream, SkPDFCatalog* catalog) {
SkAutoLockPixels autoLockPixels(fBitmap); SkAutoLockPixels autoLockPixels(fBitmap);
SkASSERT(fBitmap.colorType() != kIndex_8_SkColorType ||
fBitmap.getColorTable());
#ifndef SK_NO_FLATE
// Write to a temporary buffer to get the compressed length. // Write to a temporary buffer to get the compressed length.
SkDynamicMemoryWStream buffer; SkDynamicMemoryWStream buffer;
SkDeflateWStream deflateWStream(&buffer); SkDeflateWStream deflateWStream(&buffer);
bitmap_to_pdf_pixels(fBitmap, &deflateWStream); pmcolor_to_rgb24(fBitmap, &deflateWStream);
deflateWStream.finalize(); // call before detachAsStream(). deflateWStream.finalize(); // call before detachAsStream().
SkAutoTDelete<SkStreamAsset> asset(buffer.detachAsStream()); SkAutoTDelete<SkStreamAsset> asset(buffer.detachAsStream());
this->emitDict(stream, catalog, asset->getLength()); this->emitDict(stream, catalog, asset->getLength(), /*deflate=*/true);
pdf_stream_begin(stream); pdf_stream_begin(stream);
stream->writeStream(asset.get(), asset->getLength()); stream->writeStream(asset.get(), asset->getLength());
pdf_stream_end(stream); pdf_stream_end(stream);
} #else
this->emitDict(stream, catalog, 3 * pixel_count(fBitmap), /*deflate=*/false);
static SkPDFArray* make_indexed_color_space(const SkColorTable* table) { pdf_stream_begin(stream);
SkPDFArray* result = SkNEW(SkPDFArray); pmcolor_to_rgb24(fBitmap, stream);
result->reserve(4); pdf_stream_end(stream);
result->appendName("Indexed"); return;
result->appendName("DeviceRGB"); #endif // SK_NO_FLATE
SkASSERT(table);
if (table->count() < 1) {
result->appendInt(0);
char shortTableArray[3] = {0, 0, 0};
SkString tableString(shortTableArray, SK_ARRAY_COUNT(shortTableArray));
result->append(new SkPDFString(tableString))->unref();
return result;
}
result->appendInt(table->count() - 1); // maximum color index.
// Potentially, this could be represented in fewer bytes with a stream.
// Max size as a string is 1.5k.
char tableArray[256 * 3];
SkASSERT(3u * table->count() <= SK_ARRAY_COUNT(tableArray));
uint8_t* tablePtr = reinterpret_cast<uint8_t*>(tableArray);
const SkPMColor* colors = table->readColors();
for (int i = 0; i < table->count(); i++) {
pmcolor_to_rgb24(colors[i], tablePtr);
tablePtr += 3;
}
SkString tableString(tableArray, 3 * table->count());
result->append(new SkPDFString(tableString))->unref();
return result;
} }
void SkPDFBitmap::emitDict(SkWStream* stream, void SkPDFBitmap::emitDict(SkWStream* stream,
SkPDFCatalog* catalog, SkPDFCatalog* catalog,
size_t length) const { size_t length,
bool deflate) const {
SkPDFDict pdfDict("XObject"); SkPDFDict pdfDict("XObject");
pdfDict.insertName("Subtype", "Image"); pdfDict.insertName("Subtype", "Image");
pdfDict.insertInt("Width", fBitmap.width()); pdfDict.insertInt("Width", fBitmap.width());
pdfDict.insertInt("Height", fBitmap.height()); pdfDict.insertInt("Height", fBitmap.height());
if (fBitmap.colorType() == kIndex_8_SkColorType) { pdfDict.insertName("ColorSpace", "DeviceRGB");
SkASSERT(1 == pdf_color_component_count(fBitmap.colorType()));
pdfDict.insert("ColorSpace", make_indexed_color_space(
fBitmap.getColorTable()))->unref();
} else if (1 == pdf_color_component_count(fBitmap.colorType())) {
pdfDict.insertName("ColorSpace", "DeviceGray");
} else {
pdfDict.insertName("ColorSpace", "DeviceRGB");
}
pdfDict.insertInt("BitsPerComponent", 8); pdfDict.insertInt("BitsPerComponent", 8);
if (fSMask) { if (fSMask) {
pdfDict.insert("SMask", new SkPDFObjRef(fSMask))->unref(); pdfDict.insert("SMask", new SkPDFObjRef(fSMask))->unref();
} }
pdfDict.insertName("Filter", "FlateDecode"); if (deflate) {
pdfDict.insertName("Filter", "FlateDecode");
}
pdfDict.insertInt("Length", length); pdfDict.insertInt("Length", length);
pdfDict.emitObject(stream, catalog); pdfDict.emitObject(stream, catalog);
} }
@ -375,35 +253,64 @@ SkPDFBitmap::SkPDFBitmap(const SkBitmap& bm,
SkPDFBitmap::~SkPDFBitmap() {} SkPDFBitmap::~SkPDFBitmap() {}
//////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////
static bool is_transparent(const SkBitmap& bm) {
static const SkBitmap& immutable_bitmap(const SkBitmap& bm, SkBitmap* copy) { SkAutoLockPixels autoLockPixels(bm);
if (bm.isImmutable()) { if (NULL == bm.getPixels()) {
return bm; return true;
} }
bm.copyTo(copy); SkASSERT(kN32_SkColorType == bm.colorType());
copy->setImmutable(); for (int y = 0; y < bm.height(); ++y) {
return *copy; U8CPU alpha = 0;
const SkPMColor* src = bm.getAddr32(0, y);
for (int x = 0; x < bm.width(); ++x) {
alpha |= SkGetPackedA32(*src++);
}
if (alpha) {
return false;
}
}
return true;
} }
SkPDFBitmap* SkPDFBitmap::Create(SkPDFCanon* canon, const SkBitmap& bitmap) { SkPDFBitmap* SkPDFBitmap::Create(SkPDFCanon* canon,
const SkBitmap& bitmap,
const SkIRect& subset) {
SkASSERT(canon); SkASSERT(canon);
if (!SkColorTypeIsValid(bitmap.colorType()) || if (kN32_SkColorType != bitmap.colorType()) {
kUnknown_SkColorType == bitmap.colorType()) { // TODO(halcanary): support other colortypes.
