Create Read-only Base class for GrDrawState that holds data members and getters

Base class will but used also in follow up cl that will create an OptDrawState class which will
share much of the same data/functions as DrawState. Thus the base class
BUG=skia:
R=bsalomon@google.com

Author: egdaniel@google.com

Review URL: https://codereview.chromium.org/506803003
This commit is contained in:
egdaniel 2014-08-26 12:24:06 -07:00 committed by Commit bot
parent 6aa164a11c
commit 21aed57023
5 changed files with 682 additions and 523 deletions

View File

@ -116,6 +116,8 @@
'<(skia_src_path)/gpu/GrResourceCache.h',
'<(skia_src_path)/gpu/GrResourceCache2.cpp',
'<(skia_src_path)/gpu/GrResourceCache2.h',
'<(skia_src_path)/gpu/GrRODrawState.cpp',
'<(skia_src_path)/gpu/GrRODrawState.h',
'<(skia_src_path)/gpu/GrStencil.cpp',
'<(skia_src_path)/gpu/GrStencil.h',
'<(skia_src_path)/gpu/GrStencilAndCoverPathRenderer.cpp',

View File

@ -14,51 +14,13 @@
GrDrawState::CombinedState GrDrawState::CombineIfPossible(
const GrDrawState& a, const GrDrawState& b, const GrDrawTargetCaps& caps) {
bool usingVertexColors = a.hasColorVertexAttribute();
if (!usingVertexColors && a.fColor != b.fColor) {
if (!a.isEqual(b)) {
return kIncompatible_CombinedState;
}
if (a.fRenderTarget.get() != b.fRenderTarget.get() ||
a.fColorStages.count() != b.fColorStages.count() ||
a.fCoverageStages.count() != b.fCoverageStages.count() ||
!a.fViewMatrix.cheapEqualTo(b.fViewMatrix) ||
a.fSrcBlend != b.fSrcBlend ||
a.fDstBlend != b.fDstBlend ||
a.fBlendConstant != b.fBlendConstant ||
a.fFlagBits != b.fFlagBits ||
a.fVACount != b.fVACount ||
memcmp(a.fVAPtr, b.fVAPtr, a.fVACount * sizeof(GrVertexAttrib)) ||
a.fStencilSettings != b.fStencilSettings ||
a.fDrawFace != b.fDrawFace) {
return kIncompatible_CombinedState;
}
bool usingVertexCoverage = a.hasCoverageVertexAttribute();
if (!usingVertexCoverage && a.fCoverage != b.fCoverage) {
return kIncompatible_CombinedState;
}
bool explicitLocalCoords = a.hasLocalCoordAttribute();
for (int i = 0; i < a.numColorStages(); i++) {
if (!GrEffectStage::AreCompatible(a.getColorStage(i), b.getColorStage(i),
explicitLocalCoords)) {
return kIncompatible_CombinedState;
}
}
for (int i = 0; i < a.numCoverageStages(); i++) {
if (!GrEffectStage::AreCompatible(a.getCoverageStage(i), b.getCoverageStage(i),
explicitLocalCoords)) {
return kIncompatible_CombinedState;
}
}
SkASSERT(a.fVertexSize == b.fVertexSize);
SkASSERT(0 == memcmp(a.fFixedFunctionVertexAttribIndices,
b.fFixedFunctionVertexAttribIndices,
sizeof(a.fFixedFunctionVertexAttribIndices)));
if (usingVertexColors) {
// If the general draw states are equal (from check above) we know hasColorVertexAttribute()
// is equivalent for both a and b
if (a.hasColorVertexAttribute()) {
// If one is opaque and the other is not then the combined state is not opaque. Moreover,
// if the opaqueness affects the ability to get color/coverage blending correct then we
// don't combine the draw states.
@ -221,7 +183,7 @@ static size_t vertex_size(const GrVertexAttrib* attribs, int count) {
#ifdef SK_DEBUG
uint32_t overlapCheck = 0;
#endif
SkASSERT(count <= GrDrawState::kMaxVertexAttribCnt);
SkASSERT(count <= GrRODrawState::kMaxVertexAttribCnt);
size_t size = 0;
for (int index = 0; index < count; ++index) {
size_t attribSize = GrVertexAttribTypeSize(attribs[index].fType);
@ -237,10 +199,6 @@ static size_t vertex_size(const GrVertexAttrib* attribs, int count) {
return size;
}
size_t GrDrawState::getVertexSize() const {
return fVertexSize;
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::setVertexAttribs(const GrVertexAttrib* attribs, int count) {
@ -298,65 +256,6 @@ void GrDrawState::setDefaultVertexAttribs() {
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::validateVertexAttribs() const {
// check consistency of effects and attributes
GrSLType slTypes[kMaxVertexAttribCnt];
for (int i = 0; i < kMaxVertexAttribCnt; ++i) {
slTypes[i] = static_cast<GrSLType>(-1);
}
int totalStages = this->numTotalStages();
for (int s = 0; s < totalStages; ++s) {
int covIdx = s - this->numColorStages();
const GrEffectStage& stage = covIdx < 0 ? this->getColorStage(s) :
this->getCoverageStage(covIdx);
const GrEffect* effect = stage.getEffect();
SkASSERT(NULL != effect);
// make sure that any attribute indices have the correct binding type, that the attrib
// type and effect's shader lang type are compatible, and that attributes shared by
// multiple effects use the same shader lang type.
