Xfermode: SSE2 implementation of multiply_modeproc

This patch implements basics for Xfermode SSE optimization. Based on
these basics, SSE2 implementation of multiply_modeproc is provided. SSE2
implementation for other modes will come in future. With this patch
performance of Xfermode_Multiply will improve about 45%. Here are the
data on desktop i7-3770.
before:
Xfermode_Multiply   8888:  cmsecs =     33.30   565:  cmsecs =     45.65
after:
Xfermode_Multiply   8888:  cmsecs =     17.18   565:  cmsecs =     24.87

BUG=
R=mtklein@google.com

Author: qiankun.miao@intel.com

Review URL: https://codereview.chromium.org/202903004

git-svn-id: http://skia.googlecode.com/svn/trunk@14006 2bbb7eff-a529-9590-31e7-b0007b416f81
This commit is contained in:
commit-bot@chromium.org 2014-04-01 14:01:32 +00:00
parent 96050eb5a1
commit 25f7455f3a
7 changed files with 468 additions and 24 deletions

View File

@ -56,7 +56,7 @@
'../src/opts/SkBlurImage_opts_SSE2.cpp',
'../src/opts/SkMorphology_opts_SSE2.cpp',
'../src/opts/SkUtils_opts_SSE2.cpp',
'../src/opts/SkXfermode_opts_none.cpp',
'../src/opts/SkXfermode_opts_SSE2.cpp',
],
}],
[ 'skia_arch_type == "arm" and arm_version >= 7', {

View File

@ -8,6 +8,7 @@
#include "SkXfermode.h"
#include "SkXfermode_opts_SSE2.h"
#include "SkXfermode_proccoeff.h"
#include "SkColorPriv.h"
#include "SkMathPriv.h"
@ -1993,4 +1994,5 @@ SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkXfermode)
#if !SK_ARM_NEON_IS_NONE
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkNEONProcCoeffXfermode)
#endif
SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkSSE2ProcCoeffXfermode)
SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END

