Add R-Tree data structure.

Review URL: https://codereview.appspot.com/6489055

git-svn-id: http://skia.googlecode.com/svn/trunk@5401 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
rileya@google.com 2012-09-05 16:10:59 +00:00
parent d6bbbf8a83
commit 1f45e934b6
6 changed files with 848 additions and 0 deletions

View File

@ -14,6 +14,7 @@
'<(skia_src_path)/core/SkAdvancedTypefaceMetrics.cpp',
'<(skia_src_path)/core/SkAlphaRuns.cpp',
'<(skia_src_path)/core/SkAntiRun.h',
'<(skia_src_path)/core/SkBBoxHierarchy.h',
'<(skia_src_path)/core/SkBitmap.cpp',
'<(skia_src_path)/core/SkBitmapHeap.cpp',
'<(skia_src_path)/core/SkBitmapHeap.h',
@ -127,6 +128,8 @@
'<(skia_src_path)/core/SkRegion.cpp',
'<(skia_src_path)/core/SkRegionPriv.h',
'<(skia_src_path)/core/SkRegion_path.cpp',
'<(skia_src_path)/core/SkRTree.h',
'<(skia_src_path)/core/SkRTree.cpp',
'<(skia_src_path)/core/SkScalar.cpp',
'<(skia_src_path)/core/SkScalerContext.cpp',
'<(skia_src_path)/core/SkScan.cpp',

View File

@ -75,6 +75,7 @@
'../tests/RefCntTest.cpp',
'../tests/RefDictTest.cpp',
'../tests/RegionTest.cpp',
'../tests/RTreeTest.cpp',
'../tests/ScalarTest.cpp',
'../tests/ShaderOpacityTest.cpp',
'../tests/Sk64Test.cpp',

View File

@ -0,0 +1,53 @@
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkBBoxHierarchy_DEFINED
#define SkBBoxHierarchy_DEFINED
#include "SkRect.h"
#include "SkTDArray.h"
/**
* Interface for a spatial data structure that associates user data pointers with axis-aligned
* bounding boxes, and allows efficient retrieval of intersections with query rectangles.
*/
class SkBBoxHierarchy {
public:
virtual ~SkBBoxHierarchy() { }
/**
* Insert a data pointer and corresponding bounding box
* @param data The data pointer, may be NULL
* @param bounds The bounding box, should not be empty
* @param defer Whether or not it is acceptable to delay insertion of this element (building up
* an entire spatial data structure at once is often faster and produces better
* structures than repeated inserts) until flushDeferredInserts is called or the first
* search.
*/
virtual void insert(void* data, const SkIRect& bounds, bool defer = false) = 0;
/**
* If any insertions have been deferred, this forces them to be inserted
*/
virtual void flushDeferredInserts() = 0;
/**
* Populate 'results' with data pointers corresponding to bounding boxes that intersect 'query'
*/
virtual void search(const SkIRect& query, SkTDArray<void*>* results) = 0;
virtual void clear() = 0;
/**
* Gets the number of insertions
*/
virtual int getCount() const = 0;
};
#endif

