Reland "Improve matrix construction abilities in Metal codegen."
This is a reland of daa573eb91
Original change's description:
> Improve matrix construction abilities in Metal codegen.
>
> GLSL (and thus SkSL) is flexible about the input parameters to a matrix
> constructor. You can mix vectors and scalars freely, and it will
> populate them into your matrix as if it was a flat list of scalars.
>
> Metal does not natively support this, and requires the proper number of
> floatNs to be passed in. However, the Metal code generator will now emit
> constructor helper functions that will fix this up automatically.
>
> Additionally, this CL simplifies the Metal codegen for single-scalar
> matrix construction. This should create a matrix with the passed-in
> scalar running along the matrix diagonal. The Metal codegen previously
> emitted a helper function to do this work on our behalf. However,
> that's not necessary; Metal already contains a single-argument matrix
> constructor that will do this work automatically for us.
>
> Change-Id: I76901bfe167502797aa4cb98d0e8986d9ebc51e5
> Bug: skia:10280
> Reviewed-on: https://skia-review.googlesource.com/c/skia/+/292477
> Auto-Submit: John Stiles <johnstiles@google.com>
> Commit-Queue: Brian Osman <brianosman@google.com>
> Reviewed-by: Brian Osman <brianosman@google.com>
> Reviewed-by: Ethan Nicholas <ethannicholas@google.com>
Bug: skia:10280
Change-Id: If5591392bb96e1cfb643d4e3c19a0ee4affec58d
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/292689
Commit-Queue: John Stiles <johnstiles@google.com>
Commit-Queue: Brian Osman <brianosman@google.com>
Auto-Submit: John Stiles <johnstiles@google.com>
Reviewed-by: Brian Osman <brianosman@google.com>
This commit is contained in:
parent
b985b4b67f
commit
1bdafbf016
@ -379,82 +379,94 @@ void MetalCodeGenerator::writeSpecialIntrinsic(const FunctionCall & c, SpecialIn
|
||||
}
|
||||
}
|
||||
|
||||
// If it hasn't already been written, writes a constructor for 'matrix' which takes a single value
|
||||
// of type 'arg'.
|
||||
String MetalCodeGenerator::getMatrixConstructHelper(const Type& matrix, const Type& arg) {
|
||||
String key = matrix.name() + arg.name();
|
||||
auto found = fHelpers.find(key);
|
||||
if (found != fHelpers.end()) {
|
||||
return found->second;
|
||||
}
|
||||
String name;
|
||||
// Generates a constructor for 'matrix' which reorganizes the input arguments into the proper shape.
|
||||
// Keeps track of previously generated constructors so that we won't generate more than one
|
||||
// constructor for any given permutation of input argument types. Returns the name of the
|
||||
// generated constructor method.
|
||||
String MetalCodeGenerator::getMatrixConstructHelper(const Constructor& c) {
|
||||
const Type& matrix = c.fType;
|
||||
int columns = matrix.columns();
|
||||
int rows = matrix.rows();
|
||||
if (arg.isNumber()) {
|
||||
// creating a matrix from a single scalar value
|
||||
name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float";
|
||||
fExtraFunctions.printf("float%dx%d %s(float x) {\n",
|
||||
columns, rows, name.c_str());
|
||||
fExtraFunctions.printf(" return float%dx%d(", columns, rows);
|
||||
for (int i = 0; i < columns; ++i) {
|
||||
if (i > 0) {
|
||||
fExtraFunctions.writeText(", ");
|
||||
}
|
||||
fExtraFunctions.printf("float%d(", rows);
|
||||
for (int j = 0; j < rows; ++j) {
|
||||
if (j > 0) {
|
||||
fExtraFunctions.writeText(", ");
|
||||
const std::vector<std::unique_ptr<Expression>>& args = c.fArguments;
|
||||
|
||||
// Create the helper-method name and use it as our lookup key.
|
||||
String name;
|
||||
name.appendf("float%dx%d_from", columns, rows);
|
||||
for (const std::unique_ptr<Expression>& expr : args) {
|
||||
name.appendf("_%s", expr->fType.displayName().c_str());
|
||||
}
|
||||
|
||||
// If a helper-method has already been synthesized, we don't need to synthesize it again.