View File

@ -914,7 +914,7 @@ void S32_D565_Opaque_SSE2(uint16_t* SK_RESTRICT dst,
__m128i b = _mm_packs_epi32(b1, b2);
// Store 8 16-bit colors in dst.
__m128i d_pixel = SkPackRGB16_SSE(r, g, b);
__m128i d_pixel = SkPackRGB16_SSE2(r, g, b);
_mm_store_si128(d++, d_pixel);
count -= 8;
}
@ -983,54 +983,54 @@ void S32A_D565_Opaque_SSE2(uint16_t* SK_RESTRICT dst,
__m128i dst_pixel = _mm_load_si128(d);
// Extract A from src.
__m128i sa1 = _mm_slli_epi32(src_pixel1,(24 - SK_A32_SHIFT));
__m128i sa1 = _mm_slli_epi32(src_pixel1, (24 - SK_A32_SHIFT));
sa1 = _mm_srli_epi32(sa1, 24);
__m128i sa2 = _mm_slli_epi32(src_pixel2,(24 - SK_A32_SHIFT));
__m128i sa2 = _mm_slli_epi32(src_pixel2, (24 - SK_A32_SHIFT));
sa2 = _mm_srli_epi32(sa2, 24);
__m128i sa = _mm_packs_epi32(sa1, sa2);
// Extract R from src.
__m128i sr1 = _mm_slli_epi32(src_pixel1,(24 - SK_R32_SHIFT));
__m128i sr1 = _mm_slli_epi32(src_pixel1, (24 - SK_R32_SHIFT));
sr1 = _mm_srli_epi32(sr1, 24);
__m128i sr2 = _mm_slli_epi32(src_pixel2,(24 - SK_R32_SHIFT));
__m128i sr2 = _mm_slli_epi32(src_pixel2, (24 - SK_R32_SHIFT));
sr2 = _mm_srli_epi32(sr2, 24);
__m128i sr = _mm_packs_epi32(sr1, sr2);
// Extract G from src.
__m128i sg1 = _mm_slli_epi32(src_pixel1,(24 - SK_G32_SHIFT));
__m128i sg1 = _mm_slli_epi32(src_pixel1, (24 - SK_G32_SHIFT));
sg1 = _mm_srli_epi32(sg1, 24);
__m128i sg2 = _mm_slli_epi32(src_pixel2,(24 - SK_G32_SHIFT));
__m128i sg2 = _mm_slli_epi32(src_pixel2, (24 - SK_G32_SHIFT));
sg2 = _mm_srli_epi32(sg2, 24);
__m128i sg = _mm_packs_epi32(sg1, sg2);
// Extract B from src.
__m128i sb1 = _mm_slli_epi32(src_pixel1,(24 - SK_B32_SHIFT));
__m128i sb1 = _mm_slli_epi32(src_pixel1, (24 - SK_B32_SHIFT));
sb1 = _mm_srli_epi32(sb1, 24);
__m128i sb2 = _mm_slli_epi32(src_pixel2,(24 - SK_B32_SHIFT));
__m128i sb2 = _mm_slli_epi32(src_pixel2, (24 - SK_B32_SHIFT));
sb2 = _mm_srli_epi32(sb2, 24);
__m128i sb = _mm_packs_epi32(sb1, sb2);
// Extract R G B from dst.
__m128i dr = _mm_srli_epi16(dst_pixel,SK_R16_SHIFT);
__m128i dr = _mm_srli_epi16(dst_pixel, SK_R16_SHIFT);
dr = _mm_and_si128(dr, r16_mask);
__m128i dg = _mm_srli_epi16(dst_pixel,SK_G16_SHIFT);
__m128i dg = _mm_srli_epi16(dst_pixel, SK_G16_SHIFT);
dg = _mm_and_si128(dg, g16_mask);