return NULL;
}
SkBitmap bm;
// Should extractSubset be done by the SkPDFDevice?
if (!bitmap.extractSubset(&bm, subset)) {
return NULL; return NULL;
} }
SkBitmap copy;
const SkBitmap& bm = immutable_bitmap(bitmap, &copy);
if (bm.drawsNothing()) { if (bm.drawsNothing()) {
return NULL; return NULL;
} }
if (SkPDFBitmap* canonBitmap = canon->findBitmap(bm)) { if (!bm.isImmutable()) {
return SkRef(canonBitmap); SkBitmap copy;
if (!bm.copyTo(&copy)) {
return NULL;
}
copy.setImmutable();
bm = copy;
}
SkPDFBitmap* pdfBitmap = canon->findBitmap(bm);
if (pdfBitmap) {
return SkRef(pdfBitmap);
} }
SkPDFObject* smask = NULL; SkPDFObject* smask = NULL;
if (!bm.isOpaque() && !SkBitmap::ComputeIsOpaque(bm)) { if (!bm.isOpaque() && !SkBitmap::ComputeIsOpaque(bm)) {
if (is_transparent(bm)) {
return NULL;
}
// PDFAlphaBitmaps do not get directly canonicalized (they
// are refed by the SkPDFBitmap).
smask = SkNEW_ARGS(PDFAlphaBitmap, (bm)); smask = SkNEW_ARGS(PDFAlphaBitmap, (bm));
} }
SkPDFBitmap* pdfBitmap = SkNEW_ARGS(SkPDFBitmap, (bm, smask)); pdfBitmap = SkNEW_ARGS(SkPDFBitmap, (bm, smask));
canon->addBitmap(pdfBitmap); canon->addBitmap(pdfBitmap);
return pdfBitmap; return pdfBitmap;
} }

View File

@ -17,15 +17,18 @@ class SkPDFCanon;
* It is designed to use a minimal amout of memory, aside from refing * It is designed to use a minimal amout of memory, aside from refing
* the bitmap's pixels, and its emitObject() does not cache any data. * the bitmap's pixels, and its emitObject() does not cache any data.
* *
* If !bitmap.isImmutable(), then a copy of the bitmap must be made; * As of now, it only supports 8888 bitmaps (the most common case).
* there is no way around this.
* *
* The SkPDFBitmap::Create function will check the canon for duplicates. * The SkPDFBitmap::Create function will check the canon for duplicates.
*/ */
class SkPDFBitmap : public SkPDFObject { class SkPDFBitmap : public SkPDFObject {
public: public:
// Returns NULL on unsupported bitmap; // Returns NULL on unsupported bitmap;
static SkPDFBitmap* Create(SkPDFCanon*, const SkBitmap&); // TODO(halcanary): support other bitmap colortypes and replace
// SkPDFImage.