|
||||
auto [iter, newlyCreated] = fHelpers.insert(name);
|
||||
if (!newlyCreated) {
|
||||
return name;
|
||||
}
|
||||
|
||||
// Unlike GLSL, Metal requires that matrices are initialized with exactly R vectors of C
|
||||
// components apiece. (In Metal 2.0, you can also supply R*C scalars, but you still cannot
|
||||
// supply a mixture of scalars and vectors.)
|
||||
fExtraFunctions.printf("float%dx%d %s(", columns, rows, name.c_str());
|
||||
|
||||
size_t argIndex = 0;
|
||||
const char* argSeparator = "";
|
||||
for (const std::unique_ptr<Expression>& expr : c.fArguments) {
|
||||
fExtraFunctions.printf("%s%s x%zu", argSeparator,
|
||||
expr->fType.displayName().c_str(), argIndex++);
|
||||
argSeparator = ", ";
|
||||
}
|
||||
|
||||
fExtraFunctions.printf(") {\n return float%dx%d(", columns, rows);
|
||||
|
||||
argIndex = 0;
|
||||
int argPosition = 0;
|
||||
|
||||
const char* columnSeparator = "";
|
||||
for (int c = 0; c < columns; ++c) {
|
||||
fExtraFunctions.printf("%sfloat%d(", columnSeparator, rows);
|
||||
columnSeparator = "), ";
|
||||
|
||||
const char* rowSeparator = "";
|
||||
for (int r = 0; r < rows; ++r) {
|
||||
fExtraFunctions.printf("%s", rowSeparator);
|
||||
rowSeparator = ", ";
|
||||
|
||||
const Type& argType = args[argIndex]->fType;
|
||||
switch (argType.kind()) {
|
||||
case Type::kScalar_Kind: {
|
||||
fExtraFunctions.printf("x%zu", argIndex);
|
||||
break;
|
||||
}
|
||||
if (i == j) {
|
||||
fExtraFunctions.writeText("x");
|
||||
} else {
|
||||
fExtraFunctions.writeText("0");
|
||||
case Type::kVector_Kind: {
|
||||
fExtraFunctions.printf("x%zu[%d]", argIndex, argPosition);
|
||||
break;
|
||||
}
|
||||
case Type::kMatrix_Kind: {
|
||||
fExtraFunctions.printf("x%zu[%d][%d]", argIndex,
|
||||
argPosition / argType.rows(),
|
||||
argPosition % argType.rows());
|
||||
break;
|
||||
}
|
||||
default: {
|
||||
SkDEBUGFAIL("incorrect type of argument for matrix constructor");
|
||||
fExtraFunctions.printf("<error>");
|
||||
break;
|
||||
}
|
||||
}
|
||||
fExtraFunctions.writeText(")");
|
||||
|
||||
++argPosition;
|
||||
if (argPosition >= argType.columns() * argType.rows()) {
|
||||
++argIndex;
|
||||
argPosition = 0;
|
||||
}
|
||||
}
|
||||
fExtraFunctions.writeText(");\n}\n");
|
||||
} else if (arg.kind() == Type::kMatrix_Kind) {
|
||||
// creating a matrix from another matrix
|
||||
int argColumns = arg.columns();
|
||||
int argRows = arg.rows();
|
||||
name = "float" + to_string(columns) + "x" + to_string(rows) + "_from_float" +
|
||||
to_string(argColumns) + "x" + to_string(argRows);
|
||||
fExtraFunctions.printf("float%dx%d %s(float%dx%d m) {\n",
|
||||
columns, rows, name.c_str(), argColumns, argRows);
|
||||
fExtraFunctions.printf(" return float%dx%d(", columns, rows);
|
||||
for (int i = 0; i < columns; ++i) {
|
||||
if (i > 0) {
|
||||
fExtraFunctions.writeText(", ");
|
||||
}
|
||||
fExtraFunctions.printf("float%d(", rows);
|
||||
for (int j = 0; j < rows; ++j) {
|
||||
if (j > 0) {
|
||||
fExtraFunctions.writeText(", ");
|
||||
}
|
||||
if (i < argColumns && j < argRows) {
|
||||
fExtraFunctions.printf("m[%d][%d]", i, j);
|
||||
} else {
|
||||
fExtraFunctions.writeText("0");
|
||||
}
|