__m128i db = _mm_srli_epi16(dst_pixel,SK_B16_SHIFT);
__m128i db = _mm_srli_epi16(dst_pixel, SK_B16_SHIFT);
db = _mm_and_si128(db, b16_mask);
__m128i isa = _mm_sub_epi16(var255, sa); // 255 -sa
// Calculate R G B of result.
// Original algorithm is in SkSrcOver32To16().
dr = _mm_add_epi16(sr, SkMul16ShiftRound_SSE(dr, isa, SK_R16_BITS));
dr = _mm_add_epi16(sr, SkMul16ShiftRound_SSE2(dr, isa, SK_R16_BITS));
dr = _mm_srli_epi16(dr, 8 - SK_R16_BITS);
dg = _mm_add_epi16(sg, SkMul16ShiftRound_SSE(dg, isa, SK_G16_BITS));
dg = _mm_add_epi16(sg, SkMul16ShiftRound_SSE2(dg, isa, SK_G16_BITS));
dg = _mm_srli_epi16(dg, 8 - SK_G16_BITS);
db = _mm_add_epi16(sb, SkMul16ShiftRound_SSE(db, isa, SK_B16_BITS));
db = _mm_add_epi16(sb, SkMul16ShiftRound_SSE2(db, isa, SK_B16_BITS));
db = _mm_srli_epi16(db, 8 - SK_B16_BITS);
// Pack R G B into 16-bit color.
__m128i d_pixel = SkPackRGB16_SSE(dr, dg, db);
__m128i d_pixel = SkPackRGB16_SSE2(dr, dg, db);
// Store 8 16-bit colors in dst.
_mm_store_si128(d++, d_pixel);
@ -1143,7 +1143,7 @@ void S32_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst,
sb = _mm_srli_epi16(sb, SK_B32_BITS - SK_B16_BITS);
// Pack and store 16-bit dst pixel.
__m128i d_pixel = SkPackRGB16_SSE(sr, sg, sb);
__m128i d_pixel = SkPackRGB16_SSE2(sr, sg, sb);
_mm_store_si128(d++, d_pixel);
count -= 8;
@ -1242,9 +1242,9 @@ void S32A_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst,
__m128i dst_pixel = _mm_load_si128(d);
// Extract A from src.
__m128i sa1 = _mm_slli_epi32(src_pixel1,(24 - SK_A32_SHIFT));
__m128i sa1 = _mm_slli_epi32(src_pixel1, (24 - SK_A32_SHIFT));
sa1 = _mm_srli_epi32(sa1, 24);
__m128i sa2 = _mm_slli_epi32(src_pixel2,(24 - SK_A32_SHIFT));
__m128i sa2 = _mm_slli_epi32(src_pixel2, (24 - SK_A32_SHIFT));
sa2 = _mm_srli_epi32(sa2, 24);
__m128i sa = _mm_packs_epi32(sa1, sa2);
@ -1323,7 +1323,7 @@ void S32A_D565_Opaque_Dither_SSE2(uint16_t* SK_RESTRICT dst,
db = _mm_srli_epi16(db, 5);
// Package and store dst pixel.
__m128i d_pixel = SkPackRGB16_SSE(dr, dg, db);
__m128i d_pixel = SkPackRGB16_SSE2(dr, dg, db);
_mm_store_si128(d++, d_pixel);
count -= 8;

