spin off some safe parts from AVX2 CL

(reviewed here https://codereview.chromium.org/1532613002/)

BUG=skia:
GOLD_TRYBOT_URL= https://gold.skia.org/search2?unt=true&query=source_type%3Dgm&master=false&issue=1628333003
CQ_EXTRA_TRYBOTS=client.skia:Test-Ubuntu-GCC-GCE-CPU-AVX2-x86_64-Release-SKNX_NO_SIMD-Trybot

Review URL: https://codereview.chromium.org/1628333003
This commit is contained in:
mtklein 2016-01-25 09:26:54 -08:00 committed by Commit bot
parent 0dfffbeeec
commit 20473344b2
2 changed files with 126 additions and 88 deletions

View File

@ -149,7 +149,7 @@
], ],
'sources': [ '<@(avx_sources)' ], 'sources': [ '<@(avx_sources)' ],
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '3' } }, 'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '3' } },
'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx' ] }, 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx' ] },
'conditions': [ 'conditions': [
[ 'not skia_android_framework', { 'cflags': [ '-mavx' ] }], [ 'not skia_android_framework', { 'cflags': [ '-mavx' ] }],
], ],
@ -167,7 +167,7 @@
], ],
'sources': [ '<@(avx2_sources)' ], 'sources': [ '<@(avx2_sources)' ],
'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '5' } }, 'msvs_settings': { 'VCCLCompilerTool': { 'EnableEnhancedInstructionSet': '5' } },
'xcode_settings': { 'OTHER_CFLAGS': [ '-mavx2' ] }, 'xcode_settings': { 'OTHER_CPLUSPLUSFLAGS': [ '-mavx2' ] },
'conditions': [ 'conditions': [
[ 'not skia_android_framework', { 'cflags': [ '-mavx2' ] }], [ 'not skia_android_framework', { 'cflags': [ '-mavx2' ] }],
], ],