||||
}
|
||||
fExtraFunctions.writeText(")");
|
||||
}
|
||||
fExtraFunctions.writeText(");\n}\n");
|
||||
} else if (matrix.rows() == 2 && matrix.columns() == 2 && arg == *fContext.fFloat4_Type) {
|
||||
// float2x2(float4) doesn't work, need to split it into float2x2(float2, float2)
|
||||
name = "float2x2_from_float4";
|
||||
fExtraFunctions.printf(
|
||||
"float2x2 %s(float4 v) {\n"
|
||||
" return float2x2(float2(v[0], v[1]), float2(v[2], v[3]));\n"
|
||||
"}\n",
|
||||
name.c_str()
|
||||
);
|
||||
} else {
|
||||
SkASSERT(false);
|
||||
}
|
||||
|
||||
if (argPosition != 0 || argIndex != args.size()) {
|
||||
SkDEBUGFAIL("incorrect number of arguments for matrix constructor");
|
||||
name = "<error>";
|
||||
}
|
||||
fHelpers[key] = name;
|
||||
|
||||
fExtraFunctions.printf("));\n}\n");
|
||||
return name;
|
||||
}
|
||||
|
||||
@ -468,43 +480,116 @@ bool MetalCodeGenerator::canCoerce(const Type& t1, const Type& t2) {
|
||||
return t1.isFloat() && t2.isFloat();
|
||||
}
|
||||
|
||||
void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) {
|
||||
if (c.fArguments.size() == 1 && this->canCoerce(c.fType, c.fArguments[0]->fType)) {
|
||||
this->writeExpression(*c.fArguments[0], parentPrecedence);
|
||||
return;
|
||||
bool MetalCodeGenerator::matrixConstructHelperIsNeeded(const Constructor& c) {
|
||||
// A matrix construct helper is only necessary if we are, in fact, constructing a matrix.
|
||||
if (c.fType.kind() != Type::kMatrix_Kind) {
|
||||
return false;
|
||||
}
|
||||
if (c.fType.kind() == Type::kMatrix_Kind && c.fArguments.size() == 1) {
|
||||
const Expression& arg = *c.fArguments[0];
|
||||
String name = this->getMatrixConstructHelper(c.fType, arg.fType);
|
||||
this->write(name);
|
||||
this->write("(");
|
||||
this->writeExpression(arg, kSequence_Precedence);
|
||||
this->write(")");
|
||||
} else {
|
||||
this->writeType(c.fType);
|
||||
|
||||
// GLSL is fairly free-form about inputs to its matrix constructors, but Metal is not; it
|
||||
// expects exactly R vectors of C components apiece. (Metal 2.0 also allows a list of R*C
|
||||
// scalars.) Some cases are simple to translate and so we handle those inline--e.g. a list of
|
||||
// scalars can be constructed trivially. In more complex cases, we generate a helper function
|
||||
// that converts our inputs into a properly-shaped matrix.
|
||||
// A matrix construct helper method is always used if any input argument is a matrix.
|
||||
// Helper methods are also necessary when any argument would span multiple rows. For instance:
|
||||
//
|
||||
// float2 x = (1, 2);
|
||||
// float3x2(x, 3, 4, 5, 6) = | 1 3 5 | = no helper needed; conversion can be done inline
|
||||
// | 2 4 6 |
|
||||
//
|
||||
// float2 x = (2, 3);
|
||||
// float3x2(1, x, 4, 5, 6) = | 1 3 5 | = x spans multiple rows; a helper method will be used
|
||||
// | 2 4 6 |
|
||||
//
|
||||
// float4 x = (1, 2, 3, 4);
|
||||
// float2x2(x) = | 1 3 | = x spans multiple rows; a helper method will be used
|
||||
// | 2 4 |
|
||||
//
|
||||
|
||||
int position = 0;
|
||||
for (const std::unique_ptr<Expression>& expr : c.fArguments) {
|
||||
// If an input argument is a matrix, we need a helper function.