const int* attributeIndices = stage.getVertexAttribIndices();
int numAttributes = stage.getVertexAttribIndexCount();
for (int i = 0; i < numAttributes; ++i) {
int attribIndex = attributeIndices[i];
if (attribIndex >= fVACount ||
kEffect_GrVertexAttribBinding != fVAPtr[attribIndex].fBinding) {
return false;
}
GrSLType effectSLType = effect->vertexAttribType(i);
GrVertexAttribType attribType = fVAPtr[attribIndex].fType;
int slVecCount = GrSLTypeVectorCount(effectSLType);
int attribVecCount = GrVertexAttribTypeVectorCount(attribType);
if (slVecCount != attribVecCount ||
(static_cast<GrSLType>(-1) != slTypes[attribIndex] &&
slTypes[attribIndex] != effectSLType)) {
return false;
}
slTypes[attribIndex] = effectSLType;
}
}
return true;
}
bool GrDrawState::willEffectReadDstColor() const {
if (!this->isColorWriteDisabled()) {
for (int s = 0; s < this->numColorStages(); ++s) {
if (this->getColorStage(s).getEffect()->willReadDstColor()) {
return true;
}
}
}
for (int s = 0; s < this->numCoverageStages(); ++s) {
if (this->getCoverageStage(s).getEffect()->willReadDstColor()) {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::couldApplyCoverage(const GrDrawTargetCaps& caps) const {
if (caps.dualSourceBlendingSupport()) {
return true;
@ -366,112 +265,50 @@ bool GrDrawState::couldApplyCoverage(const GrDrawTargetCaps& caps) const {
// or c) the src, dst blend coeffs are 1,0 and we will read Dst Color
GrBlendCoeff srcCoeff;
GrBlendCoeff dstCoeff;
GrDrawState::BlendOptFlags flag = this->getBlendOpts(true, &srcCoeff, &dstCoeff);
return GrDrawState::kNone_BlendOpt != flag ||
GrRODrawState::BlendOptFlags flag = this->getBlendOpts(true, &srcCoeff, &dstCoeff);
return GrRODrawState::kNone_BlendOpt != flag ||
(this->willEffectReadDstColor() &&
kOne_GrBlendCoeff == srcCoeff && kZero_GrBlendCoeff == dstCoeff);
}
bool GrDrawState::srcAlphaWillBeOne() const {
uint32_t validComponentFlags;
GrColor color;
// Check if per-vertex or constant color may have partial alpha
if (this->hasColorVertexAttribute()) {
if (fHints & kVertexColorsAreOpaque_Hint) {
validComponentFlags = kA_GrColorComponentFlag;
color = 0xFF << GrColor_SHIFT_A;
} else {
validComponentFlags = 0;
color = 0; // not strictly necessary but we get false alarms from tools about uninit.
}
} else {
validComponentFlags = kRGBA_GrColorComponentFlags;
color = this->getColor();
}
//////////////////////////////////////////////////////////////////////////////
// Run through the color stages
for (int s = 0; s < this->numColorStages(); ++s) {
const GrEffect* effect = this->getColorStage(s).getEffect();
effect->getConstantColorComponents(&color, &validComponentFlags);
}
// Check whether coverage is treated as color. If so we run through the coverage computation.
if (this->isCoverageDrawing()) {
// The shader generated for coverage drawing runs the full coverage computation and then
// makes the shader output be the multiplication of color and coverage. We mirror that here.
GrColor coverage;
uint32_t coverageComponentFlags;
if (this->hasCoverageVertexAttribute()) {
coverageComponentFlags = 0;
coverage = 0; // suppresses any warnings.
} else {
coverageComponentFlags = kRGBA_GrColorComponentFlags;
coverage = this->getCoverageColor();
}
// Run through the coverage stages
for (int s = 0; s < this->numCoverageStages(); ++s) {
const GrEffect* effect = this->getCoverageStage(s).getEffect();
effect->getConstantColorComponents(&coverage, &coverageComponentFlags);
}
// Since the shader will multiply coverage and color, the only way the final A==1 is if
// coverage and color both have A==1.
return (kA_GrColorComponentFlag & validComponentFlags & coverageComponentFlags) &&
0xFF == GrColorUnpackA(color) && 0xFF == GrColorUnpackA(coverage);
}
return (kA_GrColorComponentFlag & validComponentFlags) && 0xFF == GrColorUnpackA(color);
GrDrawState::AutoVertexAttribRestore::AutoVertexAttribRestore(
GrDrawState* drawState) {
SkASSERT(NULL != drawState);
fDrawState = drawState;
fVAPtr = drawState->fVAPtr;
fVACount = drawState->fVACount;
fDrawState->setDefaultVertexAttribs();
}
bool GrDrawState::hasSolidCoverage() const {
// If we're drawing coverage directly then coverage is effectively treated as color.
if (this->isCoverageDrawing()) {
return true;
}
//////////////////////////////////////////////////////////////////////////////s
GrColor coverage;
uint32_t validComponentFlags;
// Initialize to an unknown starting coverage if per-vertex coverage is specified.
if (this->hasCoverageVertexAttribute()) {
validComponentFlags = 0;
} else {
coverage = this->getCoverageColor();
validComponentFlags = kRGBA_GrColorComponentFlags;
}
void GrDrawState::AutoRestoreEffects::set(GrDrawState* ds) {
if (NULL != fDrawState) {
int m = fDrawState->numColorStages() - fColorEffectCnt;
SkASSERT(m >= 0);
fDrawState->fColorStages.pop_back_n(m);
// Run through the coverage stages and see if the coverage will be all ones at the end.
for (int s = 0; s < this->numCoverageStages(); ++s) {
const GrEffect* effect = this->getCoverageStage(s).getEffect();
effect->getConstantColorComponents(&coverage, &validComponentFlags);
int n = fDrawState->numCoverageStages() - fCoverageEffectCnt;
SkASSERT(n >= 0);
fDrawState->fCoverageStages.pop_back_n(n);
if (m + n > 0) {
fDrawState->invalidateBlendOptFlags();
}
SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
}
fDrawState = ds;
if (NULL != ds) {
fColorEffectCnt = ds->numColorStages();
fCoverageEffectCnt = ds->numCoverageStages();
SkDEBUGCODE(++ds->fBlockEffectRemovalCnt;)
}
return (kRGBA_GrColorComponentFlags == validComponentFlags) && (0xffffffff == coverage);
}
////////////////////////////////////////////////////////////////////////////////
// Some blend modes allow folding a fractional coverage value into the color's alpha channel, while
// others will blend incorrectly.
bool GrDrawState::canTweakAlphaForCoverage() const {
/*
The fractional coverage is f.