static SkPDFBitmap* Create(SkPDFCanon*,
const SkBitmap&,
const SkIRect& subset);
~SkPDFBitmap(); ~SkPDFBitmap();
void emitObject(SkWStream*, SkPDFCatalog*) SK_OVERRIDE; void emitObject(SkWStream*, SkPDFCatalog*) SK_OVERRIDE;
void addResources(SkTSet<SkPDFObject*>* resourceSet, void addResources(SkTSet<SkPDFObject*>* resourceSet,
@ -40,7 +43,7 @@ private:
const SkBitmap fBitmap; const SkBitmap fBitmap;
const SkAutoTUnref<SkPDFObject> fSMask; const SkAutoTUnref<SkPDFObject> fSMask;
SkPDFBitmap(const SkBitmap&, SkPDFObject*); SkPDFBitmap(const SkBitmap&, SkPDFObject*);
void emitDict(SkWStream*, SkPDFCatalog*, size_t) const; void emitDict(SkWStream*, SkPDFCatalog*, size_t, bool) const;
}; };
#endif // SkPDFBitmap_DEFINED #endif // SkPDFBitmap_DEFINED

View File

@ -17,10 +17,10 @@
#include "SkPaint.h" #include "SkPaint.h"
#include "SkPath.h" #include "SkPath.h"
#include "SkPathOps.h" #include "SkPathOps.h"
#include "SkPDFBitmap.h"
#include "SkPDFFont.h" #include "SkPDFFont.h"
#include "SkPDFFormXObject.h" #include "SkPDFFormXObject.h"
#include "SkPDFGraphicState.h" #include "SkPDFGraphicState.h"
#include "SkPDFImage.h"
#include "SkPDFResourceDict.h" #include "SkPDFResourceDict.h"
#include "SkPDFShader.h" #include "SkPDFShader.h"
#include "SkPDFStream.h" #include "SkPDFStream.h"
@ -2126,7 +2126,7 @@ void SkPDFDevice::internalDrawBitmap(const SkMatrix& origMatrix,
if (content.needShape()) { if (content.needShape()) {
SkPath shape; SkPath shape;
shape.addRect(SkRect::MakeWH(SkIntToScalar(subset.width()), shape.addRect(SkRect::MakeWH(SkIntToScalar(subset.width()),
SkIntToScalar(subset.height()))); SkIntToScalar( subset.height())));
shape.transform(matrix); shape.transform(matrix);
content.setShape(shape); content.setShape(shape);
} }
@ -2134,12 +2134,8 @@ void SkPDFDevice::internalDrawBitmap(const SkMatrix& origMatrix,
return; return;
} }
SkBitmap subsetBitmap; SkAutoTUnref<SkPDFObject> image(
// Should extractSubset be done by the SkPDFDevice? SkPDFCreateImageObject(fCanon, *bitmap, subset));
if (!bitmap->extractSubset(&subsetBitmap, subset)) {
return;
}
SkAutoTUnref<SkPDFObject> image(SkPDFBitmap::Create(fCanon, subsetBitmap));
if (!image) { if (!image) {
return; return;
} }

727
src/pdf/SkPDFImage.cpp Normal file
View File

@ -0,0 +1,727 @@
/*
* Copyright 2010 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkPDFImage.h"
#include "SkBitmap.h"
#include "SkColor.h"
#include "SkColorPriv.h"
#include "SkData.h"
#include "SkFlate.h"
#include "SkPDFBitmap.h"
#include "SkPDFCatalog.h"
#include "SkPixelRef.h"
#include "SkRect.h"
#include "SkStream.h"
#include "SkString.h"
#include "SkUnPreMultiply.h"
static size_t get_uncompressed_size(const SkBitmap& bitmap,
const SkIRect& srcRect) {
switch (bitmap.colorType()) {
case kIndex_8_SkColorType:
return srcRect.width() * srcRect.height();
case kARGB_4444_SkColorType:
return ((srcRect.width() * 3 + 1) / 2) * srcRect.height();
case kRGB_565_SkColorType:
return srcRect.width() * 3 * srcRect.height();
case kRGBA_8888_SkColorType:
case kBGRA_8888_SkColorType:
case kGray_8_SkColorType:
return srcRect.width() * 3 * srcRect.height();
case kAlpha_8_SkColorType:
return 1;
default:
SkASSERT(false);
return 0;
}
}
static SkStream* extract_index8_image(const SkBitmap& bitmap,
const SkIRect& srcRect) {
const int rowBytes = srcRect.width();
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
(get_uncompressed_size(bitmap, srcRect)));
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
memcpy(dst, bitmap.getAddr8(srcRect.fLeft, y), rowBytes);
dst += rowBytes;
}
return stream;
}
static SkStream* extract_argb4444_data(const SkBitmap& bitmap,
const SkIRect& srcRect,
bool extractAlpha,
bool* isOpaque,
bool* isTransparent) {
SkStream* stream;
uint8_t* dst = NULL;
if (extractAlpha) {
const int alphaRowBytes = (srcRect.width() + 1) / 2;
stream = SkNEW_ARGS(SkMemoryStream,
(alphaRowBytes * srcRect.height()));
} else {
stream = SkNEW_ARGS(SkMemoryStream,
(get_uncompressed_size(bitmap, srcRect)));
}
dst = (uint8_t*)stream->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint16_t* src = bitmap.getAddr16(0, y);
int x;
for (x = srcRect.fLeft; x + 1 < srcRect.fRight; x += 2) {
if (extractAlpha) {
dst[0] = (SkGetPackedA4444(src[x]) << 4) |
SkGetPackedA4444(src[x + 1]);