|
||||
if (expr->fType.kind() == Type::kMatrix_Kind) {
|
||||
return true;
|
||||
}
|
||||
position += expr->fType.columns();
|
||||
if (position > c.fType.rows()) {
|
||||
// An input argument would span multiple rows; a helper function is required.
|
||||
return true;
|
||||
}
|
||||
if (position == c.fType.rows()) {
|
||||
// We've advanced to the end of a row. Wrap to the start of the next row.
|
||||
position = 0;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void MetalCodeGenerator::writeConstructor(const Constructor& c, Precedence parentPrecedence) {
|
||||
// Handle special cases for single-argument constructors.
|
||||
if (c.fArguments.size() == 1) {
|
||||
// If the type is coercible, emit it directly.
|
||||
const Expression& arg = *c.fArguments.front();
|
||||
if (this->canCoerce(c.fType, arg.fType)) {
|
||||
this->writeExpression(arg, parentPrecedence);
|
||||
return;
|
||||
}
|
||||
|
||||
// Metal supports creating matrices with a scalar on the diagonal via the single-argument
|
||||
// matrix constructor.
|
||||
if (c.fType.kind() == Type::kMatrix_Kind && arg.fType.isNumber()) {
|
||||
const Type& matrix = c.fType;
|
||||
this->write("float");
|
||||
this->write(to_string(matrix.columns()));
|
||||
this->write("x");
|
||||
this->write(to_string(matrix.rows()));
|
||||
this->write("(");
|
||||
this->writeExpression(arg, parentPrecedence);
|
||||
this->write(")");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Emit and invoke a matrix-constructor helper method if one is necessary.
|
||||
if (this->matrixConstructHelperIsNeeded(c)) {
|
||||
this->write(this->getMatrixConstructHelper(c));
|
||||
this->write("(");
|
||||
const char* separator = "";
|
||||
int scalarCount = 0;
|
||||
for (const auto& arg : c.fArguments) {
|
||||
for (const std::unique_ptr<Expression>& expr : c.fArguments) {
|
||||
this->write(separator);
|
||||
separator = ", ";
|
||||
if (Type::kMatrix_Kind == c.fType.kind() && arg->fType.columns() != c.fType.rows()) {
|
||||
// merge scalars and smaller vectors together
|
||||
if (!scalarCount) {
|
||||
this->writeType(c.fType.componentType());
|
||||
this->write(to_string(c.fType.rows()));
|
||||
this->write("(");
|
||||
}
|
||||
scalarCount += arg->fType.columns();
|
||||
}
|
||||
this->writeExpression(*arg, kSequence_Precedence);
|
||||
if (scalarCount && scalarCount == c.fType.rows()) {
|
||||
this->write(")");
|
||||
scalarCount = 0;
|
||||
}
|
||||
this->writeExpression(*expr, kSequence_Precedence);
|
||||
}
|
||||
this->write(")");
|
||||
return;
|
||||
}
|
||||
|
||||
// Explicitly invoke the constructor, passing in the necessary arguments.
|
||||
this->writeType(c.fType);
|
||||
this->write("(");
|
||||
const char* separator = "";
|
||||
int scalarCount = 0;
|
||||
for (const std::unique_ptr<Expression>& arg : c.fArguments) {
|
||||
this->write(separator);
|
||||
separator = ", ";
|
||||
if (Type::kMatrix_Kind == c.fType.kind() && arg->fType.columns() < c.fType.rows()) {
|
||||
// Merge scalars and smaller vectors together.