The src and dst coeffs are Cs and Cd.
The dst and src colors are S and D.
We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the source color's alpha
we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second
term can be rearranged as [1-(1-Cd)f]D. By substituting in the various possibilities for Cd we
find that only 1, ISA, and ISC produce the correct destination when applied to S' and D.
Also, if we're directly rendering coverage (isCoverageDrawing) then coverage is treated as
color by definition.
*/
return kOne_GrBlendCoeff == fDstBlend ||
kISA_GrBlendCoeff == fDstBlend ||
kISC_GrBlendCoeff == fDstBlend ||
this->isCoverageDrawing();
}
GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
GrRODrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
GrBlendCoeff bogusSrcCoeff, bogusDstCoeff;
@ -499,7 +336,7 @@ GrDrawState::BlendOptFlags GrDrawState::getBlendOpts(bool forceCoverage,
return fBlendOptFlags;
}
GrDrawState::BlendOptFlags GrDrawState::calcBlendOpts(bool forceCoverage,
GrRODrawState::BlendOptFlags GrDrawState::calcBlendOpts(bool forceCoverage,
GrBlendCoeff* srcCoeff,
GrBlendCoeff* dstCoeff) const {
*srcCoeff = this->getSrcBlendCoeff();
@ -581,49 +418,6 @@ GrDrawState::BlendOptFlags GrDrawState::calcBlendOpts(bool forceCoverage,
return kNone_BlendOpt;
}
bool GrDrawState::canIgnoreColorAttribute() const {
if (fBlendOptFlags & kInvalid_BlendOptFlag) {
this->getBlendOpts();
}
return SkToBool(fBlendOptFlags & (GrDrawState::kEmitTransBlack_BlendOptFlag |
GrDrawState::kEmitCoverage_BlendOptFlag));
}
//////////////////////////////////////////////////////////////////////////////
GrDrawState::AutoVertexAttribRestore::AutoVertexAttribRestore(
GrDrawState* drawState) {
SkASSERT(NULL != drawState);
fDrawState = drawState;
fVAPtr = drawState->fVAPtr;
fVACount = drawState->fVACount;
fDrawState->setDefaultVertexAttribs();
}
//////////////////////////////////////////////////////////////////////////////s
void GrDrawState::AutoRestoreEffects::set(GrDrawState* ds) {
if (NULL != fDrawState) {
int m = fDrawState->numColorStages() - fColorEffectCnt;
SkASSERT(m >= 0);
fDrawState->fColorStages.pop_back_n(m);
int n = fDrawState->numCoverageStages() - fCoverageEffectCnt;
SkASSERT(n >= 0);
fDrawState->fCoverageStages.pop_back_n(n);
if (m + n > 0) {
fDrawState->invalidateBlendOptFlags();
}
SkDEBUGCODE(--fDrawState->fBlockEffectRemovalCnt;)
}
fDrawState = ds;
if (NULL != ds) {
fColorEffectCnt = ds->numColorStages();
fCoverageEffectCnt = ds->numCoverageStages();
SkDEBUGCODE(++ds->fBlockEffectRemovalCnt;)
}
}
////////////////////////////////////////////////////////////////////////////////
void GrDrawState::AutoViewMatrixRestore::restore() {
@ -710,3 +504,67 @@ void GrDrawState::AutoViewMatrixRestore::doEffectCoordChanges(const SkMatrix& co
fDrawState->fCoverageStages[s].localCoordChange(coordChangeMatrix);
}
}
bool GrDrawState::srcAlphaWillBeOne() const {
uint32_t validComponentFlags;
GrColor color;
// Check if per-vertex or constant color may have partial alpha
if (this->hasColorVertexAttribute()) {
if (fHints & kVertexColorsAreOpaque_Hint) {
validComponentFlags = kA_GrColorComponentFlag;
color = 0xFF << GrColor_SHIFT_A;
} else {
validComponentFlags = 0;
color = 0; // not strictly necessary but we get false alarms from tools about uninit.
}
} else {
validComponentFlags = kRGBA_GrColorComponentFlags;
color = this->getColor();
}
// Run through the color stages
for (int s = 0; s < this->numColorStages(); ++s) {
const GrEffect* effect = this->getColorStage(s).getEffect();
effect->getConstantColorComponents(&color, &validComponentFlags);
}
// Check whether coverage is treated as color. If so we run through the coverage computation.
if (this->isCoverageDrawing()) {
// The shader generated for coverage drawing runs the full coverage computation and then
// makes the shader output be the multiplication of color and coverage. We mirror that here.
GrColor coverage;
uint32_t coverageComponentFlags;
if (this->hasCoverageVertexAttribute()) {
coverageComponentFlags = 0;
coverage = 0; // suppresses any warnings.