*isOpaque &= dst[0] == SK_AlphaOPAQUE;
*isTransparent &= dst[0] == SK_AlphaTRANSPARENT;
dst++;
} else {
dst[0] = (SkGetPackedR4444(src[x]) << 4) |
SkGetPackedG4444(src[x]);
dst[1] = (SkGetPackedB4444(src[x]) << 4) |
SkGetPackedR4444(src[x + 1]);
dst[2] = (SkGetPackedG4444(src[x + 1]) << 4) |
SkGetPackedB4444(src[x + 1]);
dst += 3;
}
}
if (srcRect.width() & 1) {
if (extractAlpha) {
dst[0] = (SkGetPackedA4444(src[x]) << 4);
*isOpaque &= dst[0] == (SK_AlphaOPAQUE & 0xF0);
*isTransparent &= dst[0] == (SK_AlphaTRANSPARENT & 0xF0);
dst++;
} else {
dst[0] = (SkGetPackedR4444(src[x]) << 4) |
SkGetPackedG4444(src[x]);
dst[1] = (SkGetPackedB4444(src[x]) << 4);
dst += 2;
}
}
}
return stream;
}
static SkStream* extract_rgb565_image(const SkBitmap& bitmap,
const SkIRect& srcRect) {
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
(get_uncompressed_size(bitmap,
srcRect)));
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint16_t* src = bitmap.getAddr16(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
dst[0] = SkGetPackedR16(src[x]);
dst[1] = SkGetPackedG16(src[x]);
dst[2] = SkGetPackedB16(src[x]);
dst += 3;
}
}
return stream;
}
static SkStream* extract_gray8_image(const SkBitmap& bitmap, const SkIRect& srcRect) {
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
(get_uncompressed_size(bitmap, srcRect)));
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint8_t* src = bitmap.getAddr8(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
dst[0] = dst[1] = dst[2] = src[x];
dst += 3;
}
}
return stream;
}
static uint32_t get_argb8888_neighbor_avg_color(const SkBitmap& bitmap,
int xOrig,
int yOrig);
static SkStream* extract_argb8888_data(const SkBitmap& bitmap,
const SkIRect& srcRect,
bool extractAlpha,
bool* isOpaque,
bool* isTransparent) {
size_t streamSize = extractAlpha ? srcRect.width() * srcRect.height()
: get_uncompressed_size(bitmap, srcRect);
SkStream* stream = SkNEW_ARGS(SkMemoryStream, (streamSize));
uint8_t* dst = (uint8_t*)stream->getMemoryBase();
const SkUnPreMultiply::Scale* scaleTable = SkUnPreMultiply::GetScaleTable();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint32_t* src = bitmap.getAddr32(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
SkPMColor c = src[x];
U8CPU alpha = SkGetPackedA32(c);
if (extractAlpha) {
*isOpaque &= alpha == SK_AlphaOPAQUE;
*isTransparent &= alpha == SK_AlphaTRANSPARENT;
*dst++ = alpha;
} else {
if (SK_AlphaTRANSPARENT == alpha) {
// It is necessary to average the color component of
// transparent pixels with their surrounding neighbors
// since the PDF renderer may separately re-sample the
// alpha and color channels when the image is not
// displayed at its native resolution. Since an alpha of
// zero gives no information about the color component,
// the pathological case is a white image with sharp
// transparency bounds - the color channel goes to black,
// and the should-be-transparent pixels are rendered
// as grey because of the separate soft mask and color
// resizing.
c = get_argb8888_neighbor_avg_color(bitmap, x, y);
*dst++ = SkGetPackedR32(c);
*dst++ = SkGetPackedG32(c);
*dst++ = SkGetPackedB32(c);
} else {
SkUnPreMultiply::Scale s = scaleTable[alpha];
*dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedR32(c));
*dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedG32(c));
*dst++ = SkUnPreMultiply::ApplyScale(s, SkGetPackedB32(c));
}
}
}
}
SkASSERT(dst == streamSize + (uint8_t*)stream->getMemoryBase());
return stream;
}
static SkStream* extract_a8_alpha(const SkBitmap& bitmap,
const SkIRect& srcRect,
bool* isOpaque,
bool* isTransparent) {
const int alphaRowBytes = srcRect.width();
SkStream* stream = SkNEW_ARGS(SkMemoryStream,
(alphaRowBytes * srcRect.height()));
uint8_t* alphaDst = (uint8_t*)stream->getMemoryBase();
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint8_t* src = bitmap.getAddr8(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
alphaDst[0] = src[x];
*isOpaque &= alphaDst[0] == SK_AlphaOPAQUE;
*isTransparent &= alphaDst[0] == SK_AlphaTRANSPARENT;
alphaDst++;
}
}
return stream;
}
static SkStream* create_black_image() {
SkStream* stream = SkNEW_ARGS(SkMemoryStream, (1));
((uint8_t*)stream->getMemoryBase())[0] = 0;
return stream;
}
/**
* Extract either the color or image data from a SkBitmap into a SkStream.