470
src/core/SkRTree.cpp Normal file
View File

@ -0,0 +1,470 @@
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkRTree.h"
#include "SkTSort.h"
static inline uint32_t get_area(const SkIRect& rect);
static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2);
static inline uint32_t get_margin(const SkIRect& rect);
static inline uint32_t get_overlap_increase(const SkIRect& rect1, const SkIRect& rect2,
SkIRect expandBy);
static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2);
static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out);
///////////////////////////////////////////////////////////////////////////////////////////////////
SkRTree* SkRTree::Create(int minChildren, int maxChildren) {
if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren &&
minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) {
return new SkRTree(minChildren, maxChildren);
}
return NULL;
}
SkRTree::SkRTree(int minChildren, int maxChildren)
: fMinChildren(minChildren)
, fMaxChildren(maxChildren)
, fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren)
, fCount(0)
, fNodes(fNodeSize * 256) {
SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren <
static_cast<int>(SK_MaxU16));
SkASSERT((maxChildren + 1) / 2 >= minChildren);
this->validate();
}
SkRTree::~SkRTree() {
this->clear();
}
void SkRTree::insert(void* data, const SkIRect& bounds, bool defer) {
this->validate();
if (bounds.isEmpty()) {
SkASSERT(false);
return;
}
Branch newBranch;
newBranch.fBounds = bounds;
newBranch.fChild.data = data;
if (this->isEmpty()) {
// since a bulk-load into an existing tree is as of yet unimplemented (and arguably not
// of vital importance right now), we only batch up inserts if the tree is empty.
if (defer) {
fDeferredInserts.push(newBranch);
return;
} else {
fRoot.fChild.subtree = allocateNode(0);
fRoot.fChild.subtree->fNumChildren = 0;
}
}
Branch* newSibling = insert(fRoot.fChild.subtree, &newBranch);
fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);
if (NULL != newSibling) {
Node* oldRoot = fRoot.fChild.subtree;
Node* newRoot = this->allocateNode(oldRoot->fLevel + 1);
newRoot->fNumChildren = 2;
*newRoot->child(0) = fRoot;
*newRoot->child(1) = *newSibling;
fRoot.fChild.subtree = newRoot;
fRoot.fBounds = this->computeBounds(fRoot.fChild.subtree);
}
++fCount;
this->validate();
}
void SkRTree::flushDeferredInserts() {
this->validate();
if (this->isEmpty() && fDeferredInserts.count() > 0) {
fCount = fDeferredInserts.count();
if (1 == fCount) {
fRoot.fChild.subtree = allocateNode(0);
fRoot.fChild.subtree->fNumChildren = 0;
this->insert(fRoot.fChild.subtree, &fDeferredInserts[0]);
fRoot.fBounds = fDeferredInserts[0].fBounds;
} else {
fRoot = this->bulkLoad(&fDeferredInserts);
}
} else {
// TODO: some algorithm for bulk loading into an already populated tree
SkASSERT(0 == fDeferredInserts.count());
}
fDeferredInserts.rewind();
this->validate();
}
void SkRTree::search(const SkIRect& query, SkTDArray<void*>* results) {
this->validate();
if (0 != fDeferredInserts.count()) {
this->flushDeferredInserts();
}
if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) {
this->search(fRoot.fChild.subtree, query, results);
}
this->validate();
}
void SkRTree::clear() {
this->validate();
fNodes.reset();
fDeferredInserts.rewind();
fCount = 0;
this->validate();
}
SkRTree::Node* SkRTree::allocateNode(uint16_t level) {
Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize));
