Generalize iterator in GrTAllocator to be useful for other data types

This allows the iterator type/boilerplate to be reused for any other
data collection that sits above GrBlockAllocator, as long as its a fixed
"type" with indices into a block.

Also adds reverse iteration (which is useful for stack-like use cases).

Change-Id: Id9a205e8fb396a8558e360439240fd20c92c9700
Reviewed-on: https://skia-review.googlesource.com/c/skia/+/302665
Commit-Queue: Michael Ludwig <michaelludwig@google.com>
Reviewed-by: Robert Phillips <robertphillips@google.com>
This commit is contained in:
Michael Ludwig 2020-07-15 12:36:44 -04:00 committed by Skia Commit-Bot
parent 3a22017402
commit 26b4ffd362
2 changed files with 206 additions and 122 deletions

View File

@ -12,6 +12,15 @@
#include <type_traits>
// Forward declarations for the iterators used by GrTAllocator
using IndexFn = int (*)(const GrBlockAllocator::Block*);
using NextFn = int (*)(const GrBlockAllocator::Block*, int);
template<typename T, typename B> using ItemFn = T (*)(B*, int);
template <typename T, bool Forward, bool Const, IndexFn Start, IndexFn End, NextFn Next,
ItemFn<T, typename std::conditional<Const, const GrBlockAllocator::Block,
GrBlockAllocator::Block>::type> Resolve>
class BlockIndexIterator;
/**
* GrTAllocator manages dynamic storage for instances of T, reserving fixed blocks such that
* allocation is amortized across every N instances. The optional StartingItems argument specifies
@ -45,11 +54,9 @@ public:
T& push_back() {
return *new (this->pushItem()) T;
}
T& push_back(const T& t) {
return *new (this->pushItem()) T(t);
}
T& push_back(T&& t) {
return *new (this->pushItem()) T(std::move(t));
}
@ -66,18 +73,17 @@ public:
SkASSERT(fTotalCount > 0);
GrBlockAllocator::Block* block = fAllocator->currentBlock();
int newCount = block->metadata() - 1;
// Run dtor for the popped item
int releaseIndex;
GetItemAndOffset(block, newCount, &releaseIndex)->~T();
int releaseIndex = Last(block);
GetItem(block, releaseIndex).~T();
if (newCount == 0) {
if (releaseIndex == First(block)) {
fAllocator->releaseBlock(block);
} else {
// Since this always follows LIFO, the block should always be able to release the memory
SkAssertResult(block->release(releaseIndex, releaseIndex + sizeof(T)));
block->setMetadata(newCount);
block->setMetadata(Decrement(block, releaseIndex));
}
fTotalCount--;
@ -89,11 +95,8 @@ public:
void reset() {
// Invoke destructors in reverse order if not trivially destructible
if /* constexpr */ (!std::is_trivially_destructible<T>::value) {
for (const auto* b : fAllocator->rblocks()) {
int c = b->metadata();
for (int i = c - 1; i >= 0; i--) {
GetItem(b, i)->~T();
}
for (T& t : this->ritems()) {
t.~T();
}
}
@ -108,10 +111,11 @@ public:
#ifdef SK_DEBUG
// Confirm total count matches sum of block counts
int count = 0;
int blockCount = 0;
for (const auto* b :fAllocator->blocks()) {
count += b->metadata();
blockCount++;
if (b->metadata() == 0) {
continue; // skip empty
}
count += (sizeof(T) + Last(b) - First(b)) / sizeof(T);
}
SkASSERT(count == fTotalCount);
#endif
@ -129,148 +133,83 @@ public:
T& front() {
// This assumes that the head block actually have room to store the first item.
static_assert(StartingItems >= 1);
SkASSERT(fTotalCount > 0);
return *(GetItem(fAllocator->headBlock(), 0));
SkASSERT(fTotalCount > 0 && fAllocator->headBlock()->metadata() > 0);
return GetItem(fAllocator->headBlock(), First(fAllocator->headBlock()));
}
/**
* Access first item, only call if count() != 0
*/
const T& front() const {
SkASSERT(fTotalCount > 0);
return *(GetItem(fAllocator->headBlock(), 0));
SkASSERT(fTotalCount > 0 && fAllocator->headBlock()->metadata() > 0);
return GetItem(fAllocator->headBlock(), First(fAllocator->headBlock()));
}
/**
* Access last item, only call if count() != 0
*/
T& back() {
SkASSERT(fTotalCount > 0);
int blockCount = fAllocator->currentBlock()->metadata();
return *(GetItem(fAllocator->currentBlock(), blockCount - 1));
SkASSERT(fTotalCount > 0 && fAllocator->currentBlock()->metadata() > 0);