View File

@ -10,7 +10,38 @@
#include <emmintrin.h>
static inline __m128i SkMul16ShiftRound_SSE(__m128i a, __m128i b, int shift) {
// See #define SkAlphaMulAlpha(a, b) SkMulDiv255Round(a, b) in SkXfermode.cpp.
static inline __m128i SkAlphaMulAlpha_SSE2(__m128i a, __m128i b) {
__m128i prod = _mm_mullo_epi16(a, b);
prod = _mm_add_epi32(prod, _mm_set1_epi32(128));
prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8));
prod = _mm_srli_epi32(prod, 8);
return prod;
}
static inline __m128i SkGetPackedA32_SSE2(__m128i src) {
__m128i a = _mm_slli_epi32(src, (24 - SK_A32_SHIFT));
return _mm_srli_epi32(a, 24);
}
static inline __m128i SkGetPackedR32_SSE2(__m128i src) {
__m128i r = _mm_slli_epi32(src, (24 - SK_R32_SHIFT));
return _mm_srli_epi32(r, 24);
}
static inline __m128i SkGetPackedG32_SSE2(__m128i src) {
__m128i g = _mm_slli_epi32(src, (24 - SK_G32_SHIFT));
return _mm_srli_epi32(g, 24);
}
static inline __m128i SkGetPackedB32_SSE2(__m128i src) {
__m128i b = _mm_slli_epi32(src, (24 - SK_B32_SHIFT));
return _mm_srli_epi32(b, 24);
}
static inline __m128i SkMul16ShiftRound_SSE2(__m128i a,
__m128i b, int shift) {
__m128i prod = _mm_mullo_epi16(a, b);
prod = _mm_add_epi16(prod, _mm_set1_epi16(1 << (shift - 1)));
prod = _mm_add_epi16(prod, _mm_srli_epi16(prod, shift));
@ -19,7 +50,7 @@ static inline __m128i SkMul16ShiftRound_SSE(__m128i a, __m128i b, int shift) {
return prod;
}
static inline __m128i SkPackRGB16_SSE(__m128i r, __m128i g, __m128i b) {
static inline __m128i SkPackRGB16_SSE2(__m128i r, __m128i g, __m128i b) {
r = _mm_slli_epi16(r, SK_R16_SHIFT);
g = _mm_slli_epi16(g, SK_G16_SHIFT);
b = _mm_slli_epi16(b, SK_B16_SHIFT);
@ -28,4 +59,86 @@ static inline __m128i SkPackRGB16_SSE(__m128i r, __m128i g, __m128i b) {
return _mm_or_si128(c, b);
}
#endif//SkColor_opts_SSE2_DEFINED
static inline __m128i SkPackARGB32_SSE2(__m128i a, __m128i r,
__m128i g, __m128i b) {
a = _mm_slli_epi32(a, SK_A32_SHIFT);
r = _mm_slli_epi32(r, SK_R32_SHIFT);
g = _mm_slli_epi32(g, SK_G32_SHIFT);
b = _mm_slli_epi32(b, SK_B32_SHIFT);
__m128i c = _mm_or_si128(a, r);
c = _mm_or_si128(c, g);
return _mm_or_si128(c, b);
}
static inline __m128i SkPacked16ToR32_SSE2(__m128i src) {
__m128i r = _mm_srli_epi32(src, SK_R16_SHIFT);
r = _mm_and_si128(r, _mm_set1_epi32(SK_R16_MASK));
r = _mm_or_si128(_mm_slli_epi32(r, (8 - SK_R16_BITS)),
_mm_srli_epi32(r, (2 * SK_R16_BITS - 8)));
return r;
}
static inline __m128i SkPacked16ToG32_SSE2(__m128i src) {
__m128i g = _mm_srli_epi32(src, SK_G16_SHIFT);
g = _mm_and_si128(g, _mm_set1_epi32(SK_G16_MASK));
g = _mm_or_si128(_mm_slli_epi32(g, (8 - SK_G16_BITS)),
_mm_srli_epi32(g, (2 * SK_G16_BITS - 8)));
return g;
}
static inline __m128i SkPacked16ToB32_SSE2(__m128i src) {
__m128i b = _mm_srli_epi32(src, SK_B16_SHIFT);
b = _mm_and_si128(b, _mm_set1_epi32(SK_B16_MASK));
b = _mm_or_si128(_mm_slli_epi32(b, (8 - SK_B16_BITS)),
_mm_srli_epi32(b, (2 * SK_B16_BITS - 8)));
return b;
}
static inline __m128i SkPixel16ToPixel32_SSE2(__m128i src) {
__m128i r = SkPacked16ToR32_SSE2(src);
__m128i g = SkPacked16ToG32_SSE2(src);
__m128i b = SkPacked16ToB32_SSE2(src);
return SkPackARGB32_SSE2(_mm_set1_epi32(0xFF), r, g, b);
}
static inline __m128i SkPixel32ToPixel16_ToU16_SSE2(__m128i src_pixel1,
__m128i src_pixel2) {
// Calculate result r.
__m128i r1 = _mm_srli_epi32(src_pixel1,
SK_R32_SHIFT + (8 - SK_R16_BITS));
r1 = _mm_and_si128(r1, _mm_set1_epi32(SK_R16_MASK));
__m128i r2 = _mm_srli_epi32(src_pixel2,
SK_R32_SHIFT + (8 - SK_R16_BITS));
r2 = _mm_and_si128(r2, _mm_set1_epi32(SK_R16_MASK));
__m128i r = _mm_packs_epi32(r1, r2);
// Calculate result g.
__m128i g1 = _mm_srli_epi32(src_pixel1,
SK_G32_SHIFT + (8 - SK_G16_BITS));
g1 = _mm_and_si128(g1, _mm_set1_epi32(SK_G16_MASK));
__m128i g2 = _mm_srli_epi32(src_pixel2,
SK_G32_SHIFT + (8 - SK_G16_BITS));
g2 = _mm_and_si128(g2, _mm_set1_epi32(SK_G16_MASK));
__m128i g = _mm_packs_epi32(g1, g2);
// Calculate result b.
__m128i b1 = _mm_srli_epi32(src_pixel1,
SK_B32_SHIFT + (8 - SK_B16_BITS));
b1 = _mm_and_si128(b1, _mm_set1_epi32(SK_B16_MASK));
__m128i b2 = _mm_srli_epi32(src_pixel2,
SK_B32_SHIFT + (8 - SK_B16_BITS));
b2 = _mm_and_si128(b2, _mm_set1_epi32(SK_B16_MASK));
__m128i b = _mm_packs_epi32(b1, b2);
// Store 8 16-bit colors in dst.
__m128i d_pixel = SkPackRGB16_SSE2(r, g, b);
return d_pixel;
}
#endif // SkColor_opts_SSE2_DEFINED