|
||||
if (!scalarCount) {
|
||||
this->writeType(c.fType.componentType());
|
||||
this->write(to_string(c.fType.rows()));
|
||||
this->write("(");
|
||||
}
|
||||
scalarCount += arg->fType.columns();
|
||||
}
|
||||
this->writeExpression(*arg, kSequence_Precedence);
|
||||
if (scalarCount && scalarCount == c.fType.rows()) {
|
||||
this->write(")");
|
||||
scalarCount = 0;
|
||||
}
|
||||
}
|
||||
this->write(")");
|
||||
}
|
||||
|
||||
void MetalCodeGenerator::writeFragCoord() {
|
||||
|
@ -11,6 +11,7 @@
|
||||
#include <stack>
|
||||
#include <tuple>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "src/sksl/SkSLCodeGenerator.h"
|
||||
#include "src/sksl/SkSLMemoryLayout.h"
|
||||
@ -189,7 +190,8 @@ protected:
|
||||
|
||||
void writeInverseHack(const Expression& mat);
|
||||
|
||||
String getMatrixConstructHelper(const Type& matrix, const Type& arg);
|
||||
bool matrixConstructHelperIsNeeded(const Constructor& c);
|
||||
String getMatrixConstructHelper(const Constructor& c);
|
||||
|
||||
void writeMatrixTimesEqualHelper(const Type& left, const Type& right, const Type& result);
|
||||
|
||||
@ -278,7 +280,7 @@ protected:
|
||||
std::unordered_map<const FunctionDeclaration*, Requirements> fRequirements;
|
||||
bool fSetupFragPositionGlobal = false;
|
||||
bool fSetupFragPositionLocal = false;
|
||||
std::unordered_map<String, String> fHelpers;
|
||||
std::unordered_set<String> fHelpers;
|
||||
int fUniformBuffer = -1;
|
||||
String fRTHeightName;
|
||||
|
||||
|
@ -60,54 +60,104 @@ DEF_TEST(SkSLMetalHelloWorld, r) {
|
||||
"}\n");
|
||||
}
|
||||
|
||||
DEF_TEST(SkSLMetal2x2MatrixCopyFromFloat2x2, r) {
|
||||
test(r, R"__SkSL__(
|
||||
void main() {
|
||||
float2x2 m1 = float2x2(float2(1, 2), float2(3, 4));
|
||||
float2x2 m2 = m1;
|
||||
float2x2 m3 = float2x2(m1);
|
||||
sk_FragColor = half4(half(m1[0][0] + m2[0][0] + m3[0][0]));
|
||||
})__SkSL__",
|
||||
*SkSL::ShaderCapsFactory::Default(),
|
||||
R"__MSL__(#include <metal_stdlib>
|
||||
#include <simd/simd.h>
|
||||
using namespace metal;
|
||||
struct Inputs {
|
||||
};
|
||||
struct Outputs {
|
||||
float4 sk_FragColor [[color(0)]];
|
||||
};
|
||||
fragment Outputs fragmentMain(Inputs _in [[stage_in]], bool _frontFacing [[front_facing]], float4 _fragCoord [[position]]) {
|
||||
Outputs _outputStruct;
|
||||
thread Outputs* _out = &_outputStruct;
|
||||
_out->sk_FragColor = float4((float2x2(float2(1.0, 2.0), float2(3.0, 4.0))[0][0] + float2x2(float2(1.0, 2.0), float2(3.0, 4.0))[0][0]) + float2x2(float2(1.0, 2.0), float2(3.0, 4.0))[0][0]);
|
||||
return *_out;
|
||||
}
|
||||
)__MSL__");
|
||||
}
|
||||
|
||||
DEF_TEST(SkSLMetal2x2MatrixCopyFromConstantPropagatedFloat4, r) {
|
||||
test(r, R"__SkSL__(
|
||||
void main() {
|
||||
float2x2 m1 = float2x2(float4(1, 2, 3, 4));
|
||||
float2x2 m2 = m1;
|
||||
float2x2 m3 = float2x2(m1);
|
||||
sk_FragColor = half4(half(m1[0][0] + m2[0][0] + m3[0][0]));