* @param bitmap Bitmap to extract data from.
* @param srcRect Region in the bitmap to extract.
* @param extractAlpha Set to true to extract the alpha data or false to
* extract the color data.
* @param isTransparent Pointer to a bool to output whether the alpha is
* completely transparent. May be NULL. Only valid when
* extractAlpha == true.
* @return Unencoded image data, or NULL if either data was not
* available or alpha data was requested but the image was
* entirely transparent or opaque.
*/
static SkStream* extract_image_data(const SkBitmap& bitmap,
const SkIRect& srcRect,
bool extractAlpha, bool* isTransparent) {
SkColorType colorType = bitmap.colorType();
if (extractAlpha && (kIndex_8_SkColorType == colorType ||
kRGB_565_SkColorType == colorType ||
kGray_8_SkColorType == colorType)) {
if (isTransparent != NULL) {
*isTransparent = false;
}
return NULL;
}
SkAutoLockPixels lock(bitmap);
if (NULL == bitmap.getPixels()) {
return NULL;
}
bool isOpaque = true;
bool transparent = extractAlpha;
SkAutoTDelete<SkStream> stream;
switch (colorType) {
case kIndex_8_SkColorType:
if (!extractAlpha) {
stream.reset(extract_index8_image(bitmap, srcRect));
}
break;
case kARGB_4444_SkColorType:
stream.reset(extract_argb4444_data(bitmap, srcRect, extractAlpha,
&isOpaque, &transparent));
break;
case kRGB_565_SkColorType:
if (!extractAlpha) {
stream.reset(extract_rgb565_image(bitmap, srcRect));
}
break;
case kGray_8_SkColorType:
if (!extractAlpha) {
stream.reset(extract_gray8_image(bitmap, srcRect));
}
break;
case kN32_SkColorType:
stream.reset(extract_argb8888_data(bitmap, srcRect, extractAlpha,
&isOpaque, &transparent));
break;
case kAlpha_8_SkColorType:
if (!extractAlpha) {
stream.reset(create_black_image());
} else {
stream.reset(extract_a8_alpha(bitmap, srcRect,
&isOpaque, &transparent));
}
break;
default:
SkASSERT(false);
}
if (isTransparent != NULL) {
*isTransparent = transparent;
}
if (extractAlpha && (transparent || isOpaque)) {
return NULL;
}
return stream.detach();
}
static SkPDFArray* make_indexed_color_space(SkColorTable* table) {
SkPDFArray* result = new SkPDFArray();
result->reserve(4);
result->appendName("Indexed");
result->appendName("DeviceRGB");
result->appendInt(table->count() - 1);
// Potentially, this could be represented in fewer bytes with a stream.
// Max size as a string is 1.5k.
SkString index;
for (int i = 0; i < table->count(); i++) {
char buf[3];
SkColor color = SkUnPreMultiply::PMColorToColor((*table)[i]);
buf[0] = SkGetPackedR32(color);
buf[1] = SkGetPackedG32(color);
buf[2] = SkGetPackedB32(color);
index.append(buf, 3);
}
result->append(new SkPDFString(index))->unref();
return result;
}
/**
* Removes the alpha component of an ARGB color (including unpremultiply) while
* keeping the output in the same format as the input.
*/
static uint32_t remove_alpha_argb8888(uint32_t pmColor) {
SkColor color = SkUnPreMultiply::PMColorToColor(pmColor);
return SkPackARGB32NoCheck(SK_AlphaOPAQUE,
SkColorGetR(color),
SkColorGetG(color),
SkColorGetB(color));
}
static uint16_t remove_alpha_argb4444(uint16_t pmColor) {
return SkPixel32ToPixel4444(
remove_alpha_argb8888(SkPixel4444ToPixel32(pmColor)));
}
static uint32_t get_argb8888_neighbor_avg_color(const SkBitmap& bitmap,
int xOrig, int yOrig) {
uint8_t count = 0;
uint16_t r = 0;
uint16_t g = 0;
uint16_t b = 0;
for (int y = yOrig - 1; y <= yOrig + 1; y++) {
if (y < 0 || y >= bitmap.height()) {
continue;
}
uint32_t* src = bitmap.getAddr32(0, y);
for (int x = xOrig - 1; x <= xOrig + 1; x++) {
if (x < 0 || x >= bitmap.width()) {
continue;
}
if (SkGetPackedA32(src[x]) != SK_AlphaTRANSPARENT) {
uint32_t color = remove_alpha_argb8888(src[x]);
r += SkGetPackedR32(color);
g += SkGetPackedG32(color);
b += SkGetPackedB32(color);
count++;
}
}
}
if (count == 0) {
return SkPackARGB32NoCheck(SK_AlphaOPAQUE, 0, 0, 0);
} else {
return SkPackARGB32NoCheck(SK_AlphaOPAQUE,
r / count, g / count, b / count);
}
}
static uint16_t get_argb4444_neighbor_avg_color(const SkBitmap& bitmap,
int xOrig, int yOrig) {
uint8_t count = 0;
uint8_t r = 0;
uint8_t g = 0;
uint8_t b = 0;
for (int y = yOrig - 1; y <= yOrig + 1; y++) {
if (y < 0 || y >= bitmap.height()) {
continue;
}
uint16_t* src = bitmap.getAddr16(0, y);
for (int x = xOrig - 1; x <= xOrig + 1; x++) {
if (x < 0 || x >= bitmap.width()) {