out->fNumChildren = 0;
out->fLevel = level;
return out;
}
SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) {
Branch* toInsert = branch;
if (root->fLevel != level) {
int childIndex = this->chooseSubtree(root, branch);
toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level);
root->child(childIndex)->fBounds = this->computeBounds(
root->child(childIndex)->fChild.subtree);
}
if (NULL != toInsert) {
if (root->fNumChildren == fMaxChildren) {
// handle overflow by splitting. TODO: opportunistic reinsertion
// decide on a distribution to divide with
Node* newSibling = this->allocateNode(root->fLevel);
Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1);
for (int i = 0; i < fMaxChildren; ++i) {
toDivide[i] = *root->child(i);
}
toDivide[fMaxChildren] = *toInsert;
int splitIndex = this->distributeChildren(toDivide);
// divide up the branches
root->fNumChildren = splitIndex;
newSibling->fNumChildren = fMaxChildren + 1 - splitIndex;
for (int i = 0; i < splitIndex; ++i) {
*root->child(i) = toDivide[i];
}
for (int i = splitIndex; i < fMaxChildren + 1; ++i) {
*newSibling->child(i - splitIndex) = toDivide[i];
}
SkDELETE_ARRAY(toDivide);
// pass the new sibling branch up to the parent
branch->fChild.subtree = newSibling;
branch->fBounds = this->computeBounds(newSibling);
return branch;
} else {
*root->child(root->fNumChildren) = *toInsert;
++root->fNumChildren;
return NULL;
}
}
return NULL;
}
int SkRTree::chooseSubtree(Node* root, Branch* branch) {
SkASSERT(!root->isLeaf());
if (1 < root->fLevel) {
// root's child pointers do not point to leaves, so minimize area increase
int32_t minAreaIncrease = SK_MaxS32;
int32_t minArea = SK_MaxS32;
int32_t bestSubtree = -1;
for (int i = 0; i < root->fNumChildren; ++i) {
const SkIRect& subtreeBounds = root->child(i)->fBounds;
int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds);
// break ties in favor of subtree with smallest area
if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease &&
static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) {
minAreaIncrease = areaIncrease;
minArea = get_area(subtreeBounds);
bestSubtree = i;
}
}
SkASSERT(-1 != bestSubtree);
return bestSubtree;
} else if (1 == root->fLevel) {
// root's child pointers do point to leaves, so minimize overlap increase
int32_t minOverlapIncrease = SK_MaxS32;
int32_t minAreaIncrease = SK_MaxS32;
int32_t bestSubtree = -1;
for (int32_t i = 0; i < root->fNumChildren; ++i) {
const SkIRect& subtreeBounds = root->child(i)->fBounds;
SkIRect expandedBounds = subtreeBounds;
join_no_empty_check(branch->fBounds, &expandedBounds);
int32_t overlap = 0;
for (int32_t j = 0; j < root->fNumChildren; ++j) {
if (j == i) continue;
// Note: this would be more correct if we subtracted the original pre-expanded
// overlap, but computing overlaps is expensive and omitting it doesn't seem to
// hurt query performance. See get_overlap_increase()
overlap += get_overlap(expandedBounds, root->child(j)->fBounds);
}
// break ties with lowest area increase
if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease &&
static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) <
minAreaIncrease)) {
minOverlapIncrease = overlap;
minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds);
bestSubtree = i;
}
}
return bestSubtree;
} else {
SkASSERT(false);
return 0;
}
}
SkIRect SkRTree::computeBounds(Node* n) {
SkIRect r = n->child(0)->fBounds;
for (int i = 1; i < n->fNumChildren; ++i) {