View File

@ -0,0 +1,266 @@
#include "SkColorPriv.h"
#include "SkColor_opts_SSE2.h"
#include "SkMathPriv.h"
#include "SkXfermode.h"
#include "SkXfermode_opts_SSE2.h"
#include "SkXfermode_proccoeff.h"
////////////////////////////////////////////////////////////////////////////////
// 4 pixels SSE2 version functions
////////////////////////////////////////////////////////////////////////////////
static inline __m128i SkDiv255Round_SSE2(__m128i prod) {
prod = _mm_add_epi32(prod, _mm_set1_epi32(128)); // prod += 128;
prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8)); // prod + (prod >> 8)
prod = _mm_srli_epi32(prod, 8); // >> 8
return prod;
}
static inline __m128i clamp_div255round_SSE2(__m128i prod) {
// test if > 0
__m128i cmp1 = _mm_cmpgt_epi32(prod, _mm_setzero_si128());
// test if < 255*255
__m128i cmp2 = _mm_cmplt_epi32(prod, _mm_set1_epi32(255*255));
__m128i ret = _mm_setzero_si128();
// if value >= 255*255, value = 255
ret = _mm_andnot_si128(cmp2, _mm_set1_epi32(255));
__m128i div = SkDiv255Round_SSE2(prod);
// test if > 0 && < 255*255
__m128i cmp = _mm_and_si128(cmp1, cmp2);
ret = _mm_or_si128(_mm_and_si128(cmp, div), _mm_andnot_si128(cmp, ret));
return ret;
}
static inline __m128i srcover_byte_SSE2(__m128i a, __m128i b) {
// a + b - SkAlphaMulAlpha(a, b);
return _mm_sub_epi32(_mm_add_epi32(a, b), SkAlphaMulAlpha_SSE2(a, b));
}
static inline __m128i blendfunc_multiply_byte_SSE2(__m128i sc, __m128i dc,
__m128i sa, __m128i da) {
// sc * (255 - da)
__m128i ret1 = _mm_sub_epi32(_mm_set1_epi32(255), da);
ret1 = _mm_mullo_epi16(sc, ret1);
// dc * (255 - sa)
__m128i ret2 = _mm_sub_epi32(_mm_set1_epi32(255), sa);
ret2 = _mm_mullo_epi16(dc, ret2);
// sc * dc
__m128i ret3 = _mm_mullo_epi16(sc, dc);
__m128i ret = _mm_add_epi32(ret1, ret2);
ret = _mm_add_epi32(ret, ret3);
return clamp_div255round_SSE2(ret);
}
static __m128i multiply_modeproc_SSE2(__m128i src, __m128i dst) {
__m128i sa = SkGetPackedA32_SSE2(src);
__m128i da = SkGetPackedA32_SSE2(dst);
__m128i a = srcover_byte_SSE2(sa, da);
__m128i sr = SkGetPackedR32_SSE2(src);
__m128i dr = SkGetPackedR32_SSE2(dst);
__m128i r = blendfunc_multiply_byte_SSE2(sr, dr, sa, da);
__m128i sg = SkGetPackedG32_SSE2(src);
__m128i dg = SkGetPackedG32_SSE2(dst);
__m128i g = blendfunc_multiply_byte_SSE2(sg, dg, sa, da);
__m128i sb = SkGetPackedB32_SSE2(src);
__m128i db = SkGetPackedB32_SSE2(dst);
__m128i b = blendfunc_multiply_byte_SSE2(sb, db, sa, da);
return SkPackARGB32_SSE2(a, r, g, b);
}
////////////////////////////////////////////////////////////////////////////////
extern SkXfermodeProcSIMD gSSE2XfermodeProcs[];
SkSSE2ProcCoeffXfermode::SkSSE2ProcCoeffXfermode(SkReadBuffer& buffer)
: INHERITED(buffer) {
fProcSIMD = gSSE2XfermodeProcs[this->getMode()];
}
void SkSSE2ProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[],
int count, const SkAlpha aa[]) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = fProcSIMD;
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
if (count >= 4) {
while (((size_t)dst & 0x0F) != 0) {
*dst = proc(*src, *dst);
dst++;
src++;
count--;
}
const __m128i* s = reinterpret_cast<const __m128i*>(src);
__m128i* d = reinterpret_cast<__m128i*>(dst);
while (count >= 4) {
__m128i src_pixel = _mm_loadu_si128(s++);
__m128i dst_pixel = _mm_load_si128(d);
dst_pixel = procSIMD(src_pixel, dst_pixel);