} else {
coverageComponentFlags = kRGBA_GrColorComponentFlags;
coverage = this->getCoverageColor();
}
// Run through the coverage stages
for (int s = 0; s < this->numCoverageStages(); ++s) {
const GrEffect* effect = this->getCoverageStage(s).getEffect();
effect->getConstantColorComponents(&coverage, &coverageComponentFlags);
}
// Since the shader will multiply coverage and color, the only way the final A==1 is if
// coverage and color both have A==1.
return (kA_GrColorComponentFlag & validComponentFlags & coverageComponentFlags) &&
0xFF == GrColorUnpackA(color) && 0xFF == GrColorUnpackA(coverage);
}
return (kA_GrColorComponentFlag & validComponentFlags) && 0xFF == GrColorUnpackA(color);
}
////////////////////////////////////////////////////////////////////////////////
bool GrDrawState::canIgnoreColorAttribute() const {
if (fBlendOptFlags & kInvalid_BlendOptFlag) {
this->getBlendOpts();
}
return SkToBool(fBlendOptFlags & (GrRODrawState::kEmitTransBlack_BlendOptFlag |
GrRODrawState::kEmitCoverage_BlendOptFlag));
}

View File

@ -8,20 +8,18 @@
#ifndef GrDrawState_DEFINED
#define GrDrawState_DEFINED
#include "GrRODrawState.h"
#include "GrBlend.h"
#include "GrColor.h"
#include "GrEffectStage.h"
#include "GrStencil.h"
#include "effects/GrSimpleTextureEffect.h"
#include "SkMatrix.h"
class GrDrawTargetCaps;
class GrPaint;
class GrRenderTarget;
class GrTexture;
class GrDrawState : public SkRefCnt {
/**
* Modifiable subclass derived from GrRODrawState. The majority of the data that represents a draw
* state is stored in the parent class. GrDrawState contains methods for setting, adding to, etc.
* various data members of the draw state. This class is used to configure the state used when
* issuing draws via GrDrawTarget.
*/
class GrDrawState : public GrRODrawState {
public:
SK_DECLARE_INST_COUNT(GrDrawState)
@ -69,10 +67,6 @@ public:
/// @name Vertex Attributes
////
enum {
kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4,
};
/**
* The format of vertices is represented as an array of GrVertexAttribs, with each representing
* the type of the attribute, its offset, and semantic binding (see GrVertexAttrib in
@ -90,48 +84,12 @@ public:
this->setVertexAttribs(A, count);
}
const GrVertexAttrib* getVertexAttribs() const { return fVAPtr; }
int getVertexAttribCount() const { return fVACount; }
size_t getVertexSize() const;
/**
* Sets default vertex attributes for next draw. The default is a single attribute:
* {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribType}
*/
void setDefaultVertexAttribs();
/**
* Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the
* binding does not appear in the current attribs. These bindings should appear only once in
* the attrib array.
*/
int positionAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
}
int localCoordAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
int colorVertexAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
int coverageVertexAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool hasLocalCoordAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
bool hasColorVertexAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
bool hasCoverageVertexAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool validateVertexAttribs() const;
/**
* Helper to save/restore vertex attribs
*/
@ -149,16 +107,6 @@ public:
/// @}
/**
* Determines whether src alpha is guaranteed to be one for all src pixels
*/
bool srcAlphaWillBeOne() const;
/**
* Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
*/
bool hasSolidCoverage() const;
/**
* Depending on features available in the underlying 3D API and the color blend mode requested
* it may or may not be possible to correctly blend with fractional pixel coverage generated by
@ -187,8 +135,6 @@ public:
this->invalidateBlendOptFlags();
}
GrColor getColor() const { return fColor; }
/**
* Sets the color to be used for the next draw to be
* (r,g,b,a) = (alpha, alpha, alpha, alpha).
@ -213,12 +159,6 @@ public:
this->invalidateBlendOptFlags();
}
uint8_t getCoverage() const { return fCoverage; }
GrColor getCoverageColor() const {
return GrColorPackRGBA(fCoverage, fCoverage, fCoverage, fCoverage);
}
/// @}
///////////////////////////////////////////////////////////////////////////
@ -302,18 +242,6 @@ public:
int fCoverageEffectCnt;
};
int numColorStages() const { return fColorStages.count(); }
int numCoverageStages() const { return fCoverageStages.count(); }
int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; }
const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; }
/**
* Checks whether any of the effects will read the dst pixel color.
*/
bool willEffectReadDstColor() const;
/// @}
///////////////////////////////////////////////////////////////////////////
@ -347,15 +275,6 @@ public:
#endif
}
GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; }
GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; }
void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
GrBlendCoeff* dstBlendCoeff) const {
*srcBlendCoeff = fSrcBlend;
*dstBlendCoeff = fDstBlend;
}
/**
* Sets the blending function constant referenced by the following blending
* coefficients:
@ -371,63 +290,6 @@ public:
this->invalidateBlendOptFlags();
}
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fBlendConstant; }
/**
* Determines whether multiplying the computed per-pixel color by the pixel's fractional
* coverage before the blend will give the correct final destination color. In general it
* will not as coverage is applied after blending.
*/
bool canTweakAlphaForCoverage() const;
/**
* Optimizations for blending / coverage to that can be applied based on the current state.
*/
enum BlendOptFlags {
/**
* No optimization
*/
kNone_BlendOpt = 0,
/**
* Don't draw at all
*/
kSkipDraw_BlendOptFlag = 0x1,
/**
* The coverage value does not have to be computed separately from alpha, the the output
* color can be the modulation of the two.
*/
kCoverageAsAlpha_BlendOptFlag = 0x2,
/**
* Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are
* "don't cares".
*/
kEmitCoverage_BlendOptFlag = 0x4,
/**
* Emit transparent black instead of the src color, no need to compute coverage.
*/
kEmitTransBlack_BlendOptFlag = 0x8,
/**
* Flag used to invalidate the cached BlendOptFlags, OptSrcCoeff, and OptDstCoeff cached by
* the get BlendOpts function.