join_no_empty_check(n->child(i)->fBounds, &r);
}
return r;
}
int SkRTree::distributeChildren(Branch* children) {
// We have two sides to sort by on each of two axes:
const static SortSide sorts[2][2] = {
{&SkIRect::fLeft, &SkIRect::fRight},
{&SkIRect::fTop, &SkIRect::fBottom}
};
// We want to choose an axis to split on, then a distribution along that axis; we'll need
// three pieces of info: the split axis, the side to sort by on that axis, and the index
// to split the sorted array on.
int32_t sortSide = -1;
int32_t k = -1;
int32_t axis = -1;
int32_t bestS = SK_MaxS32;
// Evaluate each axis, we want the min summed margin-value (s) over all distributions
for (int i = 0; i < 2; ++i) {
int32_t minOverlap = SK_MaxS32;
int32_t minArea = SK_MaxS32;
int32_t axisBestK = 0;
int32_t axisBestSide = 0;
int32_t s = 0;
// Evaluate each sort
for (int j = 0; j < 2; ++j) {
SkQSort(sorts[i][j], children, children + fMaxChildren, &RectLessThan);
// Evaluate each split index
for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) {
SkIRect r1 = children[0].fBounds;
SkIRect r2 = children[fMinChildren + k - 1].fBounds;
for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) {
join_no_empty_check(children[l].fBounds, &r1);
}
for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) {
join_no_empty_check(children[l].fBounds, &r2);
}
int32_t area = get_area(r1) + get_area(r2);
int32_t overlap = get_overlap(r1, r2);
s += get_margin(r1) + get_margin(r2);
if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) {
minOverlap = overlap;
minArea = area;
axisBestSide = j;
axisBestK = k;
}
}
}
if (s < bestS) {
bestS = s;
axis = i;
sortSide = axisBestSide;
k = axisBestK;
}
}
// replicate the sort of the winning distribution, (we can skip this if the last
// sort ended up being best)
if (!(axis == 1 && sortSide == 1)) {
SkQSort(sorts[axis][sortSide], children, children + fMaxChildren, &RectLessThan);
}
return fMinChildren - 1 + k;
}
void SkRTree::search(Node* root, const SkIRect query, SkTDArray<void*>* results) const {
for (int i = 0; i < root->fNumChildren; ++i) {
if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) {
if (root->isLeaf()) {
results->push(root->child(i)->fChild.data);
} else {
this->search(root->child(i)->fChild.subtree, query, results);
}
}
}
}
SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) {
if (branches->count() == 1) {
// Only one branch: it will be the root
Branch out = (*branches)[0];
branches->rewind();
return out;
} else {
// First we sort the whole list by y coordinates
SkQSort<int, Branch>(level, branches->begin(), branches->end() - 1, &RectLessY);
int numBranches = branches->count() / fMaxChildren;
int remainder = branches->count() % fMaxChildren;
int newBranches = 0;
if (0 != remainder) {
++numBranches;
// If the remainder isn't enough to fill a node, we'll need to add fewer nodes to
// some other branches to make up for it
if (remainder >= fMinChildren) {
remainder = 0;
} else {
remainder = fMinChildren - remainder;
}
}
int numStrips = SkScalarCeil(SkScalarSqrt(SkIntToScalar(numBranches)));
int currentBranch = 0;
for (int i = 0; i < numStrips; ++i) {
int begin = currentBranch;
int end = currentBranch + numStrips * fMaxChildren - SkMin32(remainder,
(fMaxChildren - fMinChildren) * numStrips);
if (end > branches->count()) {
end = branches->count();
}
// Now we sort horizontal strips of rectangles by their x coords