View File

@ -12,88 +12,67 @@
#ifndef SK_SUPPORT_LEGACY_X86_BLITS #ifndef SK_SUPPORT_LEGACY_X86_BLITS
// This file deals mostly with unpacked 8-bit values, namespace sk_sse41 {
// i.e. values between 0 and 255, but in 16-bit lanes with 0 at the top.
// So __m128i typically represents 1 or 2 pixels, and m128ix2 represents 4. // An SSE register holding at most 64 bits of useful data in the low lanes.
struct m128ix2 { __m128i lo, hi; }; struct m64i {
__m128i v;
/*implicit*/ m64i(__m128i v) : v(v) {}
operator __m128i() const { return v; }
};
// unpack{lo,hi}() get our raw pixels unpacked, from half of 4 packed pixels to 2 unpacked pixels. // Load 4, 2, or 1 constant pixels or coverages (4x replicated).
static inline __m128i unpacklo(__m128i x) { return _mm_cvtepu8_epi16(x); } static __m128i next4(uint32_t val) { return _mm_set1_epi32(val); }
static inline __m128i unpackhi(__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); } static m64i next2(uint32_t val) { return _mm_set1_epi32(val); }
static m64i next1(uint32_t val) { return _mm_set1_epi32(val); }
// pack() converts back, from 4 unpacked pixels to 4 packed pixels. static __m128i next4(uint8_t val) { return _mm_set1_epi8(val); }
static inline __m128i pack(__m128i lo, __m128i hi) { return _mm_packus_epi16(lo, hi); } static m64i next2(uint8_t val) { return _mm_set1_epi8(val); }
static m64i next1(uint8_t val) { return _mm_set1_epi8(val); }
// These nextN() functions abstract over the difference between iterating over // Load 4, 2, or 1 variable pixels or coverages (4x replicated),
// an array of values and returning a constant value, for uint8_t and uint32_t. // incrementing the pointer past what we read.
// The nextN() taking pointers increment that pointer past where they read. static __m128i next4(const uint32_t*& ptr) {
// auto r = _mm_loadu_si128((const __m128i*)ptr);
// nextN() returns N unpacked pixels or 4N unpacked coverage values.
static inline __m128i next1(uint8_t val) { return _mm_set1_epi16(val); }
static inline __m128i next2(uint8_t val) { return _mm_set1_epi16(val); }
static inline m128ix2 next4(uint8_t val) { return { next2(val), next2(val) }; }
static inline __m128i next1(uint32_t val) { return unpacklo(_mm_cvtsi32_si128(val)); }
static inline __m128i next2(uint32_t val) { return unpacklo(_mm_set1_epi32(val)); }
static inline m128ix2 next4(uint32_t val) { return { next2(val), next2(val) }; }
static inline __m128i next1(const uint8_t*& ptr) { return _mm_set1_epi16(*ptr++); }
static inline __m128i next2(const uint8_t*& ptr) {
auto r = _mm_cvtsi32_si128(*(const uint16_t*)ptr);
ptr += 2;
const int _ = ~0;
return _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_));
}
static inline m128ix2 next4(const uint8_t*& ptr) {
auto r = _mm_cvtsi32_si128(*(const uint32_t*)ptr);
ptr += 4; ptr += 4;
const int _ = ~0; return r;
auto lo = _mm_shuffle_epi8(r, _mm_setr_epi8(0,_,0,_,0,_,0,_, 1,_,1,_,1,_,1,_)),
hi = _mm_shuffle_epi8(r, _mm_setr_epi8(2,_,2,_,2,_,2,_, 3,_,3,_,3,_,3,_));
return { lo, hi };
} }
static m64i next2(const uint32_t*& ptr) {
static inline __m128i next1(const uint32_t*& ptr) { return unpacklo(_mm_cvtsi32_si128(*ptr++)); } auto r = _mm_loadl_epi64((const __m128i*)ptr);
static inline __m128i next2(const uint32_t*& ptr) {
auto r = unpacklo(_mm_loadl_epi64((const __m128i*)ptr));
ptr += 2; ptr += 2;
return r; return r;
} }
static inline m128ix2 next4(const uint32_t*& ptr) { static m64i next1(const uint32_t*& ptr) {
auto packed = _mm_loadu_si128((const __m128i*)ptr); auto r = _mm_cvtsi32_si128(*ptr);
ptr += 1;
return r;
}
// xyzw -> xxxx yyyy zzzz wwww
static __m128i replicate_coverage(__m128i xyzw) {
const uint8_t mask[] = { 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3 };
return _mm_shuffle_epi8(xyzw, _mm_load_si128((const __m128i*)mask));
}
static __m128i next4(const uint8_t*& ptr) {
auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint32_t*)ptr));
ptr += 4; ptr += 4;
return { unpacklo(packed), unpackhi(packed) }; return r;
} }
static m64i next2(const uint8_t*& ptr) {
// Divide by 255 with rounding. auto r = replicate_coverage(_mm_cvtsi32_si128(*(const uint16_t*)ptr));