|
||||
})__SkSL__",
|
||||
*SkSL::ShaderCapsFactory::Default(),
|
||||
R"__MSL__(#include <metal_stdlib>
|
||||
#include <simd/simd.h>
|
||||
using namespace metal;
|
||||
struct Inputs {
|
||||
};
|
||||
struct Outputs {
|
||||
float4 sk_FragColor [[color(0)]];
|
||||
};
|
||||
float2x2 float2x2_from_float4(float4 x0) {
|
||||
return float2x2(float2(x0[0], x0[1]), float2(x0[2], x0[3]));
|
||||
}
|
||||
fragment Outputs fragmentMain(Inputs _in [[stage_in]], bool _frontFacing [[front_facing]], float4 _fragCoord [[position]]) {
|
||||
Outputs _outputStruct;
|
||||
thread Outputs* _out = &_outputStruct;
|
||||
_out->sk_FragColor = float4((float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0] + float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0]) + float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0]);
|
||||
return *_out;
|
||||
}
|
||||
)__MSL__");
|
||||
}
|
||||
|
||||
DEF_TEST(SkSLMetalMatrices, r) {
|
||||
test(r,
|
||||
"void main() {"
|
||||
"float2x2 m1 = float2x2(float4(1, 2, 3, 4));"
|
||||
"float2x2 m2 = float2x2(float4(0));"
|
||||
"float2x2 m3 = float2x2(m1);"
|
||||
"float2x2 m4 = float2x2(1);"
|
||||
"float2x2 m5 = float2x2(m1[0][0]);"
|
||||
"float2x2 m6 = float2x2(1, 2, 3, 4);"
|
||||
"float2x2 m7 = float2x2(5, 6, 7, 8);"
|
||||
"float3x3 m8 = float3x3(1);"
|
||||
"float3x3 m9 = float3x3(2);"
|
||||
"float4x4 m10 = float4x4(1);"
|
||||
"float4x4 m11 = float4x4(2);"
|
||||
"sk_FragColor = half4(half(m1[0][0] + m2[0][0] + m3[0][0] + m4[0][0] + m5[0][0] + "
|
||||
"m6[0][0] + m7[0][0] + m8[0][0] + m9[0][0] + m10[0][0] + m11[0][0]));"
|
||||
"}",
|
||||
test(r, R"__SkSL__(
|
||||
void main() {
|
||||
float2x2 m1 = float2x2(float4(1, 2, 3, 4));
|
||||
float2x2 m2 = float2x2(float4(0));
|
||||
float2x2 m3 = float2x2(m1);
|
||||
float2x2 m4 = float2x2(1);
|
||||
float2x2 m5 = float2x2(m1[0][0]);
|
||||
float2x2 m6 = float2x2(1, 2, 3, 4);
|
||||
float2x2 m7 = float2x2(5, float3(6, 7, 8));
|
||||
float3x2 m8 = float3x2(float2(1, 2), 3, float3(4, 5, 6));
|
||||
float3x3 m9 = float3x3(1);
|
||||
float4x4 m10 = float4x4(1);
|
||||
float4x4 m11 = float4x4(2);
|
||||
sk_FragColor = half4(half(m1[0][0] + m2[0][0] + m3[0][0] + m4[0][0] + m5[0][0] +
|
||||
m6[0][0] + m7[0][0] + m8[0][0] + m9[0][0] + m10[0][0] + m11[0][0]));
|
||||
})__SkSL__",
|
||||
*SkSL::ShaderCapsFactory::Default(),
|
||||
"#include <metal_stdlib>\n"
|
||||
"#include <simd/simd.h>\n"
|
||||
"using namespace metal;\n"
|
||||
"struct Inputs {\n"
|
||||
"};\n"
|
||||
"struct Outputs {\n"
|
||||
" float4 sk_FragColor [[color(0)]];\n"
|
||||
"};\n"
|
||||
"float2x2 float2x2_from_float(float x) {\n"
|
||||
" return float2x2(float2(x, 0), float2(0, x));\n"
|
||||
"}\n"
|
||||
"float2x2 float2x2_from_float4(float4 v) {\n"
|
||||
" return float2x2(float2(v[0], v[1]), float2(v[2], v[3]));\n"
|
||||
"}\n"
|
||||
"float2x2 float2x2_from_float(float x) {\n"
|
||||