SkQSort<int, Branch>(level, branches->begin() + begin, branches->begin() + end - 1,
&RectLessX);
for (int j = 0; j < numStrips && currentBranch < branches->count(); ++j) {
int incrementBy = fMaxChildren;
if (remainder != 0) {
// if need be, omit some nodes to make up for remainder
if (remainder <= fMaxChildren - fMinChildren) {
incrementBy -= remainder;
remainder = 0;
} else {
incrementBy = fMinChildren;
remainder -= fMaxChildren - fMinChildren;
}
}
Node* n = allocateNode(level);
n->fNumChildren = 1;
*n->child(0) = (*branches)[currentBranch];
Branch b;
b.fBounds = (*branches)[currentBranch].fBounds;
b.fChild.subtree = n;
++currentBranch;
for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
b.fBounds.join((*branches)[currentBranch].fBounds);
*n->child(k) = (*branches)[currentBranch];
++n->fNumChildren;
++currentBranch;
}
(*branches)[newBranches] = b;
++newBranches;
}
}
branches->setCount(newBranches);
return this->bulkLoad(branches, level + 1);
}
}
void SkRTree::validate() {
#ifdef SK_DEBUG
if (this->isEmpty()) {
return;
}
SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true));
#endif
}
int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) {
// make sure the pointer is pointing to a valid place
SkASSERT(fNodes.contains(static_cast<void*>(root)));
if (isRoot) {
// If the root of this subtree is the overall root, we have looser standards:
if (root->isLeaf()) {
SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren);
} else {
SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren);
}
} else {
SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren);
}
for (int i = 0; i < root->fNumChildren; ++i) {
SkASSERT(bounds.contains(root->child(i)->fBounds));
}
if (root->isLeaf()) {
SkASSERT(0 == root->fLevel);
return root->fNumChildren;
} else {
int childCount = 0;
for (int i = 0; i < root->fNumChildren; ++i) {
SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1);
childCount += this->validateSubtree(root->child(i)->fChild.subtree,
root->child(i)->fBounds);
}
return childCount;
}
}
///////////////////////////////////////////////////////////////////////////////////////////////////
static inline uint32_t get_area(const SkIRect& rect) {
return rect.width() * rect.height();
}
static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) {
// I suspect there's a more efficient way of computing this...
return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) *
SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop));
}
// Get the margin (aka perimeter)
static inline uint32_t get_margin(const SkIRect& rect) {
return 2 * (rect.width() + rect.height());
}
static inline uint32_t get_overlap_increase(const SkIRect& rect1, const SkIRect& rect2,
SkIRect expandBy) {
join_no_empty_check(rect1, &expandBy);
return get_overlap(expandBy, rect2) - get_overlap(rect1, rect2);
}
static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) {
join_no_empty_check(rect1, &rect2);
return get_area(rect2) - get_area(rect1);
}
// Expand 'out' to include 'joinWith'
static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) {
// since we check for empty bounds on insert, we know we'll never have empty rects
// and we can save the empty check that SkIRect::join requires
if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; }
if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; }
if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; }
if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; }
}