*/
kInvalid_BlendOptFlag = 1 << 31,
};
GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags);
void invalidateBlendOptFlags() {
fBlendOptFlags = kInvalid_BlendOptFlag;
}
/**
* We don't use suplied vertex color attributes if our blend mode is EmitCoverage or
* EmitTransBlack
*/
bool canIgnoreColorAttribute() const;
/**
* Determines what optimizations can be applied based on the blend. The coefficients may have
* to be tweaked in order for the optimization to work. srcCoeff and dstCoeff are optional
@ -445,6 +307,13 @@ public:
GrBlendCoeff* srcCoeff = NULL,
GrBlendCoeff* dstCoeff = NULL) const;
/**
* We don't use suplied vertex color attributes if our blend mode is EmitCoverage or
* EmitTransBlack
*/
bool canIgnoreColorAttribute() const;
/// @}
///////////////////////////////////////////////////////////////////////////
@ -457,34 +326,6 @@ public:
*/
bool setIdentityViewMatrix();
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const SkMatrix& getViewMatrix() const { return fViewMatrix; }
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(SkMatrix* matrix) const {
// TODO: determine whether we really need to leave matrix unmodified
// at call sites when inversion fails.
SkMatrix inverse;
if (fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
////////////////////////////////////////////////////////////////////////////
/**
@ -535,14 +376,6 @@ public:
*/
void setRenderTarget(GrRenderTarget* target) { fRenderTarget.reset(SkSafeRef(target)); }
/**
* Retrieves the currently set render-target.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
class AutoRenderTargetRestore : public ::SkNoncopyable {
public:
AutoRenderTargetRestore() : fDrawState(NULL), fSavedTarget(NULL) {}
@ -603,8 +436,6 @@ public:
this->invalidateBlendOptFlags();
}
const GrStencilSettings& getStencil() const { return fStencilSettings; }
GrStencilSettings* stencil() { return &fStencilSettings; }
/// @}
@ -613,46 +444,6 @@ public:
/// @name State Flags
////
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
* or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
* the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Usually coverage is applied after color blending. The color is blended using the coeffs
* specified by setBlendFunc(). The blended color is then combined with dst using coeffs
* of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
* this case there is no distinction between coverage and color and the caller needs direct
* control over the blend coeffs. When set, there will be a single blend step controlled by
* setBlendFunc() which will use coverage*color as the src color.
*/
kCoverageDrawing_StateBit = 0x10,
// Users of the class may add additional bits to the vector
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1,
};
void resetStateFlags() {
fFlagBits = 0;
this->invalidateBlendOptFlags();
@ -692,28 +483,12 @@ public:
}
}
bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fFlagBits); }
bool isDitherState() const { return 0 != (fFlagBits & kDither_StateBit); }
bool isHWAntialiasState() const { return 0 != (fFlagBits & kHWAntialias_StateBit); }
bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); }
bool isColorWriteDisabled() const { return 0 != (fFlagBits & kNoColorWrites_StateBit); }
bool isCoverageDrawing() const { return 0 != (fFlagBits & kCoverageDrawing_StateBit); }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
enum DrawFace {
kInvalid_DrawFace = -1,
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
};
/**
* Controls whether clockwise, counterclockwise, or both faces are drawn.
* @param face the face(s) to draw.
@ -723,13 +498,6 @@ public:
fDrawFace = face;
}
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
DrawFace getDrawFace() const { return fDrawFace; }
/// @}
///////////////////////////////////////////////////////////////////////////
@ -769,39 +537,24 @@ public:
private:
void onReset(const SkMatrix* initialViewMatrix);
/**
* Determines whether src alpha is guaranteed to be one for all src pixels
*/
bool srcAlphaWillBeOne() const;
/**
* Helper function for getBlendOpts.
*/
BlendOptFlags calcBlendOpts(bool forceCoverage = false,
GrBlendCoeff* srcCoeff = NULL,
GrBlendCoeff* dstCoeff = NULL) const;
// These fields are roughly sorted by decreasing likelihood of being different in op==
SkAutoTUnref<GrRenderTarget> fRenderTarget;
GrColor fColor;
SkMatrix fViewMatrix;
GrBlendCoeff fSrcBlend;
GrBlendCoeff fDstBlend;
GrColor fBlendConstant;
uint32_t fFlagBits;
const GrVertexAttrib* fVAPtr;
int fVACount;
size_t fVertexSize;
GrStencilSettings fStencilSettings;
uint8_t fCoverage;
DrawFace fDrawFace;
typedef SkSTArray<4, GrEffectStage> EffectStageArray;
EffectStageArray fColorStages;
EffectStageArray fCoverageStages;
void invalidateBlendOptFlags() {
fBlendOptFlags = kInvalid_BlendOptFlag;
}
uint32_t fHints;
mutable GrBlendCoeff fOptSrcBlend;
mutable GrBlendCoeff fOptDstBlend;
mutable BlendOptFlags fBlendOptFlags;
// This is simply a different representation of info in fVertexAttribs and thus does
// not need to be compared in op==.
int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];
// Some of the auto restore objects assume that no effects are removed during their lifetime.
// This is used to assert that this condition holds.