continue;
}
if ((SkGetPackedA4444(src[x]) & 0x0F) != SK_AlphaTRANSPARENT) {
uint16_t color = remove_alpha_argb4444(src[x]);
r += SkGetPackedR4444(color);
g += SkGetPackedG4444(color);
b += SkGetPackedB4444(color);
count++;
}
}
}
if (count == 0) {
return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F, 0, 0, 0);
} else {
return SkPackARGB4444(SK_AlphaOPAQUE & 0x0F,
r / count, g / count, b / count);
}
}
static SkBitmap unpremultiply_bitmap(const SkBitmap& bitmap,
const SkIRect& srcRect) {
SkBitmap outBitmap;
outBitmap.allocPixels(bitmap.info().makeWH(srcRect.width(), srcRect.height()));
int dstRow = 0;
SkAutoLockPixels outBitmapPixelLock(outBitmap);
SkAutoLockPixels bitmapPixelLock(bitmap);
switch (bitmap.colorType()) {
case kARGB_4444_SkColorType: {
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint16_t* dst = outBitmap.getAddr16(0, dstRow);
uint16_t* src = bitmap.getAddr16(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
uint8_t a = SkGetPackedA4444(src[x]);
// It is necessary to average the color component of
// transparent pixels with their surrounding neighbors
// since the PDF renderer may separately re-sample the
// alpha and color channels when the image is not
// displayed at its native resolution. Since an alpha of
// zero gives no information about the color component,
// the pathological case is a white image with sharp
// transparency bounds - the color channel goes to black,
// and the should-be-transparent pixels are rendered
// as grey because of the separate soft mask and color
// resizing.
if (a == (SK_AlphaTRANSPARENT & 0x0F)) {
*dst = get_argb4444_neighbor_avg_color(bitmap, x, y);
} else {
*dst = remove_alpha_argb4444(src[x]);
}
dst++;
}
dstRow++;
}
break;
}
case kN32_SkColorType: {
for (int y = srcRect.fTop; y < srcRect.fBottom; y++) {
uint32_t* dst = outBitmap.getAddr32(0, dstRow);
uint32_t* src = bitmap.getAddr32(0, y);
for (int x = srcRect.fLeft; x < srcRect.fRight; x++) {
uint8_t a = SkGetPackedA32(src[x]);
if (a == SK_AlphaTRANSPARENT) {
*dst = get_argb8888_neighbor_avg_color(bitmap, x, y);
} else {
*dst = remove_alpha_argb8888(src[x]);
}
dst++;
}
dstRow++;
}
break;
}
default:
SkASSERT(false);
}
outBitmap.setImmutable();
return outBitmap;
}
// static
SkPDFImage* SkPDFImage::CreateImage(const SkBitmap& bitmap,
const SkIRect& srcRect) {
if (bitmap.colorType() == kUnknown_SkColorType) {
return NULL;
}
bool isTransparent = false;
SkAutoTDelete<SkStream> alphaData;
if (!bitmap.isOpaque()) {
// Note that isOpaque is not guaranteed to return false for bitmaps
// with alpha support but a completely opaque alpha channel,
// so alphaData may still be NULL if we have a completely opaque
// (or transparent) bitmap.
alphaData.reset(
extract_image_data(bitmap, srcRect, true, &isTransparent));
}
if (isTransparent) {
return NULL;
}
SkPDFImage* image;
SkColorType colorType = bitmap.colorType();
if (alphaData.get() != NULL && (kN32_SkColorType == colorType ||
kARGB_4444_SkColorType == colorType)) {
if (kN32_SkColorType == colorType) {
image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap, false,
SkIRect::MakeWH(srcRect.width(),
srcRect.height())));
} else {
SkBitmap unpremulBitmap = unpremultiply_bitmap(bitmap, srcRect);
image = SkNEW_ARGS(SkPDFImage, (NULL, unpremulBitmap, false,
SkIRect::MakeWH(srcRect.width(),
srcRect.height())));
}
} else {
image = SkNEW_ARGS(SkPDFImage, (NULL, bitmap, false, srcRect));
}
if (alphaData.get() != NULL) {
SkAutoTUnref<SkPDFImage> mask(
SkNEW_ARGS(SkPDFImage, (alphaData.get(), bitmap, true, srcRect)));
image->insert("SMask", new SkPDFObjRef(mask))->unref();
}
return image;
}
SkPDFImage::~SkPDFImage() {}
SkPDFImage::SkPDFImage(SkStream* stream,
const SkBitmap& bitmap,
bool isAlpha,
const SkIRect& srcRect)
: fIsAlpha(isAlpha),
fSrcRect(srcRect) {
if (bitmap.isImmutable()) {
fBitmap = bitmap;
} else {
bitmap.deepCopyTo(&fBitmap);
fBitmap.setImmutable();
}
if (stream != NULL) {
this->setData(stream);
fStreamValid = true;
} else {
fStreamValid = false;
}
SkColorType colorType = fBitmap.colorType();
insertName("Type", "XObject");
insertName("Subtype", "Image");
bool alphaOnly = (kAlpha_8_SkColorType == colorType);
if (!isAlpha && alphaOnly) {
// For alpha only images, we stretch a single pixel of black for
// the color/shape part.