177
src/core/SkRTree.h Normal file
View File

@ -0,0 +1,177 @@
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef SkRTree_DEFINED
#define SkRTree_DEFINED
#include "SkRect.h"
#include "SkTDArray.h"
#include "SkChunkAlloc.h"
#include "SkBBoxHierarchy.h"
/**
* An R-Tree implementation. In short, it is a balanced n-ary tree containing a hierarchy of
* bounding rectangles.
*
* Much like a B-Tree it maintains balance by enforcing minimum and maximum child counts, and
* splitting nodes when they become overfull. Unlike B-trees, however, we're using spatial data; so
* there isn't a canonical ordering to use when choosing insertion locations and splitting
* distributions. A variety of heuristics have been proposed for these problems; here, we're using
* something resembling an R*-tree, which attempts to minimize area and overlap during insertion,
* and aims to minimize a combination of margin, overlap, and area when splitting.
*
* One detail that is thus far unimplemented that may improve tree quality is attempting to remove
* and reinsert nodes when they become full, instead of immediately splitting (nodes that may have
* been placed well early on may hurt the tree later when more nodes have been added; removing
* and reinserting nodes generally helps reduce overlap and make a better tree). Deletion of nodes
* is also unimplemented.
*
* For more details see:
*
* Beckmann, N.; Kriegel, H. P.; Schneider, R.; Seeger, B. (1990). "The R*-tree:
* an efficient and robust access method for points and rectangles"
*
* It also supports bulk-loading from a batch of bounds and values; if you don't require the tree
* to be usable in its intermediate states while it is being constructed, this is significantly
* quicker than individual insertions and produces more consistent trees.
*/
class SkRTree : public SkBBoxHierarchy {
public:
/**
* Create a new R-Tree with specified min/max child counts.
* The child counts are valid iff:
* - (max + 1) / 2 >= min (splitting an overfull node must be enough to populate 2 nodes)
* - min < max
* - min > 0
* - max < SK_MaxU16
*/
static SkRTree* Create(int minChildren, int maxChildren);
virtual ~SkRTree();
/**
* Insert a node, consisting of bounds and a data value into the tree, if we don't immediately
* need to use the tree; we may allow the insert to be deferred (this can allow us to bulk-load
* a large batch of nodes at once, which tends to be faster and produce a better tree).
* @param data The data value
* @param bounds The corresponding bounding box
* @param defer Can this insert be deferred? (this may be ignored)
*/
virtual void insert(void* data, const SkIRect& bounds, bool defer = false);
/**
* If any inserts have been deferred, this will add them into the tree
*/
virtual void flushDeferredInserts();
/**
* Given a query rectangle, populates the passed-in array with the elements it intersects
*/
virtual void search(const SkIRect& query, SkTDArray<void*>* results);
virtual void clear();
bool isEmpty() const { return 0 == fCount; }
int getDepth() const { return this->isEmpty() ? 0 : fRoot.fChild.subtree->fLevel + 1; }
/**
* This gets the insertion count (rather than the node count)
*/
virtual int getCount() const { return fCount; }
private:
struct Node;
/**
* A branch of the tree, this may contain a pointer to another interior node, or a data value
*/
struct Branch {
union {
Node* subtree;
void* data;
} fChild;
SkIRect fBounds;
};
/**
* A node in the tree, has between fMinChildren and fMaxChildren (the root is a special case)
*/
struct Node {
uint16_t fNumChildren;
uint16_t fLevel;
bool isLeaf() { return 0 == fLevel; }
// Since we want to be able to pick min/max child counts at runtime, we assume the creator
// has allocated sufficient space directly after us in memory, and index into that space
Branch* child(size_t index) {
return reinterpret_cast<Branch*>(this + 1) + index;
}
};
typedef int32_t SkIRect::*SortSide;
// Helper for sorting our children arrays by sides of their rects
static bool RectLessThan(SortSide const& side, const Branch lhs, const Branch rhs) {
return lhs.fBounds.*side < rhs.fBounds.*side;
}
static bool RectLessX(int&, const Branch lhs, const Branch rhs) {
return ((lhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1) <
((rhs.fBounds.fRight - lhs.fBounds.fLeft) >> 1);
}
static bool RectLessY(int&, const Branch lhs, const Branch rhs) {
return ((lhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1) <
((rhs.fBounds.fBottom - lhs.fBounds.fTop) >> 1);
}
SkRTree(int minChildren, int maxChildren);
/**
* Recursively descend the tree to find an insertion position for 'branch', updates
* bounding boxes on the way up.
*/
Branch* insert(Node* root, Branch* branch, uint16_t level = 0);
int chooseSubtree(Node* root, Branch* branch);
SkIRect computeBounds(Node* n);
int distributeChildren(Branch* children);
void search(Node* root, const SkIRect query, SkTDArray<void*>* results) const;
/**
* This performs a bottom-up bulk load using the STR (sort-tile-recursive) algorithm, this
* seems to generally produce better, more consistent trees at significantly lower cost than
* repeated insertions.
*
* This consumes the input array.
*
* TODO: Experiment with other bulk-load algorithms (in particular the Hilbert pack variant,
* which groups rects by position on the Hilbert curve, is probably worth a look). There also
* exist top-down bulk load variants (VAMSplit, TopDownGreedy, etc).
*/
Branch bulkLoad(SkTDArray<Branch>* branches, int level = 0);
void validate();
int validateSubtree(Node* root, SkIRect bounds, bool isRoot = false);
const int fMinChildren;
const int fMaxChildren;
const size_t fNodeSize;
// This is the count of data elements (rather than total nodes in the tree)
size_t fCount;
Branch fRoot;
SkChunkAlloc fNodes;
SkTDArray<Branch> fDeferredInserts;
Node* allocateNode(uint16_t level);
};
#endif