SkDEBUGCODE(int fBlockEffectRemovalCnt;)
@ -814,9 +567,7 @@ private:
*/
void setVertexAttribs(const GrVertexAttrib attribs[], int count);
typedef SkRefCnt INHERITED;
typedef GrRODrawState INHERITED;
};
GR_MAKE_BITFIELD_OPS(GrDrawState::BlendOptFlags);
#endif

167
src/gpu/GrRODrawState.cpp Normal file
View File

@ -0,0 +1,167 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrRODrawState.h"
#include "GrDrawTargetCaps.h"
////////////////////////////////////////////////////////////////////////////////
bool GrRODrawState::isEqual(const GrRODrawState& that) const {
bool usingVertexColors = this->hasColorVertexAttribute();
if (!usingVertexColors && this->fColor != that.fColor) {
return false;
}
if (this->fRenderTarget.get() != that.fRenderTarget.get() ||
this->fColorStages.count() != that.fColorStages.count() ||
this->fCoverageStages.count() != that.fCoverageStages.count() ||
!this->fViewMatrix.cheapEqualTo(that.fViewMatrix) ||
this->fSrcBlend != that.fSrcBlend ||
this->fDstBlend != that.fDstBlend ||
this->fBlendConstant != that.fBlendConstant ||
this->fFlagBits != that.fFlagBits ||
this->fVACount != that.fVACount ||
memcmp(this->fVAPtr, that.fVAPtr, this->fVACount * sizeof(GrVertexAttrib)) ||
this->fStencilSettings != that.fStencilSettings ||
this->fDrawFace != that.fDrawFace) {
return false;
}
bool usingVertexCoverage = this->hasCoverageVertexAttribute();
if (!usingVertexCoverage && this->fCoverage != that.fCoverage) {
return false;
}
bool explicitLocalCoords = this->hasLocalCoordAttribute();
for (int i = 0; i < this->numColorStages(); i++) {
if (!GrEffectStage::AreCompatible(this->getColorStage(i), that.getColorStage(i),
explicitLocalCoords)) {
return false;
}
}
for (int i = 0; i < this->numCoverageStages(); i++) {
if (!GrEffectStage::AreCompatible(this->getCoverageStage(i), that.getCoverageStage(i),
explicitLocalCoords)) {
return false;
}
}
SkASSERT(this->fVertexSize == that.fVertexSize);
SkASSERT(0 == memcmp(this->fFixedFunctionVertexAttribIndices,
that.fFixedFunctionVertexAttribIndices,
sizeof(this->fFixedFunctionVertexAttribIndices)));
return true;
}
////////////////////////////////////////////////////////////////////////////////
bool GrRODrawState::validateVertexAttribs() const {
// check consistency of effects and attributes
GrSLType slTypes[kMaxVertexAttribCnt];
for (int i = 0; i < kMaxVertexAttribCnt; ++i) {
slTypes[i] = static_cast<GrSLType>(-1);
}
int totalStages = this->numTotalStages();
for (int s = 0; s < totalStages; ++s) {
int covIdx = s - this->numColorStages();
const GrEffectStage& stage = covIdx < 0 ? this->getColorStage(s) :
this->getCoverageStage(covIdx);
const GrEffect* effect = stage.getEffect();
SkASSERT(NULL != effect);
// make sure that any attribute indices have the correct binding type, that the attrib
// type and effect's shader lang type are compatible, and that attributes shared by
// multiple effects use the same shader lang type.
const int* attributeIndices = stage.getVertexAttribIndices();
int numAttributes = stage.getVertexAttribIndexCount();
for (int i = 0; i < numAttributes; ++i) {
int attribIndex = attributeIndices[i];
if (attribIndex >= fVACount ||
kEffect_GrVertexAttribBinding != fVAPtr[attribIndex].fBinding) {
return false;
}
GrSLType effectSLType = effect->vertexAttribType(i);
GrVertexAttribType attribType = fVAPtr[attribIndex].fType;
int slVecCount = GrSLTypeVectorCount(effectSLType);
int attribVecCount = GrVertexAttribTypeVectorCount(attribType);
if (slVecCount != attribVecCount ||
(static_cast<GrSLType>(-1) != slTypes[attribIndex] &&
slTypes[attribIndex] != effectSLType)) {
return false;
}
slTypes[attribIndex] = effectSLType;
}
}
return true;
}
bool GrRODrawState::hasSolidCoverage() const {
// If we're drawing coverage directly then coverage is effectively treated as color.
if (this->isCoverageDrawing()) {
return true;
}
GrColor coverage;
uint32_t validComponentFlags;
// Initialize to an unknown starting coverage if per-vertex coverage is specified.
if (this->hasCoverageVertexAttribute()) {
validComponentFlags = 0;
} else {
coverage = fCoverage;
validComponentFlags = kRGBA_GrColorComponentFlags;
}
// Run through the coverage stages and see if the coverage will be all ones at the end.
for (int s = 0; s < this->numCoverageStages(); ++s) {
const GrEffect* effect = this->getCoverageStage(s).getEffect();
effect->getConstantColorComponents(&coverage, &validComponentFlags);
}
return (kRGBA_GrColorComponentFlags == validComponentFlags) && (0xffffffff == coverage);
}
////////////////////////////////////////////////////////////////////////////////
bool GrRODrawState::willEffectReadDstColor() const {
if (!this->isColorWriteDisabled()) {
for (int s = 0; s < this->numColorStages(); ++s) {
if (this->getColorStage(s).getEffect()->willReadDstColor()) {
return true;
}
}
}
for (int s = 0; s < this->numCoverageStages(); ++s) {
if (this->getCoverageStage(s).getEffect()->willReadDstColor()) {
return true;
}
}
return false;
}
////////////////////////////////////////////////////////////////////////////////
// Some blend modes allow folding a fractional coverage value into the color's alpha channel, while
// others will blend incorrectly.
bool GrRODrawState::canTweakAlphaForCoverage() const {
/*
The fractional coverage is f.
The src and dst coeffs are Cs and Cd.
The dst and src colors are S and D.