" return float2x2(float2(x, 0), float2(0, x));\n"
|
||||
"}\n"
|
||||
"float3x3 float3x3_from_float(float x) {\n"
|
||||
" return float3x3(float3(x, 0, 0), float3(0, x, 0), float3(0, 0, x));\n"
|
||||
"}\n"
|
||||
"float4x4 float4x4_from_float(float x) {\n"
|
||||
" return float4x4(float4(x, 0, 0, 0), float4(0, x, 0, 0), float4(0, 0, x, 0), float4(0, 0, 0, x));\n"
|
||||
"}\n"
|
||||
"fragment Outputs fragmentMain(Inputs _in [[stage_in]], bool _frontFacing [[front_facing]], float4 _fragCoord [[position]]) {\n"
|
||||
" Outputs _outputStruct;\n"
|
||||
" thread Outputs* _out = &_outputStruct;\n"
|
||||
" float2x2 m5 = float2x2_from_float(float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0]);\n"
|
||||
" _out->sk_FragColor = float4((((((((((float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0] + float2x2_from_float4(float4(0.0))[0][0]) + float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0]) + float2x2_from_float(1.0)[0][0]) + m5[0][0]) + float2x2(float2(1.0, 2.0), float2(3.0, 4.0))[0][0]) + float2x2(float2(5.0, 6.0), float2(7.0, 8.0))[0][0]) + float3x3_from_float(1.0)[0][0]) + float3x3_from_float(2.0)[0][0]) + float4x4_from_float(1.0)[0][0]) + float4x4_from_float(2.0)[0][0]);\n"
|
||||
" return *_out;\n"
|
||||
"}\n");
|
||||
R"__MSL__(#include <metal_stdlib>
|
||||
#include <simd/simd.h>
|
||||
using namespace metal;
|
||||
struct Inputs {
|
||||
};
|
||||
struct Outputs {
|
||||
float4 sk_FragColor [[color(0)]];
|
||||
};
|
||||
float2x2 float2x2_from_float4(float4 x0) {
|
||||
return float2x2(float2(x0[0], x0[1]), float2(x0[2], x0[3]));
|
||||
}
|
||||
float2x2 float2x2_from_float_float3(float x0, float3 x1) {
|
||||
return float2x2(float2(x0, x1[0]), float2(x1[1], x1[2]));
|
||||
}
|
||||
float3x2 float3x2_from_float2_float_float3(float2 x0, float x1, float3 x2) {
|
||||
return float3x2(float2(x0[0], x0[1]), float2(x1, x2[0]), float2(x2[1], x2[2]));
|
||||
}
|
||||
fragment Outputs fragmentMain(Inputs _in [[stage_in]], bool _frontFacing [[front_facing]], float4 _fragCoord [[position]]) {
|
||||
Outputs _outputStruct;
|
||||
thread Outputs* _out = &_outputStruct;
|
||||
float2x2 m5 = float2x2(float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0]);
|
||||
_out->sk_FragColor = float4((((((((((float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0] + float2x2_from_float4(float4(0.0))[0][0]) + float2x2_from_float4(float4(1.0, 2.0, 3.0, 4.0))[0][0]) + float2x2(1.0)[0][0]) + m5[0][0]) + float2x2(float2(1.0, 2.0), float2(3.0, 4.0))[0][0]) + float2x2_from_float_float3(5.0, float3(6.0, 7.0, 8.0))[0][0]) + float3x2_from_float2_float_float3(float2(1.0, 2.0), 3.0, float3(4.0, 5.0, 6.0))[0][0]) + float3x3(1.0)[0][0]) + float4x4(1.0)[0][0]) + float4x4(2.0)[0][0]);
|
||||
return *_out;
|
||||
}
|
||||
)__MSL__");
|
||||
}
|
||||
|
||||
DEF_TEST(SkSLMetalConstantSwizzle, r) {
|
||||
|
Loading…
Reference in New Issue
Block a user