return GetItem(fAllocator->currentBlock(), Last(fAllocator->currentBlock()));
}
/**
* Access last item, only call if count() != 0
*/
const T& back() const {
SkASSERT(fTotalCount > 0);
int blockCount = fAllocator->currentBlock()->metadata();
return *(GetItem(fAllocator->currentBlock(), blockCount - 1));
SkASSERT(fTotalCount > 0 && fAllocator->currentBlock()->metadata() > 0);
return GetItem(fAllocator->currentBlock(), Last(fAllocator->currentBlock()));
}
template<bool Const>
class Iterator {
using BlockIter = typename GrBlockAllocator::BlockIter<true, Const>;
using C = typename std::conditional<Const, const T, T>::type;
using AllocatorT = typename std::conditional<Const, const GrTAllocator, GrTAllocator>::type;
public:
Iterator(AllocatorT* allocator) : fBlockIter(allocator->fAllocator.allocator()) {}
class Item {
public:
bool operator!=(const Item& other) const {
if (other.fBlock != fBlock) {
// Treat an empty head block the same as the end block
bool blockEmpty = !(*fBlock) || (*fBlock)->metadata() == 0;
bool otherEmpty = !(*other.fBlock) || (*other.fBlock)->metadata() == 0;
return !blockEmpty || !otherEmpty;
} else {
// Same block, so differentiate by index into it (unless it's the "end" block
// in which case ignore index).
return SkToBool(*fBlock) && other.fIndex != fIndex;
}
}
C& operator*() const {
C* item = const_cast<C*>(static_cast<const C*>((*fBlock)->ptr(fIndex)));
SkDEBUGCODE(int offset;)
SkASSERT(item == GetItemAndOffset(*fBlock, fItem, &offset) && offset == fIndex);
return *item;
}
Item& operator++() {
const auto* block = *fBlock;
fItem++;
fIndex += sizeof(T);
if (fItem >= block->metadata()) {
++fBlock;
fItem = 0;
fIndex = StartingIndex(fBlock);
}
return *this;
}
private:
friend Iterator;
using BlockItem = typename BlockIter::Item;
Item(BlockItem block) : fBlock(block), fItem(0), fIndex(StartingIndex(block)) {}
static int StartingIndex(const BlockItem& block) {
return *block ? (*block)->template firstAlignedOffset<alignof(T)>() : 0;
}
BlockItem fBlock;
int fItem;
int fIndex;
};
Item begin() const { return Item(fBlockIter.begin()); }
Item end() const { return Item(fBlockIter.end()); }
private:
const BlockIter fBlockIter;
};
using Iter = Iterator<false>;
using CIter = Iterator<true>;
/**
* Prefer using a for-range loop when iterating over all allocated items, vs. index access.
*/
Iter items() { return Iter(this); }
CIter items() const { return CIter(this); }
/**
* Access item by index. Not an operator[] since it should not be considered constant time.
* Use for-range loops by calling items() or ritems() instead to access all added items in order
*/
T& item(int i) {
// Iterate over blocks until we find the one that contains i.
SkASSERT(i >= 0 && i < fTotalCount);
for (const auto* b : fAllocator->blocks()) {
int blockCount = b->metadata();
if (i < blockCount) {
return *GetItem(b, i);
// Iterate over blocks until we find the one that contains i.
for (auto* b : fAllocator->blocks()) {
if (b->metadata() == 0) {
continue; // skip empty
}
int start = First(b);
int end = Last(b) + sizeof(T); // exclusive
int index = start + i * sizeof(T);
if (index < end) {
return GetItem(b, index);
} else {
i -= blockCount;
i -= (end - start) / sizeof(T);
}
}
SkUNREACHABLE;
}
const T& item(int i) const {
return const_cast<GrTAllocator<T>*>(this)->item(i);
return const_cast<GrTAllocator*>(this)->item(i);
}
private:
static constexpr size_t StartingSize =
GrBlockAllocator::Overhead<alignof(T)>() + StartingItems * sizeof(T);
static T* GetItemAndOffset(const GrBlockAllocator::Block* block, int index, int* offset) {
SkASSERT(index >= 0 && index < block->metadata());
*offset = block->firstAlignedOffset<alignof(T)>() + index * sizeof(T);
return const_cast<T*>(static_cast<const T*>(block->ptr(*offset)));
static T& GetItem(GrBlockAllocator::Block* block, int index) {
return *static_cast<T*>(block->ptr(index));
}
static T* GetItem(const GrBlockAllocator::Block* block, int index) {
int offset;
return GetItemAndOffset(block, index, &offset);
static const T& GetItem(const GrBlockAllocator::Block* block, int index) {
return *static_cast<const T*>(block->ptr(index));