SkAutoTUnref<SkPDFInt> one(new SkPDFInt(1));
insert("Width", one.get());
insert("Height", one.get());
} else {
insertInt("Width", fSrcRect.width());
insertInt("Height", fSrcRect.height());
}
if (isAlpha || alphaOnly) {
insertName("ColorSpace", "DeviceGray");
} else if (kIndex_8_SkColorType == colorType) {
SkAutoLockPixels alp(fBitmap);
insert("ColorSpace",
make_indexed_color_space(fBitmap.getColorTable()))->unref();
} else {
insertName("ColorSpace", "DeviceRGB");
}
int bitsPerComp = 8;
if (kARGB_4444_SkColorType == colorType) {
bitsPerComp = 4;
}
insertInt("BitsPerComponent", bitsPerComp);
if (kRGB_565_SkColorType == colorType) {
SkASSERT(!isAlpha);
SkAutoTUnref<SkPDFInt> zeroVal(new SkPDFInt(0));
SkAutoTUnref<SkPDFScalar> scale5Val(
new SkPDFScalar(8.2258f)); // 255/2^5-1
SkAutoTUnref<SkPDFScalar> scale6Val(
new SkPDFScalar(4.0476f)); // 255/2^6-1
SkAutoTUnref<SkPDFArray> decodeValue(new SkPDFArray());
decodeValue->reserve(6);
decodeValue->append(zeroVal.get());
decodeValue->append(scale5Val.get());
decodeValue->append(zeroVal.get());
decodeValue->append(scale6Val.get());
decodeValue->append(zeroVal.get());
decodeValue->append(scale5Val.get());
insert("Decode", decodeValue.get());
}
}
SkPDFImage::SkPDFImage(SkPDFImage& pdfImage)
: SkPDFStream(pdfImage),
fBitmap(pdfImage.fBitmap),
fIsAlpha(pdfImage.fIsAlpha),
fSrcRect(pdfImage.fSrcRect),
fStreamValid(pdfImage.fStreamValid) {
// Nothing to do here - the image params are already copied in SkPDFStream's
// constructor, and the bitmap will be regenerated and encoded in
// populate.
}
bool SkPDFImage::populate(SkPDFCatalog* catalog) {
if (getState() == kUnused_State) {
// Initializing image data for the first time.
// Fallback method
if (!fStreamValid) {
SkAutoTDelete<SkStream> stream(
extract_image_data(fBitmap, fSrcRect, fIsAlpha, NULL));
this->setData(stream);
fStreamValid = true;
}
return INHERITED::populate(catalog);
}
#ifndef SK_NO_FLATE
else if (getState() == kNoCompression_State) {
// Compression has not been requested when the stream was first created,
// but the new catalog wants it compressed.
if (!getSubstitute()) {
SkPDFStream* substitute = SkNEW_ARGS(SkPDFImage, (*this));
setSubstitute(substitute);
catalog->setSubstitute(this, substitute);
}
return false;
}
#endif // SK_NO_FLATE
return true;
}
#if 0 // reenable when we can figure out the JPEG colorspace
namespace {
/**
* This PDFObject assumes that its constructor was handed
* Jpeg-encoded data that can be directly embedded into a PDF.
*/
class PDFJPEGImage : public SkPDFObject {
SkAutoTUnref<SkData> fData;
int fWidth;
int fHeight;
public:
PDFJPEGImage(SkData* data, int width, int height)
: fData(SkRef(data)), fWidth(width), fHeight(height) {}
virtual void emitObject(
SkWStream* stream,
SkPDFCatalog* catalog, bool indirect) SK_OVERRIDE {
if (indirect) {
this->emitIndirectObject(stream, catalog);
return;
}
SkASSERT(fData.get());
const char kPrefaceFormat[] =
"<<"
"/Type /XObject\n"
"/Subtype /Image\n"
"/Width %d\n"
"/Height %d\n"
"/ColorSpace /DeviceRGB\n" // or DeviceGray
"/BitsPerComponent 8\n"
"/Filter /DCTDecode\n"
"/ColorTransform 0\n"
"/Length " SK_SIZE_T_SPECIFIER "\n"
">> stream\n";
SkString preface(
SkStringPrintf(kPrefaceFormat, fWidth, fHeight, fData->size()));
const char kPostface[] = "\nendstream";
stream->write(preface.c_str(), preface.size());
stream->write(fData->data(), fData->size());
stream->write(kPostface, sizeof(kPostface));
}
};
/**
* If the bitmap is not subsetted, return its encoded data, if
* availible.