// (x+127)/255 == ((x+128)*257)>>16. ptr += 2;
// Sometimes we can be more efficient by breaking this into two parts. return r;
static inline __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
static inline __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
static inline __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
// (x*y+127)/255, a byte multiply.
static inline __m128i scale(__m128i x, __m128i y) {
return div255(_mm_mullo_epi16(x, y));
} }
static m64i next1(const uint8_t*& ptr) {
// (255 - x). auto r = replicate_coverage(_mm_cvtsi32_si128(*ptr));
static inline __m128i inv(__m128i x) { ptr += 1;
return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); // This seems a bit faster than _mm_sub_epi16. return r;
}
// ARGB argb -> AAAA aaaa
static inline __m128i alphas(__m128i px) {
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
const int _ = ~0;
return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
} }
// For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays. // For i = 0...n, tgt = fn(dst,src,cov), where Dst,Src,and Cov can be constants or arrays.
template <typename Dst, typename Src, typename Cov, typename Fn> template <typename Dst, typename Src, typename Cov, typename Fn>
static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) { static void loop(int n, uint32_t* t, const Dst dst, const Src src, const Cov cov, Fn&& fn) {
// We don't want to muck with the callers' pointers, so we make them const and copy here. // We don't want to muck with the callers' pointers, so we make them const and copy here.
Dst d = dst; Dst d = dst;
Src s = src; Src s = src;
@ -102,30 +81,85 @@ static inline void loop(int n, uint32_t* t, const Dst dst, const Src src, const
// Writing this as a single while-loop helps hoist loop invariants from fn. // Writing this as a single while-loop helps hoist loop invariants from fn.
while (n) { while (n) {
if (n >= 4) { if (n >= 4) {
auto d4 = next4(d), _mm_storeu_si128((__m128i*)t, fn(next4(d), next4(s), next4(c)));
s4 = next4(s),
c4 = next4(c);
auto lo = fn(d4.lo, s4.lo, c4.lo),
hi = fn(d4.hi, s4.hi, c4.hi);
_mm_storeu_si128((__m128i*)t, pack(lo,hi));
t += 4; t += 4;
n -= 4; n -= 4;
continue; continue;
} }
if (n & 2) { if (n & 2) {
auto r = fn(next2(d), next2(s), next2(c)); _mm_storel_epi64((__m128i*)t, fn(next2(d), next2(s), next2(c)));
_mm_storel_epi64((__m128i*)t, pack(r,r));
t += 2; t += 2;
} }
if (n & 1) { if (n & 1) {
auto r = fn(next1(d), next1(s), next1(c)); *t = _mm_cvtsi128_si32(fn(next1(d), next1(s), next1(c)));
*t = _mm_cvtsi128_si32(pack(r,r));
} }
return; return;
} }
} }
namespace sk_sse41 { // packed
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ //
// unpacked
// Everything on the packed side of the squiggly line deals with densely packed 8-bit data,
// e.g. [BGRA bgra ... ] for pixels or [ CCCC cccc ... ] for coverage.
//
// Everything on the unpacked side of the squiggly line deals with unpacked 8-bit data,
// e.g [B_G_ R_A_ b_g_ r_a_ ] for pixels or [ C_C_ C_C_ c_c_ c_c_ c_c_ ] for coverage,
// where _ is a zero byte.
//
// Adapt<Fn> / adapt(fn) allow the two sides to interoperate,
// by unpacking arguments, calling fn, then packing the results.
//
// This lets us write most of our code in terms of unpacked inputs (considerably simpler)
// and all the packing and unpacking is handled automatically.
template <typename Fn>
struct Adapt {
Fn fn;
__m128i operator()(__m128i d, __m128i s, __m128i c) {
auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
auto hi = [](__m128i x) { return _mm_unpackhi_epi8(x, _mm_setzero_si128()); };
return _mm_packus_epi16(fn(lo(d), lo(s), lo(c)),
fn(hi(d), hi(s), hi(c)));
}
m64i operator()(const m64i& d, const m64i& s, const m64i& c) {
auto lo = [](__m128i x) { return _mm_unpacklo_epi8(x, _mm_setzero_si128()); };
auto r = fn(lo(d), lo(s), lo(c));
return _mm_packus_epi16(r, r);
}
};
template <typename Fn>
static Adapt<Fn> adapt(Fn&& fn) { return { fn }; }
// These helpers all work exclusively with unpacked 8-bit values,
// except div255() with is 16-bit -> unpacked 8-bit, and mul255() which is the reverse.
// Divide by 255 with rounding.