}
static int First(const GrBlockAllocator::Block* b) {
return b->firstAlignedOffset<alignof(T)>();
}
static int Last(const GrBlockAllocator::Block* b) {
return b->metadata();
}
static int Increment(const GrBlockAllocator::Block* b, int index) {
return index + sizeof(T);
}
static int Decrement(const GrBlockAllocator::Block* b, int index) {
return index - sizeof(T);
}
void* pushItem() {
// 'template' required because fAllocator is a template, calling a template member
auto br = fAllocator->template allocate<alignof(T)>(sizeof(T));
br.fBlock->setMetadata(br.fBlock->metadata() + 1);
SkASSERT(br.fStart == br.fAlignedOffset ||
br.fAlignedOffset == First(fAllocator->currentBlock()));
br.fBlock->setMetadata(br.fAlignedOffset);
fTotalCount++;
return br.fBlock->ptr(br.fAlignedOffset);
}
@ -282,6 +221,103 @@ private:
// N represents the number of items, whereas GrSBlockAllocator takes total bytes, so must
// account for the block allocator's size too.
GrSBlockAllocator<StartingSize> fAllocator;
public:
using Iter = BlockIndexIterator<T&, true, false, &First, &Last, &Increment, &GetItem>;
using CIter = BlockIndexIterator<const T&, true, true, &First, &Last, &Increment, &GetItem>;
using RIter = BlockIndexIterator<T&, false, false, &Last, &First, &Decrement, &GetItem>;
using CRIter = BlockIndexIterator<const T&, false, true, &Last, &First, &Decrement, &GetItem>;
/**
* Iterate over all items in allocation order (oldest to newest) using a for-range loop:
*
* for (auto&& T : this->items()) {}
*/
Iter items() { return Iter(fAllocator.allocator()); }
CIter items() const { return CIter(fAllocator.allocator()); }
// Iterate from newest to oldest using a for-range loop.
RIter ritems() { return RIter(fAllocator.allocator()); }
CRIter ritems() const { return CRIter(fAllocator.allocator()); }
};
/**
* BlockIndexIterator provides a reusable iterator template for collections built on top of a
* GrBlockAllocator, where each item is of the same type, and the index to an item can be iterated
* over in a known manner. It supports const and non-const, and forward and reverse, assuming it's
* provided with proper functions for starting, ending, and advancing.
*/
template <typename T, // The element type (including any modifiers)
bool Forward, // Are indices within a block increasing or decreasing with iteration?
bool Const, // Whether or not T is const
IndexFn Start, // Returns the index of the first valid item in a block
IndexFn End, // Returns the index of the last valid item (so it is inclusive)
NextFn Next, // Returns the next index given the current index
ItemFn<T, typename std::conditional<Const, const GrBlockAllocator::Block,
GrBlockAllocator::Block>::type> Resolve>
class BlockIndexIterator {
using BlockIter = typename GrBlockAllocator::BlockIter<Forward, Const>;
public:
BlockIndexIterator(BlockIter iter) : fBlockIter(iter) {}
class Item {
public:
bool operator!=(const Item& other) const {
return other.fBlock != fBlock || (SkToBool(*fBlock) && other.fIndex != fIndex);
}
T operator*() const {
SkASSERT(*fBlock);
return Resolve(*fBlock, fIndex);
}
Item& operator++() {
const auto* block = *fBlock;
SkASSERT(block && block->metadata() > 0);
SkASSERT((Forward && Next(block, fIndex) > fIndex) ||
(!Forward && Next(block, fIndex) < fIndex));
fIndex = Next(block, fIndex);
if ((Forward && fIndex > fEndIndex) || (!Forward && fIndex < fEndIndex)) {
++fBlock;
this->setIndices();
}
return *this;
}
private:
friend BlockIndexIterator;
using BlockItem = typename BlockIter::Item;
Item(BlockItem block) : fBlock(block) {
this->setIndices();
}
void setIndices() {
// Skip empty blocks
while(*fBlock && (*fBlock)->metadata() == 0) {
++fBlock;
}
if (*fBlock) {
fIndex = Start(*fBlock);
fEndIndex = End(*fBlock);
} else {
fIndex = 0;
fEndIndex = 0;
}
SkASSERT((Forward && fIndex <= fEndIndex) || (!Forward && fIndex >= fEndIndex));
}
BlockItem fBlock;
int fIndex;
int fEndIndex;
};
Item begin() const { return Item(fBlockIter.begin()); }
Item end() const { return Item(fBlockIter.end()); }
private:
BlockIter fBlockIter;
};
#endif