144
tests/RTreeTest.cpp Normal file
View File

@ -0,0 +1,144 @@
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "Test.h"
#include "SkRandom.h"
#include "SkRTree.h"
#include "SkTSort.h"
static const size_t MIN_CHILDREN = 6;
static const size_t MAX_CHILDREN = 11;
static const size_t NUM_RECTS = 200;
static const size_t NUM_ITERATIONS = 100;
static const size_t NUM_QUERIES = 50;
struct DataRect {
SkIRect rect;
void* data;
};
static SkIRect random_rect(SkRandom& rand) {
SkIRect rect = {0,0,0,0};
while (rect.isEmpty()) {
rect.fLeft = rand.nextS() % 1000;
rect.fRight = rand.nextS() % 1000;
rect.fTop = rand.nextS() % 1000;
rect.fBottom = rand.nextS() % 1000;
rect.sort();
}
return rect;
}
static void random_data_rects(SkRandom& rand, DataRect out[], int n) {
for (int i = 0; i < n; ++i) {
out[i].rect = random_rect(rand);
out[i].data = reinterpret_cast<void*>(i);
}
}
static bool verify_query(SkIRect query, DataRect rects[],
SkTDArray<void*>& found) {
SkTDArray<void*> expected;
// manually intersect with every rectangle
for (int i = 0; i < NUM_RECTS; ++i) {
if (SkIRect::IntersectsNoEmptyCheck(query, rects[i].rect)) {
expected.push(rects[i].data);
}
}
if (expected.count() != found.count()) {
return false;
}
if (0 == expected.count()) {
return true;
}
// Just cast to long since sorting by the value of the void*'s was being problematic...
SkTQSort(reinterpret_cast<long*>(expected.begin()),
reinterpret_cast<long*>(expected.end() - 1));
SkTQSort(reinterpret_cast<long*>(found.begin()),
reinterpret_cast<long*>(found.end() - 1));
return found == expected;
}
static void runQueries(skiatest::Reporter* reporter, SkRandom& rand, DataRect rects[],
SkRTree& tree) {
for (int i = 0; i < NUM_QUERIES; ++i) {
SkTDArray<void*> hits;
SkIRect query = random_rect(rand);
tree.search(query, &hits);
REPORTER_ASSERT(reporter, verify_query(query, rects, hits));
}
}
static void TestRTree(skiatest::Reporter* reporter) {
DataRect rects[NUM_RECTS];
SkRandom rand;
SkRTree* rtree = SkRTree::Create(MIN_CHILDREN, MAX_CHILDREN);
REPORTER_ASSERT(reporter, NULL != rtree);
int expectedDepthMin = -1;
int expectedDepthMax = -1;
int tmp = NUM_RECTS;
while (tmp > 0) {
tmp -= static_cast<int>(pow(static_cast<double>(MAX_CHILDREN),
static_cast<double>(expectedDepthMin + 1)));
++expectedDepthMin;
}
tmp = NUM_RECTS;
while (tmp > 0) {
tmp -= static_cast<int>(pow(static_cast<double>(MIN_CHILDREN),
static_cast<double>(expectedDepthMax + 1)));
++expectedDepthMax;
}
for (int i = 0; i < NUM_ITERATIONS; ++i) {
random_data_rects(rand, rects, NUM_RECTS);
// First try bulk-loaded inserts
for (int i = 0; i < NUM_RECTS; ++i) {
rtree->insert(rects[i].data, rects[i].rect, true);
}
rtree->flushDeferredInserts();
runQueries(reporter, rand, rects, *rtree);
REPORTER_ASSERT(reporter, NUM_RECTS == rtree->getCount());
REPORTER_ASSERT(reporter, expectedDepthMin <= rtree->getDepth() &&
expectedDepthMax >= rtree->getDepth());
rtree->clear();
REPORTER_ASSERT(reporter, 0 == rtree->getCount());
// Then try immediate inserts
for (int i = 0; i < NUM_RECTS; ++i) {
rtree->insert(rects[i].data, rects[i].rect);
}
runQueries(reporter, rand, rects, *rtree);
REPORTER_ASSERT(reporter, NUM_RECTS == rtree->getCount());
REPORTER_ASSERT(reporter, expectedDepthMin <= rtree->getDepth() &&
expectedDepthMax >= rtree->getDepth());
rtree->clear();
REPORTER_ASSERT(reporter, 0 == rtree->getCount());
// And for good measure try immediate inserts, but in reversed order
for (int i = NUM_RECTS - 1; i >= 0; --i) {
rtree->insert(rects[i].data, rects[i].rect);
}
runQueries(reporter, rand, rects, *rtree);
REPORTER_ASSERT(reporter, NUM_RECTS == rtree->getCount());
REPORTER_ASSERT(reporter, expectedDepthMin <= rtree->getDepth() &&
expectedDepthMax >= rtree->getDepth());
rtree->clear();
REPORTER_ASSERT(reporter, 0 == rtree->getCount());
}
}
#include "TestClassDef.h"
DEFINE_TESTCLASS("RTree", RTreeTestClass, TestRTree)