// (x+127)/255 == ((x+128)*257)>>16.
// Sometimes we can be more efficient by breaking this into two parts.
static __m128i div255_part1(__m128i x) { return _mm_add_epi16(x, _mm_set1_epi16(128)); }
static __m128i div255_part2(__m128i x) { return _mm_mulhi_epu16(x, _mm_set1_epi16(257)); }
static __m128i div255(__m128i x) { return div255_part2(div255_part1(x)); }
// (x*y+127)/255, a byte multiply.
static __m128i scale(__m128i x, __m128i y) { return div255(_mm_mullo_epi16(x, y)); }
// (255 * x).
static __m128i mul255(__m128i x) { return _mm_sub_epi16(_mm_slli_epi16(x, 8), x); }
// (255 - x).
static __m128i inv(__m128i x) { return _mm_xor_si128(_mm_set1_epi16(0x00ff), x); }
// ARGB argb -> AAAA aaaa
static __m128i alphas(__m128i px) {
const int a = 2 * (SK_A32_SHIFT/8); // SK_A32_SHIFT is typically 24, so this is typically 6.
const int _ = ~0;
return _mm_shuffle_epi8(px, _mm_setr_epi8(a+0,_,a+0,_,a+0,_,a+0,_, a+8,_,a+8,_,a+8,_,a+8,_));
}
// SrcOver, with a constant source and full coverage. // SrcOver, with a constant source and full coverage.
static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) { static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMColor src) {
@ -134,14 +168,14 @@ static void blit_row_color32(SkPMColor* tgt, const SkPMColor* dst, int n, SkPMCo
// But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16. // But we can go one step further to ((s*255 + 128 + d*inv(alphas(s)))*257)>>16.
// This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop. // This lets us hoist (s*255+128) and inv(alphas(s)) out of the loop.
__m128i s = next2(src), __m128i s = _mm_unpacklo_epi8(_mm_set1_epi32(src), _mm_setzero_si128()),
s_255_128 = div255_part1(_mm_mullo_epi16(s, _mm_set1_epi16(255))), s_255_128 = div255_part1(mul255(s)),
A = inv(alphas(s)); A = inv(alphas(s));
const uint8_t cov = 0xff; const uint8_t cov = 0xff;
loop(n, tgt, dst, src, cov, [=](__m128i d, __m128i, __m128i) { loop(n, tgt, dst, src, cov, adapt([=](__m128i d, __m128i, __m128i) {
return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A))); return div255_part2(_mm_add_epi16(s_255_128, _mm_mullo_epi16(d, A)));
}); }));
} }
// SrcOver, with a constant source and variable coverage. // SrcOver, with a constant source and variable coverage.
@ -152,23 +186,26 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
if (SkColorGetA(color) == 0xFF) { if (SkColorGetA(color) == 0xFF) {
const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color); const SkPMColor src = SkSwizzle_BGRA_to_PMColor(color);
while (h --> 0) { while (h --> 0) {
loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { loop(w, dst, (const SkPMColor*)dst, src, cov,
adapt([](__m128i d, __m128i s, __m128i c) {
// Src blend mode: a simple lerp from d to s by c. // Src blend mode: a simple lerp from d to s by c.
// TODO: try a pmaddubsw version? // TODO: try a pmaddubsw version?
return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d), _mm_mullo_epi16(c,s))); return div255(_mm_add_epi16(_mm_mullo_epi16(inv(c),d),
}); _mm_mullo_epi16( c ,s)));
}));
dst += dstRB / sizeof(*dst); dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov); cov += covRB / sizeof(*cov);
} }
} else { } else {
const SkPMColor src = SkPreMultiplyColor(color); const SkPMColor src = SkPreMultiplyColor(color);
while (h --> 0) { while (h --> 0) {
loop(w, dst, (const SkPMColor*)dst, src, cov, [](__m128i d, __m128i s, __m128i c) { loop(w, dst, (const SkPMColor*)dst, src, cov,
adapt([](__m128i d, __m128i s, __m128i c) {
// SrcOver blend mode, with coverage folded into source alpha. // SrcOver blend mode, with coverage folded into source alpha.
__m128i sc = scale(s,c), __m128i sc = scale(s,c),
AC = inv(alphas(sc)); AC = inv(alphas(sc));
return _mm_add_epi16(sc, scale(d,AC)); return _mm_add_epi16(sc, scale(d,AC));
}); }));
dst += dstRB / sizeof(*dst); dst += dstRB / sizeof(*dst);
cov += covRB / sizeof(*cov); cov += covRB / sizeof(*cov);
} }
@ -176,6 +213,7 @@ static void blit_mask_d32_a8(SkPMColor* dst, size_t dstRB,
} }
} // namespace sk_sse41 } // namespace sk_sse41
#endif #endif
namespace SkOpts { namespace SkOpts {