View File

@ -52,6 +52,50 @@ static void check_allocator_helper(GrTAllocator<C, N>* allocator, int cnt, int p
}
}
template<int N>
static void check_iterator_helper(GrTAllocator<C, N>* allocator, const std::vector<C*>& expected,
skiatest::Reporter* reporter) {
const GrTAllocator<C, N>* cAlloc = allocator;
REPORTER_ASSERT(reporter, (size_t) allocator->count() == expected.size());
// Forward+const
int i = 0;
for (const C& c : cAlloc->items()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
++i;
}
REPORTER_ASSERT(reporter, (size_t) i == expected.size());
// Forward+non-const
i = 0;
for (C& c : allocator->items()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
++i;
}
REPORTER_ASSERT(reporter, (size_t) i == expected.size());
// Reverse+const
i = (int) expected.size() - 1;
for (const C& c : cAlloc->ritems()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
--i;
}
REPORTER_ASSERT(reporter, i == -1);
// Reverse+non-const
i = (int) expected.size() - 1;
for (C& c : allocator->ritems()) {
REPORTER_ASSERT(reporter, (uintptr_t) &c == (uintptr_t) expected[i]);
--i;
}
REPORTER_ASSERT(reporter, i == -1);
// Also test random access
for (int i = 0; i < allocator->count(); ++i) {
REPORTER_ASSERT(reporter, (uintptr_t) &allocator->item(i) == (uintptr_t) expected[i]);
REPORTER_ASSERT(reporter, (uintptr_t) &cAlloc->item(i) == (uintptr_t) expected[i]);
}
}
// Adds cnt items to the allocator, tests the cnts and iterators, pops popCnt items and checks
// again. Finally it resets the allocator and checks again.
template<int N>
@ -59,6 +103,7 @@ static void check_allocator(GrTAllocator<C, N>* allocator, int cnt, int popCnt,
skiatest::Reporter* reporter) {
SkASSERT(allocator);
SkASSERT(allocator->empty());
std::vector<C*> items;
for (int i = 0; i < cnt; ++i) {
// Try both variations of push_back().
if (i % 1) {
@ -66,9 +111,12 @@ static void check_allocator(GrTAllocator<C, N>* allocator, int cnt, int popCnt,
} else {
allocator->push_back() = C(i);
}
items.push_back(&allocator->back());
}
check_iterator_helper(allocator, items, reporter);
check_allocator_helper(allocator, cnt, popCnt, reporter);
allocator->reset();
check_iterator_helper(allocator, {}, reporter);
check_allocator_helper(allocator, 0, 0, reporter);
}