We want the blend to compute: f*Cs*S + (f*Cd + (1-f))D. By tweaking the source color's alpha
we're replacing S with S'=fS. It's obvious that that first term will always be ok. The second
term can be rearranged as [1-(1-Cd)f]D. By substituting in the various possibilities for Cd we
find that only 1, ISA, and ISC produce the correct destination when applied to S' and D.
Also, if we're directly rendering coverage (isCoverageDrawing) then coverage is treated as
color by definition.
*/
return kOne_GrBlendCoeff == fDstBlend ||
kISA_GrBlendCoeff == fDstBlend ||
kISC_GrBlendCoeff == fDstBlend ||
this->isCoverageDrawing();
}

381
src/gpu/GrRODrawState.h Normal file
View File

@ -0,0 +1,381 @@
/*
* Copyright 2014 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrRODrawState_DEFINED
#define GrRODrawState_DEFINED
#include "GrStencil.h"
#include "GrEffectStage.h"
#include "SkMatrix.h"
class GrDrawTargetCaps;
class GrPaint;
class GrRenderTarget;
class GrTexture;
/**
* Read-only base class for GrDrawState. This class contains all the necessary data to represent a
* canonical DrawState. All methods in the class are const, thus once created the data in the class
* cannot be changed.
*/
class GrRODrawState : public SkRefCnt {
public:
SK_DECLARE_INST_COUNT(GrRODrawState)
///////////////////////////////////////////////////////////////////////////
/// @name Vertex Attributes
////
enum {
kMaxVertexAttribCnt = kLast_GrVertexAttribBinding + 4,
};
const GrVertexAttrib* getVertexAttribs() const { return fVAPtr; }
int getVertexAttribCount() const { return fVACount; }
size_t getVertexSize() const { return fVertexSize; }
/**
* Getters for index into getVertexAttribs() for particular bindings. -1 is returned if the
* binding does not appear in the current attribs. These bindings should appear only once in
* the attrib array.
*/
int positionAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kPosition_GrVertexAttribBinding];
}
int localCoordAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
int colorVertexAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
int coverageVertexAttributeIndex() const {
return fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool hasLocalCoordAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kLocalCoord_GrVertexAttribBinding];
}
bool hasColorVertexAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kColor_GrVertexAttribBinding];
}
bool hasCoverageVertexAttribute() const {
return -1 != fFixedFunctionVertexAttribIndices[kCoverage_GrVertexAttribBinding];
}
bool validateVertexAttribs() const;
/// @}
/**
* Determines whether the output coverage is guaranteed to be one for all pixels hit by a draw.
*/
bool hasSolidCoverage() const;
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Color
////
GrColor getColor() const { return fColor; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Coverage
////
uint8_t getCoverage() const { return fCoverage; }
GrColor getCoverageColor() const {
return GrColorPackRGBA(fCoverage, fCoverage, fCoverage, fCoverage);
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Effect Stages
/// Each stage hosts a GrEffect. The effect produces an output color or coverage in the fragment
/// shader. Its inputs are the output from the previous stage as well as some variables
/// available to it in the fragment and vertex shader (e.g. the vertex position, the dst color,
/// the fragment position, local coordinates).
///
/// The stages are divided into two sets, color-computing and coverage-computing. The final
/// color stage produces the final pixel color. The coverage-computing stages function exactly
/// as the color-computing but the output of the final coverage stage is treated as a fractional
/// pixel coverage rather than as input to the src/dst color blend step.
///
/// The input color to the first color-stage is either the constant color or interpolated
/// per-vertex colors. The input to the first coverage stage is either a constant coverage
/// (usually full-coverage) or interpolated per-vertex coverage.
///
/// See the documentation of kCoverageDrawing_StateBit for information about disabling the
/// the color / coverage distinction.
////
int numColorStages() const { return fColorStages.count(); }
int numCoverageStages() const { return fCoverageStages.count(); }
int numTotalStages() const { return this->numColorStages() + this->numCoverageStages(); }
const GrEffectStage& getColorStage(int stageIdx) const { return fColorStages[stageIdx]; }
const GrEffectStage& getCoverageStage(int stageIdx) const { return fCoverageStages[stageIdx]; }
/**
* Checks whether any of the effects will read the dst pixel color.
*/
bool willEffectReadDstColor() const;
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Blending
////
GrBlendCoeff getSrcBlendCoeff() const { return fSrcBlend; }
GrBlendCoeff getDstBlendCoeff() const { return fDstBlend; }
void getDstBlendCoeff(GrBlendCoeff* srcBlendCoeff,
GrBlendCoeff* dstBlendCoeff) const {
*srcBlendCoeff = fSrcBlend;
*dstBlendCoeff = fDstBlend;
}
/**
* Retrieves the last value set by setBlendConstant()
* @return the blending constant value
*/
GrColor getBlendConstant() const { return fBlendConstant; }
/**
* Determines whether multiplying the computed per-pixel color by the pixel's fractional
* coverage before the blend will give the correct final destination color. In general it
* will not as coverage is applied after blending.
*/
bool canTweakAlphaForCoverage() const;
/**
* Optimizations for blending / coverage to that can be applied based on the current state.
*/
enum BlendOptFlags {
/**
* No optimization
*/
kNone_BlendOpt = 0,
/**
* Don't draw at all
*/
kSkipDraw_BlendOptFlag = 0x1,
/**
* The coverage value does not have to be computed separately from alpha, the output
* color can be the modulation of the two.
*/
kCoverageAsAlpha_BlendOptFlag = 0x2,
/**
* Instead of emitting a src color, emit coverage in the alpha channel and r,g,b are
* "don't cares".
*/
kEmitCoverage_BlendOptFlag = 0x4,
/**
* Emit transparent black instead of the src color, no need to compute coverage.