_mm_store_si128(d++, dst_pixel);
count -= 4;
}
src = reinterpret_cast<const SkPMColor*>(s);
dst = reinterpret_cast<SkPMColor*>(d);
}
for (int i = count - 1; i >= 0; --i) {
*dst = proc(*src, *dst);
dst++;
src++;
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = dst[i];
SkPMColor C = proc(src[i], dstC);
if (a != 0xFF) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = C;
}
}
}
}
void SkSSE2ProcCoeffXfermode::xfer16(uint16_t* SK_RESTRICT dst,
const SkPMColor* SK_RESTRICT src, int count,
const SkAlpha* SK_RESTRICT aa) const {
SkASSERT(dst && src && count >= 0);
SkXfermodeProc proc = this->getProc();
SkXfermodeProcSIMD procSIMD = fProcSIMD;
SkASSERT(procSIMD != NULL);
if (NULL == aa) {
if (count >= 8) {
while (((size_t)dst & 0x0F) != 0) {
SkPMColor dstC = SkPixel16ToPixel32(*dst);
*dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC));
dst++;
src++;
count--;
}
const __m128i* s = reinterpret_cast<const __m128i*>(src);
__m128i* d = reinterpret_cast<__m128i*>(dst);
while (count >= 8) {
__m128i src_pixel1 = _mm_loadu_si128(s++);
__m128i src_pixel2 = _mm_loadu_si128(s++);
__m128i dst_pixel = _mm_load_si128(d);
__m128i dst_pixel1 = _mm_unpacklo_epi16(dst_pixel, _mm_setzero_si128());
__m128i dst_pixel2 = _mm_unpackhi_epi16(dst_pixel, _mm_setzero_si128());
__m128i dstC1 = SkPixel16ToPixel32_SSE2(dst_pixel1);
__m128i dstC2 = SkPixel16ToPixel32_SSE2(dst_pixel2);
dst_pixel1 = procSIMD(src_pixel1, dstC1);
dst_pixel2 = procSIMD(src_pixel2, dstC2);
dst_pixel = SkPixel32ToPixel16_ToU16_SSE2(dst_pixel1, dst_pixel2);
_mm_store_si128(d++, dst_pixel);
count -= 8;
}
src = reinterpret_cast<const SkPMColor*>(s);
dst = reinterpret_cast<uint16_t*>(d);
}
for (int i = count - 1; i >= 0; --i) {
SkPMColor dstC = SkPixel16ToPixel32(*dst);
*dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC));
dst++;
src++;
}
} else {
for (int i = count - 1; i >= 0; --i) {
unsigned a = aa[i];
if (0 != a) {
SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
SkPMColor C = proc(src[i], dstC);
if (0xFF != a) {
C = SkFourByteInterp(C, dstC, a);
}
dst[i] = SkPixel32ToPixel16_ToU16(C);
}
}
}
}
#ifndef SK_IGNORE_TO_STRING
void SkSSE2ProcCoeffXfermode::toString(SkString* str) const {
this->INHERITED::toString(str);
}
#endif
////////////////////////////////////////////////////////////////////////////////
// 4 pixels modeprocs with SSE2
SkXfermodeProcSIMD gSSE2XfermodeProcs[] = {
NULL, // kClear_Mode
NULL, // kSrc_Mode
NULL, // kDst_Mode
NULL, // kSrcOver_Mode
NULL, // kDstOver_Mode
NULL, // kSrcIn_Mode
NULL, // kDstIn_Mode
NULL, // kSrcOut_Mode
NULL, // kDstOut_Mode
NULL, // kSrcATop_Mode
NULL, // kDstATop_Mode
NULL, // kXor_Mode
NULL, // kPlus_Mode
NULL, // kModulate_Mode
NULL, // kScreen_Mode
NULL, // kOverlay_Mode
NULL, // kDarken_Mode
NULL, // kLighten_Mode
NULL, // kColorDodge_Mode
NULL, // kColorBurn_Mode
NULL, // kHardLight_Mode
NULL, // kSoftLight_Mode
NULL, // kDifference_Mode
NULL, // kExclusion_Mode
multiply_modeproc_SSE2,
NULL, // kHue_Mode
NULL, // kSaturation_Mode
NULL, // kColor_Mode
NULL, // kLuminosity_Mode
};
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec,
SkXfermode::Mode mode) {
SkXfermodeProcSIMD procSIMD = gSSE2XfermodeProcs[mode];
if (procSIMD != NULL) {
return SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, procSIMD));
}
return NULL;
}