*/
static inline SkData* ref_encoded_data(const SkBitmap& bm) {
if ((NULL == bm.pixelRef())
|| !bm.pixelRefOrigin().isZero()
|| (bm.info().dimensions() != bm.pixelRef()->info().dimensions())) {
return NULL;
}
return bm.pixelRef()->refEncodedData();
}
/*
* This functions may give false negatives but no false positives.
*/
static bool is_jfif_jpeg(SkData* data) {
if (!data || (data->size() < 11)) {
return false;
}
const uint8_t bytesZeroToThree[] = {0xFF, 0xD8, 0xFF, 0xE0};
const uint8_t bytesSixToTen[] = {'J', 'F', 'I', 'F', 0};
// 0 1 2 3 4 5 6 7 8 9 10
// FF D8 FF E0 ?? ?? 'J' 'F' 'I' 'F' 00 ...
return ((0 == memcmp(data->bytes(), bytesZeroToThree,
sizeof(bytesZeroToThree)))
&& (0 == memcmp(data->bytes() + 6, bytesSixToTen,
sizeof(bytesSixToTen))));
}
} // namespace
#endif
SkPDFObject* SkPDFCreateImageObject(SkPDFCanon* canon,
const SkBitmap& bitmap,
const SkIRect& subset) {
if (SkPDFObject* pdfBitmap = SkPDFBitmap::Create(canon, bitmap, subset)) {
return pdfBitmap;
}
#if 0 // reenable when we can figure out the JPEG colorspace
if (SkIRect::MakeWH(bitmap.width(), bitmap.height()) == subset) {
SkAutoTUnref<SkData> encodedData(ref_encoded_data(bitmap));
if (is_jfif_jpeg(encodedData)) {
return SkNEW_ARGS(PDFJPEGImage,
(encodedData, bitmap.width(), bitmap.height()));
}
}
#endif
return SkPDFImage::CreateImage(bitmap, subset);
}

91
src/pdf/SkPDFImage.h Normal file
View File

@ -0,0 +1,91 @@
/*
* Copyright 2010 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkPDFImage_DEFINED
#define SkPDFImage_DEFINED
#include "SkPicture.h"
#include "SkPDFDevice.h"
#include "SkPDFStream.h"
#include "SkPDFTypes.h"
#include "SkRefCnt.h"
class SkBitmap;
class SkData;
class SkPDFCatalog;
struct SkIRect;
/**
* Return the mose efficient availible encoding of the given bitmap.
*/
SkPDFObject* SkPDFCreateImageObject(SkPDFCanon* canon,
const SkBitmap&,
const SkIRect& subset);
/** \class SkPDFImage
An image XObject.
*/
// We could play the same trick here as is done in SkPDFGraphicState, storing
// a copy of the Bitmap object (not the pixels), the pixel generation number,
// and settings used from the paint to canonicalize image objects.
class SkPDFImage : public SkPDFStream {
public:
/** Create a new Image XObject to represent the passed bitmap.
* @param bitmap The image to encode.
* @param srcRect The rectangle to cut out of bitmap.
* @param paint Used to calculate alpha, masks, etc.
* @return The image XObject or NUll if there is nothing to draw for
* the given parameters.
*/
static SkPDFImage* CreateImage(const SkBitmap& bitmap,
const SkIRect& srcRect);
virtual ~SkPDFImage();
bool isEmpty() {
return fSrcRect.isEmpty();
}
private:
SkBitmap fBitmap;
bool fIsAlpha;
SkIRect fSrcRect;
bool fStreamValid;
/** Create a PDF image XObject. Entries for the image properties are
* automatically added to the stream dictionary.
* @param stream The image stream. May be NULL. Otherwise, this
* (instead of the input bitmap) will be used as the
* PDF's content stream, possibly with lossless encoding.
* Will be duplicated, and left in indeterminate state.
* @param bitmap The image. If a stream is not given, its color data
* will be used as the image. If a stream is given, this
* is used for configuration only.
* @param isAlpha Whether or not this is the alpha of an image.
* @param srcRect The clipping applied to bitmap before generating
* imageData.
*/
SkPDFImage(SkStream* stream, const SkBitmap& bitmap, bool isAlpha,
const SkIRect& srcRect);
/** Copy constructor, used to generate substitutes.
* @param image The SkPDFImage to copy.
*/
SkPDFImage(SkPDFImage& pdfImage);
// Populate the stream dictionary. This method returns false if
// fSubstitute should be used.
virtual bool populate(SkPDFCatalog* catalog);
typedef SkPDFStream INHERITED;
};
#endif