*/
kEmitTransBlack_BlendOptFlag = 0x8,
/**
* Flag used to invalidate the cached BlendOptFlags, OptSrcCoeff, and OptDstCoeff cached by
* the get BlendOpts function.
*/
kInvalid_BlendOptFlag = 1 << 31,
};
GR_DECL_BITFIELD_OPS_FRIENDS(BlendOptFlags);
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name View Matrix
////
/**
* Retrieves the current view matrix
* @return the current view matrix.
*/
const SkMatrix& getViewMatrix() const { return fViewMatrix; }
/**
* Retrieves the inverse of the current view matrix.
*
* If the current view matrix is invertible, return true, and if matrix
* is non-null, copy the inverse into it. If the current view matrix is
* non-invertible, return false and ignore the matrix parameter.
*
* @param matrix if not null, will receive a copy of the current inverse.
*/
bool getViewInverse(SkMatrix* matrix) const {
// TODO: determine whether we really need to leave matrix unmodified
// at call sites when inversion fails.
SkMatrix inverse;
if (fViewMatrix.invert(&inverse)) {
if (matrix) {
*matrix = inverse;
}
return true;
}
return false;
}
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Render Target
////
/**
* Retrieves the currently set render-target.
*
* @return The currently set render target.
*/
const GrRenderTarget* getRenderTarget() const { return fRenderTarget.get(); }
GrRenderTarget* getRenderTarget() { return fRenderTarget.get(); }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Stencil
////
const GrStencilSettings& getStencil() const { return fStencilSettings; }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name State Flags
////
/**
* Flags that affect rendering. Controlled using enable/disableState(). All
* default to disabled.
*/
enum StateBits {
/**
* Perform dithering. TODO: Re-evaluate whether we need this bit
*/
kDither_StateBit = 0x01,
/**
* Perform HW anti-aliasing. This means either HW FSAA, if supported by the render target,
* or smooth-line rendering if a line primitive is drawn and line smoothing is supported by
* the 3D API.
*/
kHWAntialias_StateBit = 0x02,
/**
* Draws will respect the clip, otherwise the clip is ignored.
*/
kClip_StateBit = 0x04,
/**
* Disables writing to the color buffer. Useful when performing stencil
* operations.
*/
kNoColorWrites_StateBit = 0x08,
/**
* Usually coverage is applied after color blending. The color is blended using the coeffs
* specified by setBlendFunc(). The blended color is then combined with dst using coeffs
* of src_coverage, 1-src_coverage. Sometimes we are explicitly drawing a coverage mask. In
* this case there is no distinction between coverage and color and the caller needs direct
* control over the blend coeffs. When set, there will be a single blend step controlled by
* setBlendFunc() which will use coverage*color as the src color.
*/
kCoverageDrawing_StateBit = 0x10,
// Users of the class may add additional bits to the vector
kDummyStateBit,
kLastPublicStateBit = kDummyStateBit-1,
};
bool isStateFlagEnabled(uint32_t stateBit) const { return 0 != (stateBit & fFlagBits); }
bool isDitherState() const { return 0 != (fFlagBits & kDither_StateBit); }
bool isHWAntialiasState() const { return 0 != (fFlagBits & kHWAntialias_StateBit); }
bool isClipState() const { return 0 != (fFlagBits & kClip_StateBit); }
bool isColorWriteDisabled() const { return 0 != (fFlagBits & kNoColorWrites_StateBit); }
bool isCoverageDrawing() const { return 0 != (fFlagBits & kCoverageDrawing_StateBit); }
/// @}
///////////////////////////////////////////////////////////////////////////
/// @name Face Culling
////
enum DrawFace {
kInvalid_DrawFace = -1,
kBoth_DrawFace,
kCCW_DrawFace,
kCW_DrawFace,
};
/**
* Gets whether the target is drawing clockwise, counterclockwise,
* or both faces.
* @return the current draw face(s).
*/
DrawFace getDrawFace() const { return fDrawFace; }
/// @}
///////////////////////////////////////////////////////////////////////////
/** Return type for CombineIfPossible. */
enum CombinedState {
/** The GrDrawStates cannot be combined. */
kIncompatible_CombinedState,
/** Either draw state can be used in place of the other. */
kAOrB_CombinedState,
/** Use the first draw state. */
kA_CombinedState,
/** Use the second draw state. */
kB_CombinedState,
};
GrRODrawState& operator= (const GrRODrawState& that);
protected:
bool isEqual(const GrRODrawState& that) const;
// These fields are roughly sorted by decreasing likelihood of being different in op==
SkAutoTUnref<GrRenderTarget> fRenderTarget;
GrColor fColor;
SkMatrix fViewMatrix;
GrColor fBlendConstant;
uint32_t fFlagBits;
const GrVertexAttrib* fVAPtr;
int fVACount;
size_t fVertexSize;
GrStencilSettings fStencilSettings;
uint8_t fCoverage;
DrawFace fDrawFace;
GrBlendCoeff fSrcBlend;
GrBlendCoeff fDstBlend;
typedef SkSTArray<4, GrEffectStage> EffectStageArray;
EffectStageArray fColorStages;
EffectStageArray fCoverageStages;
mutable GrBlendCoeff fOptSrcBlend;
mutable GrBlendCoeff fOptDstBlend;
mutable BlendOptFlags fBlendOptFlags;
// This is simply a different representation of info in fVertexAttribs and thus does
// not need to be compared in op==.
int fFixedFunctionVertexAttribIndices[kGrFixedFunctionVertexAttribBindingCnt];
private:
typedef SkRefCnt INHERITED;
};
GR_MAKE_BITFIELD_OPS(GrRODrawState::BlendOptFlags);
#endif