View File

@ -0,0 +1,32 @@
#ifndef SkXfermode_opts_SSE2_DEFINED
#define SkXfermode_opts_SSE2_DEFINED
#include "SkXfermode_proccoeff.h"
typedef __m128i (*SkXfermodeProcSIMD)(__m128i src, __m128i dst);
class SkSSE2ProcCoeffXfermode : public SkProcCoeffXfermode {
public:
SkSSE2ProcCoeffXfermode(const ProcCoeff& rec, SkXfermode::Mode mode,
SkXfermodeProcSIMD procSIMD)
: INHERITED(rec, mode), fProcSIMD(procSIMD) {}
virtual void xfer32(SkPMColor dst[], const SkPMColor src[], int count,
const SkAlpha aa[]) const SK_OVERRIDE;
virtual void xfer16(uint16_t* SK_RESTRICT dst, const SkPMColor* SK_RESTRICT src,
int count, const SkAlpha* SK_RESTRICT aa) const SK_OVERRIDE;
SK_TO_STRING_OVERRIDE()
SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkSSE2ProcCoeffXfermode)
private:
SkSSE2ProcCoeffXfermode(SkReadBuffer& buffer);
SkXfermodeProcSIMD fProcSIMD;
typedef SkProcCoeffXfermode INHERITED;
};
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec,
SkXfermode::Mode mode);
#endif // SkXfermode_opts_SSE2_DEFINED

View File

@ -17,6 +17,8 @@
#include "SkUtils.h"
#include "SkMorphology_opts.h"
#include "SkMorphology_opts_SSE2.h"
#include "SkXfermode.h"
#include "SkXfermode_proccoeff.h"
#include "SkRTConf.h"
@ -307,3 +309,32 @@ SkBlitRow::ColorRectProc PlatformColorRectProcFactory() {
return NULL;
}
}
extern SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec,
SkXfermode::Mode mode);
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl(const ProcCoeff& rec,
SkXfermode::Mode mode);
SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl(const ProcCoeff& rec,
SkXfermode::Mode mode) {
return NULL;
}
SkProcCoeffXfermode* SkPlatformXfermodeFactory(const ProcCoeff& rec,
SkXfermode::Mode mode);
SkProcCoeffXfermode* SkPlatformXfermodeFactory(const ProcCoeff& rec,
SkXfermode::Mode mode) {
if (cachedHasSSE2()) {
return SkPlatformXfermodeFactory_impl_SSE2(rec, mode);
} else {
return SkPlatformXfermodeFactory_impl(rec, mode);
}
}
SkXfermodeProc SkPlatformXfermodeProcFactory(SkXfermode::Mode mode);
SkXfermodeProc SkPlatformXfermodeProcFactory(SkXfermode::Mode mode) {
return NULL;
}